1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

WEALTY 4
of %,

&

/ HHS Public Access

Author manuscript

ﬁ Nat Genet. Author manuscript; available in PMC 2018 April 30.

Published in final edited form as:
Nat Genet. 2017 December ; 49(12): 1722-1730. doi:10.1038/ng.3978.

Exome chip meta-analysis identifies novel loci and East Asian-
specific coding variants contributing to lipid levels and coronary
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Abstract

Most genome-wide association studies have been conducted in European individuals, even though
most genetic variation in humans is seen only in non-European samples. To search for novel loci
associated with blood lipid levels and clarify the mechanism of action at previously identified lipid
loci, we examined protein-coding genetic variants in 47,532 East Asian individuals using an
exome array. We identified 255 variants at 41 loci reaching chip-wide significance, including 3
novel loci and 14 East Asian-specific coding variant associations. After meta-analysis with >
300,000 European samples, we identified an additional 9 novel loci. The same 16 genes were
identified by the protein-altering variants in both East Asians and Europeans, likely pointing to the
functional genes. Our data demonstrate that most of the low-frequency or rare coding variants
associated with lipids are population-specific, and that examining genomic data across diverse
ancestries may facilitate the identification of functional genes at associated loci.
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Introduction

Results

Genome-wide association studies (GWAS) have revealed over 175 genetic loci contributing
to lipid levels1=8, which are heritable risk factors for cardiovascular disease, fatty liver
disease, age-related macular degeneration and type 2 diabetes’~2. However, most of the
published lipid-associated variants fall in non-protein-coding regions of the genome, are
without obvious biological significance, and explain only a small fraction of the heritability
of lipid levels. The examination of low frequency and potentially functional variants, poorly
captured by standard GWAS arrays, has the potential to pinpoint causal variants and genes
for follow-up and functional analyses, therefore promoting translation of the finding of
genetic studies into new therapeutic targets. For example, low-frequency coding variants in
PCSK9lower plasma low density lipoprotein cholesterol (LDL-C), reduce risk of coronary
artery disease (CAD), and have prompted the development of a new class of therapeutics?.
Thus, we investigated the effect on lipid levels of the rare and low-frequency variants in the
coding portion of the genome in an East Asian population, which has not been as extensively
studied as the European population1-13,

We performed a meta-analysis of exome-wide association studies of blood lipid levels (high
density lipoprotein cholesterol [HDL-C], LDL-C, triglycerides [TG], and total cholesterol
[TC]) in a total of 47,532 East Asian samples that were genotyped using an exome array. We
further integrated the exome array data for plasma lipids in over 300,000 individuals,
primarily European ancestry (84%), conducted by the Global Lipids Genetics Consortium
(GLGC). We aimed to determine whether novel or population-specific variants and genes
influencing lipid levels could be identified in East Asian and multi-ancestry meta-analysis.
Secondly, we aimed to determine if the protein-altering variants located in known lipid loci
explained the association signal or were independent evidence of functional genes. And
lastly, we examined whether exome data would implicate the same putatively functional
genes in European and East Asian ancestries at lipid loci.

To improve the coverage for the low frequency variants in Asian populations and follow up
various GWAS variants, approximately 60K custom content variants were added to the
standard exome array. Among 319,272 variants passing quality control, 204,408 (64.0%)
were polymorphic in the East Asian individuals, of which about 25% (n = 50,126) were
from the custom content. Approximately 76.1% (n=155,566) of the polymorphic variants are
annotated as honsynonymous or loss of function (stop-gain, stop-loss and splice variants)
(Supplementary Table 1). By determining the proportion of variants observed in EXAC East
Asian samples (n = 4,327 individuals) that were successfully genotyped by the array, we
estimated that the exome array captured a large fraction of common and low-frequency
coding variants (71.15% and 72.59% for variants with minor allele frequency (MAF) >5%
and MAF = 1-5%, respectively). Among rare coding variants identified in EXAC sequenced
individuals, 59.91% (MAF = 0.1-1%) and 19.92% (two or more copies) were captured by
the array. Therefore, the array provided good coverage for low-frequency and moderate
coverage for rare coding variants in East Asians. In addition, we examined 76K polymorphic
coding variants that were not available or monomorphic in EXAC East Asian samples.
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Discovery of novel variants associated with lipid levels

Our analysis identified three study-wide significant variants in three novel loci in East
Asians, located at least 1 megabase from previously reported GWAS signals of lipid levels
(Table 1). These include rs4377290 in ACVRIC (TC, P=4.69 x 1078), rs7901016 in MCU
(LDL-C, P=5.12 x 1079), and the missense variant rs4883263 (encoding p.lle342Val) in
CD163(HDL-C, P=5.24 x 10~11). Each of these three variants demonstrated evidence for
association (P=1.80 x 1073~ 6.68 x 107°) in over 300,000 GLGC individuals.

Summary of association results

We assessed association of 110,986 polymorphic variants that had at least 20 minor alleles in
47,532 East Asian samples. Overall, we detected 255 variants (including 51 coding variants)
at 41 loci that reached exome-wide significant association with one or more lipid trait (P <
4.5x% 1077), of which 3 loci have not been previously reported (Figure 1). Collectively, the
overall variance in each lipid trait explained by exome-wide significant variants in East
Asian samples was 5.97% for TC, 6.20% for LDL-C, 6.93 % for HDL-C, and 6.89% for TG
levels, respectively, of which 3.22 %, 4.77%, 3.35% and 3.86% can be attributed to coding
variants (Figure 2). Our results also showed that additional 7 known loci were associated
with lipid levels at suggestive significance (P < 4.46 x 1075, Bonferroni correction of 11,215
variants) (Supplementary table 2), and that, taken together they increased the trait variance
explained to 6.08%~7.20%.

Evaluation of known lipid signals

Among the 38 previously established lipid loci that reached significance, we identified a
more significant candidate variant at 14 loci (Supplementary Table 3 and Figure 1), where
the initially reported GWAS index variants showed no significant associations or were
independent of previously identified associations in European populations (r2 < 0.02)
(APOB and APOE), demonstrating allelic heterogeneity between East Asian and European
ancestries. The lead variants in the remaining 24 loci were the same as or strongly related (r?
> 0.69) to the reported GWAS index variants from previous studies in primarily European
samples. Sequential conditional analyses revealed that 12 loci with evidence of association
exhibited two or more significant signals (Supplementary Table 4). For example, a novel
missense variant (rs2075260, encoding p.Val21411le) at ACACB was detected and largely
independent of the originally reported GWAS index rs7134594 at MVK (r2 = 0.01)?,
representing novel association not previously reported. The GWAS index rs7134594 could
be explained by another missense variant (rs9593 p.Met239Lys) at MMARB (conditional P=
0.73).

For gene-base analysis, nine genes (PCSK9, EVII5, HMGCR, CD36, APOA1, PCSK7,
CETP, LDLR and PPARA) reached gene-based significance (P < 2.8 x 1076) with lipid
levels (Supplementary Figure 1 and Supplementary Table 5), however, no new genes were
identified by gene-based analyses that weren’t already highlighted by single variant tests.

Putative functional coding variants at the known loci

Identifying coding variants in known loci has the potential to help pinpoint causal genes. We
observed that the protein-altering variants are more likely to have strong effect sizes on lipid
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levels (Figure 3 and Supplementary Table 6), compared to the non-coding variants
significantly associated with lipid levels. Ten coding variants in eight genes showed strong
effects on lipid levels (beta range from 0.20 to 1.17 SD units), and 8 were low-frequency or
rare variants (MAF < 3%). We next sought to quantify what proportion of GWAS loci might
be due to a protein-altering variant, implicating a candidate functional gene. We make the
reasonably well-supported assumption that a protein-altering variant, if the top signal,
explains the signal, or is independent of the original signal, is the most likely causal variant
for each region4-16, Among the 38 known loci showing association evidence at study-wide
significance, 12 loci harbored a protein-altering variant that exhibited strongest association
with lipid levels, while 4 loci have a protein-altering variant that was not the top signal but
could explain the association of the reported index variant (Supplementary Table 7 and
Figure 1). In 8 of these 16 loci (PCSK9, EVI5, CD36, MMAB, ALDHZ, SL C12A4, LDLR,
and PPARA), the previously identified lead variants in European populations did not reach
exome-wide significance. In the remaining 8 loci (GCKR, MLXIPL, HNFIA, LPL, ABO,
GPAM, PMFBP1, and TM6SF2), the GWAS index variant in each locus (P values range
from 4.86x1078 to 1.26x107%2) is in strong LD with the corresponding protein-altering
variant (r2 > 0.68) and does not remain significant after accounting for the effect of the
protein-altering variant (conditional Pvalues > 0.01), suggesting that the index variant might
act as a proxy for the functional protein-altering variant. Together, 42.1% (16/38) of loci
appear to have a protein-altering variant that could account for the original association
signal. In addition, we identified 15 protein-altering variants in 9 genes (APOB, HMGCR,
ABCA1, APOA1-APOAS5, ACACB, CETP, PKDI1L3, LIPG, and APOE) that were
independent of the original signal but may highlight functional genes in the region. All of
these putative functional variants may point to functional candidate genes: either well-
established causal genes (such as the genes that cause Mendelian dyslipidemias
(Supplementary Table 8)) or to potential new candidate genes (MMAB, ACACB, SLC12A4,
and PMFBPI). In total, the 31 protein-altering variants in the known loci may point to 25
candidate functional lipid genes.

with coronary artery disease

To further evaluate whether the novel variants and putative functional variants in known
regions identified in our samples also influenced CAD risk, we tested for association in
28,899 Chinese individuals with and without coronary disease (9,661 CAD cases and 18,558
controls) and in the largest publicly available CAD GWAS analyses
(CARDIoGRAMplusC4D) of ~185,000 CAD cases and controls? (Supplementary Table 9).
For the novel non-coding variant near MCU (rs7901016), the C allele associated with lower
LDL-C was similarly associated with reduced risk for CAD in Chinese samples (OR = 0.94,
95% CI = 0.90-0.98, = 2.8x1073) and CARDIoOGRAMplusC4D (OR = 0.94, 95% CI =
0.91-0.98, A= 4.55x1074). Among the 31 putative functional coding variants in the known
regions, all the 20 non-HDL-C related variants displayed a consistent direction of effect
between lipid traits and CAD. 15 out of 20 showed nominal significance (P< 0.05) in
Chinese or CARDIOGRAMplusC4D CAD data, whereas 7 variants in PCSK9, APOB,
LDLR, APOE, HNF1A, and APOAS5 displayed significant associations even after
accounting for multiple testing (P-value range from 5.95x10~# to 8.17x10711 < 0.05/31). In
particular, nearly all of the LDL-associated coding variants demonstrated association with
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CAD, and the strengths of effect on CAD risk and LDL-C were highly correlated (r2 = 0.78,
P=13.3x 1074, Supplementary Figure 2).

Novel loci identified by East Asian and GLGC samples

An exome-wide association screen for plasma lipids in >300,000 individuals genotyped by
the exome array was conducted in parallel by the Global Lipids Genetics Consortium. The
majorities (84%) of the participants were of European ancestry, and only 2.3% were East
Asian. We further carried out large-scale trans-ancestry meta-analysis in our East Asian and
GLGC samples, being careful to include overlapping samples only once, to seek both novel
and population-specific genetic variants for lipid levels.

In the combined GLGC and East Asian samples, 9 additional variants showed significant
associations (P< 2.1 x 10/, Bonferroni correction of 242,289 variants analyzed in GLGC)
with at least one lipid trait, that were not significant in either the East Asian or GLGC
analyses. All of them are common (MAF > 0.05 in both East Asian and GLGC), including 4
coding variants (Table 2 and Supplementary Figure 3): FAM114A2 (p.Gly122Ser, HDL-C, P
=1.74 x 1077), MGAT1 (p.Leu435Pro, HDL-C, P=9.36 x 1078), ASCC3 (p.Leu146Phe,
LDL-C, P=5.84 x 1078 TC, P=5.22 x 1079), PLCEI (p.Arg1575Pro, TC, P=9.92 x
1078).

Joint analysis of the novel signals with additional samples

To strengthen support for association, we performed /n silico replication of significant
variants in three additional independent genome-wide datasets, comprising a combined total
of ~160,000 individuals from the Nord-Trgndelag Health Study (HUNT)18, GLGC GWAS
samples?, and Chinese lipids GWAS study®. We found that the associations of 12 novel
variants became more significant and reached genome-wide significance in the joint analysis
(Pvalues range from 2.99x1078 to 7.62x10715) (Supplementary Table 10).

Coding variants point to the same genes across ancestries

We further evaluated whether these variants identified in East Asian were also defined as
putative functional variants in GLGC samples (Supplementary Table 11). We found that both
East Asian and GLGC samples pointed to the same nine functional genes, but had different
associated variants in each ancestry (Table 3). The eight coding variants (MAF range from
0.004% to 15.9%) at PCSKY, CD36, ABCA1, CETP, PMFBPI, LIPG, LDLR, and PPARA
identified by GLGC showed lower minor allele frequencies (MAF range from 0 to 2.57%) in
the East Asian samples and, thus, displayed no significance or only suggestive significance
(CETP). Conversely, the coding variants at PCSK9, APOB, CD36, CETP, LDLR and
PPARA identified in East Asian (MAF range from 0.094% to 12.45%) also had lower minor
allele frequencies in GLGC (MAF range from 0.001% to 0.20%). In addition, the same
putatively functional coding variants and genes at seven loci (GCKR, MLXIPL, LPL,
GPAM, HNF1A, TM6SF2, and APOE) were identified in both East Asian and GLGC
samples, with similar common minor allele frequencies (Table 4).
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East Asian-specific association signals

We next attempted to identify variants that were associated with lipids in East Asian samples
only. Within the known lipid loci, 363 independent variants were identified by sequential
conditional analyses in GLGC exome-wide association studies (Supplementary Table 11).
After conditioning on the independent variants in the corresponding loci, we identified 14
independent coding variant associations at 11 loci in East Asian samples with conditional P
values < 4.5 x 1077 (Table 5, Figure 1 and 3). Interestingly, all 14 East Asian-specific
variants are included in the list of the putative functional variants we identified. Eight of
these loci (EVI5, APOB, HMGCR, CD36, APOA1, CETP, LDLR, and PPARA) harbored at
least one low-frequency or rare independent coding variant (MAF range from 4.21% to
0.03%). All of these variants are either monomorphic or have a frequency at least 1 order of
magnitude lower in Europeans and, thus, showed only suggestive significance in ~ 300,000
GLGC individuals.

Discussion

This study represents the largest discovery effort for coding variation that influences lipid
levels in the East Asian population, enabling us to systemically evaluate protein-altering
variants that identify candidate functional genes. Meta-analyses in East Asian and multi-
ancestry samples using an exome-chip genotyping array identified twelve novel loci, five of
which harbored non-synonymous variants. In the 38 known loci that were replicated, we
identified 31 protein-altering variants that likely point to 25 functional lipid genes.
Moreover, the same 16 putative functional genes were identified by significant association
with protein-altering variants in both European and East Asian samples--at 9 of those genes
by identifying independent protein-altering variants in the two ancestries.

Among the novel genetic loci identified, several have been implicated in cardiovascular and
metabolic phenotypes, which may provide mechanistic insight into the regulation of lipid
levels and potential targets for treatments. The significant novel variant associated with both
lipids and CAD is located in intron of MCU. MCU encodes mitochondrial inner membrane
calcium uniporter that mediates calcium uptake into mitochondria. It has been found that
mitochondrial calcium plays an important role in the regulation of metabolism in the heart20.
CD163encodes a macrophage specific receptor involved in the clearance and endocytosis of
hemoglobin-haptoglobin complexes by macrophages. Soluble CD163 was recently proposed
as a biomarker of the well-known variables metabolic syndrome, including HDL-
cholesterol?l, ACVRIC encodes activin receptor-like kinase 7 (ALK?7), one of the type |
transforming growth factor-f receptors. ALK7 has recently been demonstrated to play an
important role in the maintenance of metabolic homeostasis?2. ALK?7 is highly expressed in
adipose tissue of humans and is correlated with body fat and lipids. The ALK7 dysfunction
could cause increased lipolysis in adipocytes and leads to decreased fat accumulation.
MGAT1 encodes Mannosyl (Alpha-1,3-)-Glycoprotein Beta-1,2-N-
Acetylglucosaminyltransferase, which is involved in the synthesis of protein-bound and
lipid-bound oligosaccharides. It has been found that the variant in MGAT1 was associated
with body weight and obesity?3. Of note, CD163and PDGFC were also found to be
associated with lipid levels by the East Asian lipids GWAS meta-analysis since our
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manuscript was submitted?4. To further clarify the possible transcriptional mechanisms
underlying the identified loci in associations with lipids, we investigated the relationships of
the novel variants and proxies with expression quantitative trait loci (eQTLS) using the
GTEXx eQTL browser. Significant cis-eQTLs effects in human tissues were found at five loci
at a significance of P< 4.5 x 10~ (Supplementary Table 12). We further predicted
putatively regulatory variants in seven novel noncoding regions in 81 cell type lines using
deltaSVM scores?®, and found that the variants in PDGFC, L OC100996634, and MCU had
high regulatory potential with extreme deltaSVM scores greater than 10 in absolute value
(Supplementary Figure 4).

Our data provided a more comprehensive understanding of the genetic architecture of lipid
susceptibility by discovering novel lipid genes and revealing allelic heterogeneity across
different ancestry populations. We detected multiple independent association signals or new
lead variants in known lipid-associated loci that frequently displayed no or moderate linkage
disequilibrium (LD) with the corresponding GWAS index variants in European populations.
Specially, we identified 14 East Asian-specific variants that could not be explained by all the
independent variants in the corresponding loci identified by GLGC samples. Our study
demonstrated the benefits of distinct LD patterns between ancestry groups in dissecting
validated loci. We also found substantial inter-ancestry differences in the identification of
rare coding variants across populations, which may have been subjected to natural selection
during human evolution or genetic drift. All the low-frequency or rare functional coding
variants identified in East Asians (MAF range from 0.03% to 4.21%) appeared to be
population-specific, and were monomorphic or not present in 1000 Genomes European
individuals, this allelic heterogeneity across different ancestry populations have been partly
reported®11. However, we observed that these rare variants were not monomorphic in over
300,000 GLGC individuals, but had 15 to 160-fold lower frequencies (MAF range from
0.001% to 0.15%) in Europeans than East-Asians (Supplementary Table 13 and
Supplementary Figure 5), with little power to detect association in Europeans. Similarly, the
low-frequency and rare coding variants identified in GLGC samples were extremely rare or
monomorphic in East Asian samples (Supplementary Figure 6 and Supplementary Table 11).
Overall, our finding demonstrated that rare and low frequency coding variants are more
likely to be population-specific, which underscores the value of discovering ancestry-
specific rare variants in diverse populations, particularly for low frequency variation.

Since most GWAS index variants are located in non-coding regions, the identification of
associated protein-coding variants may allow us to prioritize functional genes and variation.
Among the 38 known loci that reached chip-wide significance in our data, coding variants at
16 loci (42.1%) were found to completely account for the original association signal. At an
additional 9 loci, an independent protein-altering variant indicated a likely functional gene.
The coding variants are more likely to have consistent effect sizes across ethnic groups
compared to non-coding variants. For the GWAS index variants that could not be replicated
in East Asian samples, the effect sizes were poorly correlated with those observed in
Europeans. In contrast, the effect sizes of the putatively-functional coding variants in the
same loci are strongly related across ethnic groups (Supplementary Figure 7). Trans-ancestry
comparison provided additional credible evidence to support the same 16 genes as putative
functional genes. The functional genes pointed to by coding variants are either well-known
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genes or genes with previously unknown roles in lipid metabolism (such as GRAM and
PMFBPI), which may be good candidates for functional assessment. More importantly, we
found the effects of these putative functional coding variants on LDL cholesterol,
triglyceride, and total cholesterol were highly correlated with the effect on CAD, but the
effect on HDL cholesterol levels were not correlated with CAD. Our findings are consistent
with the recent genetic studies that both LDL cholesterol and triglyceride levels but not HDL
cholesterol levels are causally related to CAD risk26-29,

This large-scale exome wide association study allowed us to detect a larger number of low-
frequency and rare variants, 30% of which were not polymorphic in the previous exome-
wide study involving 12,685 Chinese individuals'®. Nonetheless, the exome array offered
moderate coverage for rare variants observed in EXAC East Asian samples. Power
calculations indicated that the available sample size provided 80% power to detect variants
with effect size of 0.27 s.d. and MAF as low as 0.5% at A< 4.5 x 10~/. However, we had
considerably less power to evaluate extremely rare variants (MAF < 0.1%). Studies in larger
sample sizes and of sequenced samples are therefore needed to fully investigate associations
of rare variants with lipid levels.

In conclusion, we identified 12 new loci associated with lipid levels. We also identified
coding variants that highlight 25 likely functional genes at previously known loci, including
several with previously undiscovered roles in lipids. We also found an abundance of
population specific coding variant associations that underlie lipid traits, highlighting the
importance of including individuals of diverse ancestry background. At the same time, our
data demonstrate that integrating genomic data across diverse ancestry groups may enable us
to determine functional variants and genes for further functional study.

Study cohorts

Phenotypes

Twenty three studies including both population-based studies and case-control studies of
coronary artery disease (CAD) and type 2 diabetes (T2D) were genotyped with the lllumina
HumanExome array resulting in a total of 47,532 participants, all of whom were of East
Asian ancestry (Supplementary Table 14). All participants provided written informed
consent, and ethics approval for their data generation and analyses was individually obtained
for each contributing study. The relevant human genetic data was also approved by Ministry
of Science and Technology of China. For GLGC exome study, the studies contributed
association results for exome chip genotypes and plasma lipid levels (Supplementary notes
and Supplementary Table 15).

For most East-Asian subjects (83%), TC, HDL-C, and TG were measured at > 8 hours of
fasting. LDL-C levels were directly measured in 18 studies (88% of total study individuals)
and were estimated using the Friedewald formula in the remaining studies, with missing
values assigned to individuals with triglycerides >400 mg/dl. We adjusted the TC values for
individuals on lipid-lowering medication by replacing their TC values by TC/0.8 with lipid
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medication status available. If measured LDL-C was available in a study, the treated LDL-C
value was divided by 0.7. No adjustment for individuals using medication was made for
HDL-C and TG.

Exome array genotyping and quality control

All study participants were genotyped on the HumanExome Bead-Chip (Illumina), and most
cohorts (83%) also included the custom Asian Vanderbilt content. This custom content was
added to the standard Illumina HumanExome BeadChip to improve the coverage of low
frequency variants in Asian populations. The variants were selected from 1077 (581 Chinese
women and 496 Singapore Chinese) whole exome sequenced East Asian samples generously
provided by Wei Zheng and Jianjun Liu30, Additional approximately 29K common variants
were added to the array including previously identified GWAS variants selected from the
GWAS catalogue. Genotype calling was performed with GenTrain version 2.0 in
GenomeStudio V2011.1 (Illumina) in combination with zCall version 2.231, Within each
study, individuals with low genotype completion rates, individuals expressing gender
mismatches or a high level of heterozygosity, and related individuals, and PCA outliers were
excluded from further analysis (Supplementary Table 16). In addition, variants that did not
meet the 95% or 98% genotyping threshold or showed deviation from the Hardy-Weinberg
equilibrium were removed.

Statistical analyses

Within each cohort, HDL-C, LDL-C, TG and TC measurements were transformed using the
inverse normal distribution after adjustment of each trait for age, age?, and study-specific
covariates, including principal components in order to account for population structure. In
studies ascertained on diabetes or cardiovascular disease status, cases and controls were
analyzed separately.

We performed both single variant and gene-level association tests. Single variant analyses in
each cohort were carried out using either RAREMETALWORKER or RVTESTS32, both of
which generate single variant score statistics and their covariance matrix between single
marker statistics. The test statistics, as visualized in a quantile—quantile plot, appeared well-
calibrated (Supplementary Figure 8). Gene-based tests were restricted to variants that were
predicted to alter the coding sequence of the gene product (defined as missense, stop-gain,
stop-loss, or splice-site variants) in order to enhance the likelihood of identifying causal
variants and to reduce the multiple testing burden. For each trait, we ran four gene-based
tests: a variable threshold burden test with a MAF cutoff of <5% or <1% and a sequence
kernel association test (SKAT) with a MAF cutoff of <5% or <1%. Next, the meta-analyses
of single variant and gene-level association tests were performed using RAREMETALS33
for HDL-C, LDL-C, TC and TG. For single variants, we applied a significance threshold of
P<4.5x% 1077, corresponding to a Bonferroni correction for 110,986 polymorphic variants
that had at least 20 minor alleles. For gene-level tests, we used a significance threshold of £
< 2.8 x 1075, corresponding to a Bonferroni correction for 17,614 gene-level tests.

To identify putative functional coding variants accounting for the effects at known lipid loci,
we performed reciprocal conditional analyses to control for the effects of known lipid

Nat Genet. Author manuscript; available in PMC 2018 April 30.
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GWAS or coding variants. Loci where the initial lead variant had conditional 2> 0.01 were
considered to be explained by the variants used in the conditional analyses. To dissect East
Asian-specific association signals in the reported loci, we also performed conditional
association analysis for variants within 1MB of each locus using covariance matrices
between single variant association statistics. Details of the methods can be found in Liu et
al32. To evaluate whether two or more independent association signals, we performed
sequential conditional association analyses using the lead variant at each locus as a covariate
until results after conditional analysis were no longer significant (P> 4.5x 10~7). We
estimated the linkage disequilibrium (LD) metric r2 using the cohort-combined variants and
LD matrices. LD for variants not included on the exome array was estimated from the 1000
Genomes Project East Asian individuals.

To further assess whether the identified functional coding variants also relate to coronary
artery disease (CAD), we tested their associations with CAD in PUUMA-MI11, HKU-TRS,
HuCAD34, and two GWAS samples® (the Beijing Atherosclerosis Study (BAS) and the
China Atherosclerosis Study (CAS)) involving 9,661 CAD cases and 18,558 controls. The
effect estimates and s.e. were meta-analysed using METAL by the fixed-effect inverse-
variance method3®. We also looked up the CAD association in the largest publicly available
CAD GWAS analyses (CARDIoGRAMplusC4D) of ~185,000 CAD cases and controlsl’.

In silico Replication Samples

The in silico replication study was conducted using additional independent individuals of
European ancestry from the HUNT study!® and GLGC GWAS?, and Chinese subjects from
Chinese lipids GWASI®. HUNT is a population-based cohort of 62,168 individuals with
genome-wide genotypes (Illumina Human CoreExome), imputation from the Haplotype
Reference Consortium panel, and non-fasting lipid phenotypes. The Chinese lipids GWAS
was a meta-analysis consisting of over 13,000 Han Chinese who underwent standardized
collection of blood lipid measurements in five independent genome wide association studies.
These studies included the China Atherosclerosis Study (CAS), the Beijing Atherosclerosis
Study (BAS), Genetic Epidemiology Network of Salt-Sensitivity (GenSalt) study3?, and the
China Atherosclerosis Study phase Il (CAS-I11).

Heritability and proportion of variance explained estimates

We estimate the proportion of variance explained by the set of independently associated

variants. Joint effects of variants in a locus were approximated by 4 ;- = VMIET AU META

where Upg74 is single variant score statistics and VK;ET 4 IS the covariance matrix between

them. Covariance between single variant genetic effects were approximated by the inverse of
the variance-covariance matrix of score statistics, i.e. Vypr. . The explained phenotype

/\T —
- - - - - - - —> —>
variance by independently associated variants in a locus is given by g oG joinT
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Annotation

Variants were annotated as missense, splice, stop-gain/loss, synonymous or noncoding using
ANNOVAR (version 2012-05-25)38, Variant identifiers and chromosomal positions are listed
with respect to the hg19 genome build.

DeltaSVM analysis

DeltaSVM uses a gapped k-mer support vector machine to estimate the effect of a variant in
a cell-type-specific manner2®. Precomputed weights were available from a total of 222
ENCODE DHS samples—99 from the Duke University (Duke) set and 123 from the
University of Washington (UW) set3?. For the current study, genetic variants were scored for
deltaSVM in 81 cell lines from four tissues (blood, blood vessel, heart and liver). For each of
the seven novel noncoding regions, all proxies (r2 > 0.8) were identified using data from
1000 genome.

Data Availability

Summary statistics have been made available for download from http://csg.sph.umich.edu/
abecasis/public/lipids2017EastAsian. Additional supporting data are provided in the
supplementary material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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corresponding loci identified by GLGC exome-wide association studies.
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Figure 2. Proportion of total trait variance explained by the significant and coding variants
The variances explained by all the variants reaching exome-wide significance (P< 4.5 x

1077), and together with the variants at suggestive significance (P < 4.46 x 1075) are
presented with light blue and purple bars, respectively. The proportions of variance
explained by the corresponding protein-altering variants are represented by dark blue and
purple bars, respectively. The proportions of variance explained by GWAS index variants are
represented by yellow bars.
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Figure 3. Effect Sizevs. Allele Frequency for variants associated with blood lipids at exome-wide
significance

The protein-altering variants are shown in red in comparison to the non-coding variants
shown in black. East Asian-specific protein-altering variants are labeled in diamond. The
variants shown in triangle, PCSK9 (p.Arg93Cys) and APOA5 (p.Gly185Cys), have
extremely rare minor allele frequencies in Europeans, although they do not display
population-specific association. The protein-altering variants show strong effects on lipid
levels (beta > 0.20 SD units) are highlighted. Estimated power curves are shown (as dashed
lines) for the minimum standardized effect sizes (in s.d. units) that could be identified for a
given effect-allele frequency with 10% (purple), 50% (green) and 80% (blue) power,
assuming sample size 47,532 and alpha level 4.5 x 1077,
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