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Abstract

The cancer stem cell model postulates that tumors are hierarchically organized with a minor 

population, the cancer stem cells, exhibiting unlimited proliferative potential. These cells give rise 

to the bulk of tumor cells, which retain a limited ability to divide. Without successful targeting of 

cancer stem cells, tumor reemergence after therapy is likely. However, identifying target pathways 

essential for cancer stem cell proliferation has been challenging. Here, using a transcriptional 

network analysis termed GAMMA, we identified 50 genes whose correlation patterns suggested 

involvement in cancer stem cell division. Using RNAi depletion, we found that 21 of these target 

genes showed preferential growth inhibition in a breast cancer stem cell model. More detailed 

initial analysis of 6 of these genes revealed 4 with clear roles in the fidelity of chromosome 

segregation. This study reveals the strong predictive potential of transcriptional network analysis 

in increasing the efficiency of successful identification of novel proliferation dependencies for 

cancer stem cells.
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1. Introduction

The cancer stem cell (CSC) theory posits that, in at least some cancers, tumor cells are 

arranged in a hierarchical lineage with a minor population, the CSCs, capable of unlimited 

proliferation while the bulk of the tumor is comprised of partially differentiated cells with 

limited ability to divide [1]. A consequence is that only a subset of tumor cells, the CSCs, 

have the ability to generate tumors when transplanted [2–4]. A corollary of the CSC theory 

is that eradicating tumors and preventing recurrence requires elimination of CSCs. However, 

identifying specific pathways to target CSC’s has been a difficult challenge. Therefore, we 

used a transcriptional network algorithm called GAMMA to identify novel candidate targets, 

then tested the effects of depleting their expression in an established CSC model system.

Cell division is essential for tumor growth. The core pathways that mediate division are 

highly conserved from lower eukaryotes to mammals. However, mammals have evolved 

supplemental pathways. Proteins that participate in these supplemental pathways may be 

generally dispensable for the division in normal cells but may promote the fidelity of 

chromosome segregation. However, through mutation and epigenetic changes that 

accompany tumorigenesis, these pathways may become essential for cancer cell 

proliferation. This idea is supported by the fact that at least some cancers are highly 

vulnerable to inhibition of certain mitotic regulators [5, 6]. In brief, CSCs may become 

“addicted” to certain supplementary cell division pathways. Our goal was to test if our 

bioinformatic analysis could identify components of these pathways whose depletion would 

inhibit CSC growth.
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2. Materials and Methods

2.1 Cell Culture

BPLE, BPLER, HMLE and HMLER cells (generously provided by Drs. Fabio Petrocca and 

Robert A. Weinberg, Massachusetts Institute of Technology) were maintained in WIT-T 

culture medium (Cellaria). All cell lines were maintained in 75 cm2 filter flasks in a 

humidified incubator at 37°C with 5% CO2. Cell lines were screened for mycoplasma by 

fixing cells on coverslips with 3:1 methanol:acetic acid and labeling with 1 μg/ml DAPI. 

Observation by fluorescence microscopy confirmed that all lines were free of mycoplasma 

contamination.

2.2 siRNA Screen

2.2.1 Cell culture—Cells were passaged by trypsinization (0.05% trypsin, 0.53 mM 

EDTA, 0.085% PBS). Optimal initial cell density was empirically determined as one that 

would be near confluency after a 7-day incubation, without overgrowth. Cells were plated 

with 100 μl of media in quadruplicate at 800, 600, 500, 400 and 300 cells/well for BPLE and 

BPLER and 600, 500, 400, 300 and 200 cells/well for HMLE and HMLER. 100 μl of media 

were added after 2 days to mimic experimental treatments. Cells were fixed, permeabilized, 

stained and read 7 days after initial plating. Optimal initial concentrations were 600 cells/

well for BPLE and BPLER and 500 cells/well for HMLE and HMLER (Fig. S1).

2.2.2 Transfections—Transfections were carried out using Lipofectamine RNAiMax 

(Invitrogen) 2 days after plating. siRNAs (Bioneer) were suspended in RNAse-free H2O at a 

concentration of 4 μM. 1–3 siRNAs were combined for each gene target (Table S1). 

Transfections were carried out in quadruplicate with 0.5 μl (10nM) siRNA mix used for each 

well and standard Lipofectamine RNAiMax protocol was followed. Transfection mix was 

made up in 100 μl of WIT-T media and added to each well bringing the total volume of the 

well to 200 μl of media.

To identify the optimal starting siRNA concentration BPLER cells were transfected in 

quadruplicate with 50 nM, 40 nM, 30 nM, 20 nM and 10 nM concentrations of siRNA 

targeting luciferase (negative control) and PLK1 (positive control). 10 nM luciferase siRNA 

transfection showed minimal growth inhibition and 10 nM PLK1 siRNA transfection had 

approximately the same level of inhibition as higher concentrations (Fig. S2A). This was 

repeated in all 4 cell lines with similar results (Fig. S2B).

2.2.3 Growth assays—Five days after transfection, the media was removed from each 

well, and cells were treated with 100 μl of 1% paraformaldehyde in PHEM buffer (60 mM 

PIPES, pH 6.9, 25 mM HEPES, 10 mM EGTA, 4 mM MgCl2) containing 0.05% Triton 

x-100 and 1:1000 dilution of commercial SYBRGold stock solution to fix and permeabilize 

the cells and label DNA. Plates were then incubated for 30 minutes and read on a Genios 

plate reader (Tecan) with the following settings: gain @ Optimal, 10 flashes/well, (FITC 

filter set), read from bottom, Lag 0, Integration 40. Growth was normalized by dividing the 

cell count of each well to the average of the control wells. 3 replicate experiments were 

performed for each cell line. After expression normalization, the Bioconductor package 
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limma (http://www.bioconductor.org/packages/release/bioc/html/limma.html) was used to 

determine genes that showed significant differential expression under experimental 

conditions and cell types. A linear model was fitted to the expression data for each probe. 

Moderated t-statistics were computed by empirical Bayes shrinkage of the standard errors 

toward a common value. The P-values corresponding to the moderated t-statistics were 

adjusted for multiple testing by computing false discovery rates (fdr) using the method of 

Benjamini, Hochberg, and Yekutieli [7]. We used both fdr and fold change to select 

differentially expressed genes by requiring at least a twofold change (log2[fold]|≥1) and fdr 

≤ 0.05.

Cell counts were determined using cell line specific equations generated by standard curves. 

Known cell counts ranging from 1250 to 35,000 cells/well were plated in quadruplicate and 

incubated at 37°C for 10 hours to allow cells to settle. The average fluorescent intensity was 

plotted against cell count and the resulting equation was used to extrapolate the cell count 

from the measured fluorescent intensity in the experimental groups (Fig. S3).

2.3 Cell Cycle Analysis

2.3.1 Immunolabeling—Cells were seeded on 25 mm coverslips in 6-well plates at 

approximately 12% confluency with 2 ml of media and transfected with 30 nM siRNA 24 h 

later. After another 48 h, cells were fixed in 1.5% % paraformaldehyde in PHEM buffer 

containing 0.05% Triton-X 100 solution for 15 minutes. Coverslips were blocked with 20% 

Boiled normal goat serum (BNGS) in MBST (10 mM MOPS, 150 mM NaCl, 0.05% Tween 

20) for 20 minutes. Mouse anti-γTubulin antibody (Sigma: T5326) in MBST with 5% 

BNGS was applied overnight at 4°C. Coverslips were washed 3 times with PBST for 5 

minutes and labeled with FITC-conjugated Goat anti-mouse secondary antibody (Jackson 

Immunoresearch: 115-096-062) at 5 μg/ml in MBST with 5% BNGS for 60 minutes at room 

temperature. Coverslips were then washed 3 times in PBST and labeled with 0.05 μg/ml 

DAPI in water for 3 min. Coverslips were washed with water and then mounted on slides 

with 9 μl vectashield (Vector laboratories) containing 1mM MgSO4 and the edges of the 

coverslip sealed with nail polish.

2.3.2 Cell Cycle Profiling—100 fields on each coverslip were imaged with a 15-plane z-

series at 0.25 μm steps spanning the chromatin. Each z-series was summed, and individual 

nuclei were counted and analyzed with Metamorph software (Molecular Devices) using the 

cell cycle plugin. Intensity gates for scoring cells in G1, S, G2/M were established in the 

control and applied to each of the experimental sets. Mitotic indices were determined by 

manually counting the proportion of cells containing condensed chromosomes.

3. Results and Discussion

3.1 A Bioinformatics Approach to Candidate Identification

Stem-cell mitotic regulators remain poorly characterized, and their identification is 

complicated by several factors. First, stem cells are a minor population of the dividing cells 

within a tissue or tumor. Second, accessory mitotic regulators may be difficult to discern 

because their depletion only decreases the very high fidelity of chromosome segregation but 
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are not indispensable for the division process itself. Third, proteins may have evolved 

functions in multiple areas of cell cycle control or cell physiology, making the 

characterization of their roles more difficult. To address these challenges, we used a 

predictive algorithm called Global Microarray Meta-Analysis (GAMMA) to identify 

candidate stem cell mitotic regulators. GAMMA is a bioinformatics approach that uses 

public microarray and RNAseq datasets from NCBI’s Gene Expression Omnibus (GEO) 

repository to identify transcripts that are correlated across many experimental conditions [8, 

9]. Using a “guilt by association” principle, groups of transcripts that are highly correlated 

with each other are likely to share similar biological associations, such as playing a role in 

the same disease or phenotype, and being involved in the same pathway. Using a k-Nearest 

Neighbors approach, GAMMA identifies the 40 most correlated transcripts for each gene, 

then uses literature mining to identify what the correlated genes have in common in 

MEDLINE, in terms of their being co-mentioned with diseases, phenotypes, chemicals, and 

other genes [10]. GAMMA has been successfully validated in several studies [11–15]. 

Selecting for high GAMMA scores in genes related to cancer, stem cells, and mitosis, we 

evaluated 50 candidate genes with minimal previous characterization (Table 1).

3.2 siRNA Screen of BPLER and BPLE

A significant challenge in identifying gene dependence in CSCs is the lack of reliable 

experimental comparisons in growth assays. When tumor cells are placed in culture, growth 

rates of various subpopulations of cancer cells may vary wildly as cultures are often 

heterogeneous. Furthermore, although CSC populations have been successfully isolated by 

fluorescence-activated cell sorting (FACS), these populations quickly lose their stem cell 

characteristics and differentiate in culture [16]. To address these problems, we focused on 

BPLER cells, a tumorigenic cell line derived from normal breast epithelium sequentially 

transformed with SV40LT, hTERT and hRAS(V12) [17]. These were compared with non-

tumorigenic BPLE cells, which lack transformation with hRAS. BPLER cells share several 

characteristics associated with cancer stem cells, expressing high levels of CSC markers 

CD166 [18, 19], EpCAM [3, 19, 20], BMI1 [19, 21], ALDH1A [17, 22], p63 [19, 23] and a 

high molecular weight variant of CD44 (CD44v) [3, 17, 19, 20, 24]. They have a tumor-

initiating cell frequency greater than 1 in 100 cells, form heterogeneous tumors and 

metastasize [17]. The expression profile of BPEC (the parental line of BPLE and BPLER) 

varies from that of differentiated cells in either the luminal or myoepithelial layers, but the 

expression profiles of BPLER-derived tumors do cluster with those of basal-like breast 

cancer, thought to originate from luminal progenitor cells [17, 20, 25]. Significant for our 

purposes, BPLER cells do not differentiate in culture, allowing us to carry out growth assays 

in a majority CSC-like population [19].

The sequential transformation origin of BPLER cells also offers another advantage over 

tumor-derived CSC cell lines, direct comparison with the parental line, BPLE. It can be 

difficult to identify the cell type of origin for a particular cancer. However, a direct 

comparison to the parental line is essential in identifying gene addiction. By using BPLER 

cells to test gene addiction in CSCs, we performed side-by-side growth assay comparisons 

with BPLE cells, which have a similar proliferation rate.
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siRNA screens in BPLER and BPLE were carried out in 96-well plates for 5 days. Data 

were normalized to an internal negative control targeting luciferase in order to minimize the 

effects of experimental variations between plates (i.e. slight differences in starting cell 

numbers, time between plating and transfection). We found that growth of BPLER cells, in 

comparison with BPLE cells, showed significantly greater inhibition for 21 of the 50 genes 

(42%) upon depletion with siRNA (Figure 1a and S4).

3.3 siRNA Screens of HMLE and HMLER

To determine if the observed over-reliance by BPLER cells was related to their stem cell-like 

properties, we repeated the siRNA screen in HMLER and HMLE cell lines. As with BPLER 

cells the original source for HMLE and HMLER was normal breast tissue [17]. Unlike 

BPLER cells, HMLER cells form homogenous tumors in mice, are poorly vascularized and 

usually benign, and the expression profile of their parental line (HMEC) suggests a more 

differentiated state along the myoepithelial lineage [17]. HMLER cells have lower 

expression of stem cell markers, the standard form of CD44 (CD44s) rather than the high 

molecular weight variant associated with stem cells [19, 24], and lower levels of stem cell 

markers, CD166, EpCAM, BMI1, ALDH1A and p63 compared with BPLER cells [17, 19]. 

They also have a much lower frequency of tumor initiating cells (<1 in 105), and they do not 

form metastases in mice [17, 20]. The shared origin, generation method, and propagation 

rates of HMLER cells and BPLER cells make them suitable for comparison.

Screens were carried out as described previously. Though growth inhibition was detected in 

many of the depletions, no significant differences in proliferation between HMLER and 

HMLE cells occurred for any of the targets (Fig. S5). This observation suggests that 

differential growth inhibition for the 21 genes for BPLER cells compared with BPLE cells is 

related to their putative stem cell origin. Overall results comparing all 4 cell lines are 

summarized in figures 1b and 1c.

3.4 Cell Cycle Analysis

To gain insight into the mechanisms underlying growth inhibition for a subset of the 21 

genes, we investigated changes to the cell cycle profiles following depletion of 6 hits, 

CSAG1, ITGB3BP, NME1, SLMO2, SMS and YWHAQ, that specifically inhibited BPLER 

cells. Fixed-cell fluorescent microscopy measuring DNA content was conducted on BPLER 

cells following siRNA. No significant differences were found in the proportions of cells in 

G1, S and G2/M (Fig. 2a and 2b). The mitotic indices were determined manually with over 

20,000 cells analyzed for each target. We found that depletion of ITGB3BP, NME1 and 

SLMO2 each resulted in a significantly decreased mitotic index (Fig. 2c).

We then analyzed the 6 genes to determine effects on progression through the stages of 

mitosis. Accumulation of cells at different mitotic stages can indicate defects in various 

mitotic processes and give insight into the pathways affected by gene depletion. Mitotic cells 

were classified into prophase, prometaphase, metaphase and anaphase stages (Fig. 2d). 

Depletion of SMS resulted in significantly increased percentages of cells in prometaphase 

with unaligned chromosomes suggesting that SMS depletion inhibited or delayed 

chromosome alignment at the metaphase plate, (Fig. 2e). A corresponding decrease in 
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metaphase cells without change in the proportion of anaphase cells suggests that SMS 

depletion induced cells to progress to anaphase without full metaphase alignment.

We also quantified the percentage of mitotic errors associated with depletion of the 6 

selected targets. Mitotic errors resulting in missegregation of chromosomes, and spindle 

defects are indicators of chromosome instability that may promote tumorigenesis at low 

levels but inhibit tumor cell growth at high levels [26, 27]. The two major classes of mitotic 

error observed in our study were multipolar spindle formation and chromosome 

missegregation during anaphase. The anaphase errors included chromosomes lagging in the 

spindle midzone and chromosome bridges (Fig. 3a). Multipolar cells were identified by 

immunofluorescent labeling of the spindle pole protein, γ-Tubulin (Fig. 3b). Both anaphase 

errors and multipolarity drive genetic instability that can lead to catastrophic division and 

unbalanced chromosome segregation and cell death. Depletion of NME1, SMS, and 

YWHAQ significantly increased the occurrence of anaphase errors (Fig. 3c). Depletion of 

CSAG1 resulted in significantly increased multipolarity (Fig. 3d).

3.5 Screening for CSC Targets

Whole genome screens with RNAi or CRISPR-Cas9 have proven powerful [28, 29], but they 

can overlook important contributors to cell physiology. In many such studies, only targets 

with the strongest effects stand out and are considered hits, since these are typically 

measured against the background inhibitory activity of all targets in the screen [30]. 

Predictive bioinformatics can focus the search by narrowing investigation on a contingent of 

genes likely to be important. The downside of many of these algorithms is that they base 

their predictions on gene expression levels solely within the cell type of interest. GAMMA 

expands the search in a different way. While it uses expression patterns to predict function, it 

is not contingent on the expression of the gene itself in a given cell type. By comparing the 

expression patterns of genes across thousands of data sets, we were able to predict putative 

cancer stem cell genes with a high success rate without relying on differential expression. 

Only 4 of the 21 genes whose depletion selectively inhibited growth in BPLER cells showed 

differential expression in BPLEs [17]. Thus, algorithmic analysis of transcriptional 

correlation networks can identify relevant genes that would not be revealed by focusing on 

those that are differentially expressed.

Anti-mitotic drugs were historically thought to act by arresting cells in mitosis through 

activation of the mitotic spindle checkpoint, though this view has been challenged [31]. 

Tumors typically contain both numerical and structural chromosome abnormalities proposed 

to be, at least in part, consequences of errors in mitosis. The generation of these errors is 

termed chromosome instability. There remains debate about whether chromosome instability 

is a driver or consequence of tumorigenesis [32, 33]. But increasing chromosome instability 

in tumor cells to levels incompatible with cell survival may provide a means of tumor 

therapy [34–38]. Therefore, identifying essential genes and pathways specific for CSC for 

proliferation is an important goal. We purposely focused on protein targets with little 

previous characterization in order to find novel targets for CSC inhibition. Further study will 

be necessary to determine the biochemical pathways in which these proteins participate and 
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whether these pathways are amenable to therapeutic manipulation with small molecule 

inhibitors or other methods.

When possible, we used siRNA’s that were validated by the manufacturer. However, because 

we focused on novel, uncharacterized targets and because we targeted 50 genes, we did not 

specifically validate depletion of message or protein. Thus, we cannot exclude the possibility 

that negative results may be attributable to failure of the siRNA’s to deplete their target. In 

all cases where we lacked validated siRNA’s we used pools of three siRNA’s predicted to 

provide strong depletion to minimize the false negatives. However, both for technical 

reasons (failure of the siRNA’s to be effective) and for biological reasons (protein targets 

that are not expressed in the cell lines we used, proteins with long half-lives, or proteins that 

could function sufficiently at depleted concentrations) negative results cannot be fully 

guaranteed accurate. Additionally, we cannot rule out all possibility that positive hits may be 

affected by potential off-target effects of our siRNA depletions. This must be tested by using 

multiple single siRNA’s, using complimentary targeting strategies such as CRISPR-Cas9 or 

expression of degron regulatable proteins, and by rescue experiments using siRNA-resistant 

expression constructs. These experiments are ongoing for several of our most promising 

targets.

In summary, using the transcriptional network analysis tool GAMMA, we tested 50 genes 

whose products were potentially involved in CSC proliferation. We assessed these in a breast 

cancer CSC model system and found 21 genes whose repression led to significant inhibition 

of proliferation. Further analysis of 6 of these genes implicated 4 in specific mitotic 

phenotypes. Further research will be needed to test the precise pathways and cell cycle 

stages in which these gene products execute their important functions and to test whether 

they are amenable to inhibition for targeting CSC proliferation in tumors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Bioinformatics used to predict novel therapeutic targets for cancer stem cells

• Fifty candidate genes tested by siRNA depletion in a breast cancer stem cell 

model

• Specific growth inhibition of cancer stem cells detected in twenty-one 

depletions

• Chromosome segregation defects identified in four of the hits
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Figure 1. 
Growth screen for 50 stem cell cancer candidate gene produces by siRNA screening. (a) The 

21 gene targets that resulted in significant growth inhibition in BPLER compared to BPLE. 

(b) heat map showing growth inhibition of all 4 cell lines. Growth inhibition is measured 

relative that of non-targeting control siRNA wells for each cell line. 100% (bright red) is 

complete growth inhibition and 0% (bright blue) is no growth inhibition. (c) VENN diagram 

showing numbers and overlap of genes that induced growth inhibition by more than 50% in 

each cell line.
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Figure 2. 
Cell Cycle alteration testing by siRNA in BPLER cells for 6 selected genes. (a) Cell cycle 

profile of control BPLER cells. (b) Percentages of cells in each phase of the cell cycle for 

indicated siRNA depletions. Intensity gates for scoring cells in G1, S, G2/M were 

established in control BPLER cells and applied to each of the experimental sets. No 

significant changes were observed in the proportion of cells in any cell cycle phase. (c) 

Mitotic indices. ITGB3BP (p = 0.0001), NME1 (p = 0.0019) and SLMO2 (p = 0.0002) 

depletions resulted in significant decreases of mitotic index. (d) At least 200 mitotic cells 

from each of 4 experiments were counted (n>800) and classified into 4 categories: prophase, 

cells with an intact nuclear envelope and condensed chromosomes; prometaphase, cells after 

nuclear envelope breakdown and before formation of the metaphase plate, metaphase, cells 

having all chromosomes aligned at the metaphase plate, and anaphase, cells with separated 

chromatids before nuclear reformation. (e) Proportion of cells at each phase of mitosis. 

Numbers represent the percentage of total mitotic cells (n>800). Prometaphase cells were 

increased (p = 0.0012) and metaphase cells decreased (p = 0.0001) after depletion of SMS. 

Significance was determined using one-way ANOVA and adjusted for multiple testing using 

the Dunnett method of statistical hypothesis testing [39]. Note: asterisks correspond to alpha 

level (*p < 0.05. **p < 0.01. ***p < 0.001. **** p < 0.0001) Error bars represent standard 

deviation from 4 separate experiments.
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Figure 3. 
Mitotic errors observed following siRNA inhibition in 4 of the 6 selected genes. (a) 

examples of anaphase errors. The two types of anaphase errors observed were lagging 

chromosomes (arrow, top panels) and chromosome bridges (arrow, bottom panels). (b) 

Percent of anaphase cells exhibiting errors. Numbers are represented as percentage of total 

anaphase cells. NME1 (P=0.0059), SMS (P=0.0384) and YWHAQ (P=0.0388) inhibition 

were significant. (c) example of a multipolar cell. Multipolarity was determined using γ-

Tubulin staining. (d) Percent of mitotic cells exhibiting multipolarity. CSAG1 (P=0.0041) 

inhibition was significant. Note: asterisks correspond to alpha level (*p < 0.05. **p < 0.01. 

***p < 0.001. **** p < 0.0001). Error bars represent the standard deviation of 4 separate 

experiments.
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Table 1

GAMMA scores for candidate genes arranged alphabetically. GAMMA scores are determined by the overall 

literature correlation between search query and the gene of interest’s correlated genes. Higher scores are better 

fit. GAMMA scores from the search queries Cancer, Stem Cell, and Mitosis were used to choose genes for 

growth assay testing

Gene Symbol Entrez ID Cancer Score Stem Cell Score Mitosis Score

ARHGAP11A 9824 362 16 129

BCAS2 10286 456 33 54

BCAT1 586 590 140 41

C12orf24 29902 171 13 66

C16orf59 80178 239 13 63

C20orf20 55257 349 18 30

C5orf13 9315 405 23 35

C9orf40 55071 461 12 92

CACYBP 27101 376 32 33

CEP72 55722 246 18 37

CKAP2L 150468 38 13 47

COPS3 8533 401 42 77

CSAG1 158511 145 13 36

DDX5 1655 384 24 63

DEK 7913 172 16 31

DONSON 29980 297 31 80

FAM102B 284611 350 21 78

GNL2 29889 611 24 27

GTSE1 51512 334 18 84

IGF2BP1 10642 317 94 28

IGF2BP3 10643 491 18 48

ITGB3BP 23421 339 29 67

LYPD1 116372 463 75 37

MTA1 9112 256 21 30

NASP 4678 215 36 57

NME1 4830 570 17 53

NUP205 23165 265 41 47

PAICS 10606 305 13 66

PBK 55872 555 37 142

PLS1 5357 422 14 24

POLA2 23649 473 30 67

POLD3 10714 452 32 64

PUS7 54517 283 30 35

QSER1 79832 230 15 59
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Gene Symbol Entrez ID Cancer Score Stem Cell Score Mitosis Score

RAD51AP1 10635 269 13 69

RBBP8 5932 346 14 52

SFXN1 94081 227 44 69

SLMO2 51012 228 45 22

SMS 6611 400 24 26

SNRPB 6628 328 13 29

SPAG5 10615 468 24 162

SRM 6723 547 18 113

TADA1L 117143 428 51 52

TBCB 1155 642 18 35

TPRKB 51002 206 12 32

TRIP13 9319 317 14 115

TROAP 10024 247 29 226

UHRF1 29128 352 13 94

XRCC6 2547 312 17 58

YWHAQ 10971 473 16 21
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