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Abstract

During early development in placental mammals, proper trophoblast lineage development is 

essential for implantation and placentation. Defects in this lineage can cause early pregnancy 

failures and other pregnancy disorders. However, transcription factors controlling trophoblast 

development remain poorly understood. Here, we utilize Fosl1, previously implicated in 

trophoblast giant cell development as a member of the AP-1 complex, to trans-differentiate 

embryonic stem (ES) cells to trophoblast lineage-like cells. We first show that the ectopic 

expression of Fosl1 is sufficient to induce trophoblast-specific gene expression programs in ES 

cells. Surprisingly, we find that this transcriptional reprogramming occurs independently of 

changes in levels of ES cell core factors during the cell fate change. This suggests that Fosl1 acts 

in a novel way to orchestrate the ES to trophoblast cell fate conversion compared to previously 

known reprogramming factors. Mapping of Fosl1 targets reveals that Fosl1 directly activates TE 

lineage-specific genes as a pioneer factor. Our work suggests Fosl1 may be used to reprogram ES 

cells into differentiated cell types in trophoblast lineage, which not only enhances our knowledge 

of global trophoblast gene regulation but also may provide a future therapeutic tool for generating 

induced trophoblast cells from patient-derived pluripotent stem cells.
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1. Introduction

During early embryo development, cells in inner cell mass (ICM) responsible for fetal 

development do not contribute to the trophectoderm (TE) or trophoblast lineages 

engendering placenta. Surprisingly, it has been shown that multiple TE lineage-specific 

transcription factors (TFs), such as Cdx2, Gata3, Hand1, and Tfap2c, are significantly up-

regulated upon spontaneous differentiation of embryonic stem (ES) cells, an in vitro model 

for ICM (Hailesellasse Sene et al., 2007). Knockout (KO) or knockdown (KD) of a key 

pluripotency factor Oct4 (Pou5f1) in ES cells also induces multiple TE-specific marker 

genes (Niwa et al., 2000, 2005). Moreover, overexpression (OE) of individual TE-specific 

TFs, such as Cdx2 and Gata3 in ES cells, up-regulates TE lineage marker genes (Niwa et al., 

2005; Ralston et al., 2010), revealing that trans-differentiation of ES cells towards 

trophoblast stem (TS)-like cells by modulating a single regulator or TF is feasible. More 

recent works have additionally showed that Arid3a, a previously known B-cell regulator, 

reprograms ES cells to TS-like cells upon OE (Rhee et al., 2017a, 2014). These Arid3a-OE 

cells can successfully be incorporated into the TE of developing embryos ex vivo. 

Subsequent study on the reprogramming mechanisms of ES cells to TS-like cell fate 

conversion further revealed that this process is achieved through a specific series of 

sequential epigenetic and transcriptional events. First, an initial suppression of the ES cell 

core pluripotency factors was observed, followed by a dramatic activation of TE lineage-

specific genes (Rhee et al., 2014, 2017b). These findings demonstrate that ectopic 

expression of a single TE-specific transcription factor is sufficient to overcome the barrier 

between ES and TS cell identity. This implies that TE lineage-specific genes may exist in a 

poised configuration in terms of their proximal chromatin landscape, or that there exist 

additional factors sequestered in ES cells that may be liberated to activate the TE-specific 

transcriptional program. Therefore, ES cells can serve as a reliable model system to study 

important factors responsible for TE lineage development (Murry and Keller, 2008; Niwa, 

2010).

Fosl1 (also known as Fra1) is a component of activator-protein 1 complex (AP-1), which 

comprises a heterodimer of Fos-Jun family proteins. The Fos family includes cFos, FosB, 

Fosl1, and Fosl2, whereas the JunB family comprises cJun, JunB, and JunD. The exact 

configuration of the heterodimer determines the cell-specific role of the AP-1 complex. For 

example, an AP-1 complex composed of cFos and JunB regulates cell proliferation and 

differentiation (Shaulian and Karin, 2002). Meanwhile, another AP-1 complex composed of 

Fosl1 and JunB is implicated in endocrine and invasive trophoblast differentiation (Kubota et 

al., 2015; Renaud et al., 2014). Fosl1 has numerous biological roles, highlighting its 

importance as a versatile transcription factor. Fosl1 can contribute significantly to 

tumorigenesis, cell invasion (Verde et al., 2007), bone development (Wagner, 2002), and 

somatic cell reprogramming processes (Chronis et al., 2017). Although Fosl1 null mice die 

due to placental defects at approximately E10.5 (Schreiber et al., 2000), the mechanisms 

through which Fosl1 regulates TE lineages have not been fully understood, and furthermore, 

whether the Fosl1 alone can induce TE lineage-specific gene expression programs in ES 

cells has not been tested.

Lee et al. Page 2

Stem Cell Res. Author manuscript; available in PMC 2018 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the current study, we tested the potential of Fosl1 in trans-differentiation of mouse ES 

cells to TS or TE lineage-like cells. We found that OE of Fosl1 in ES cells induces TE-

specific gene expression programs, especially genes active in the later stage of TE lineage 

development or differentiated TS cells. Surprisingly, unlike Arid3a, Cdx2, and Gata3, OE of 

Fosl1 does not significantly repress core pluripotency factors. Rather, Fosl1 activates the 

genes involved in TE lineage development, in particular genes associated with terminal TE 

differentiation. This suggests that Fosl1-mediated reprogramming may be used in the future 

as a tool to directly establish patient-specific specialized cells in the TE lineage, such as 

trophoblast giant cells.

2. Materials and methods

2.1. Cell culture

Mouse ES cell lines (J1 and E14) were maintained on 0.1% gelatin-coated plates in 

Dulbecco’s modified Eagle’s medium (DMEM, Gibco) supplemented with 18% fetal bovine 

serum (FBS), 50 U/ml penicillin/streptomycin (Gibco), 2 mM L-glutamine (Gibco), 100 μM 

MEM nonessential amino acids (Gibco), nucleosides (Millipore), 100 μM β-

mercaptoethanol (Sigma) and 1000 U/ml recombinant leukemia inhibitory factor (LIF, 

Millipore). Mouse TS cells were maintained at a ratio of 3:7 of TS medium to MEF-

conditioned TS medium with 25 ng/ml Fgf4 and 1 μg/ml heparin. The TS medium consisted 

of RPMI 1640 (Gibco) supplemented with 20% FBS, 100 μM β-mercaptoethanol, 2 mM L-

glutamine, 1 mM sodium pyruvate, 50 U/ml penicillin, and 50 mg/ml streptomycin. To make 

MEF-conditioned medium, mitomycin-treated MEF cells were cultured in TS medium for 3 

days and the medium was collected every 3 days three times. To differentiate TS cells, we 

cultured the cells without Fgf4 and heparin.

2.2. Stable cell line generation

Full length Fosl1 cDNA was cloned into pEF1a-FLBIO (FB) vector (Kim et al., 2009, 

2010). Primer sequences used for cloning are listed in Supplemental Table 1. Fosl1-

containing vector (FB-Fosl1) was electroporated into BirA-expressing ES cells. Cells grew 

under puromycin and G418 selection for 9 days before picking colonies. OE of Fosl1 was 

confirmed by RT-qPCR and Western blotting. Fosl1 OE cells were maintained under ES cell 

culture conditions.

2.3. Generation of inducible cell lines

Lenti-X Tet-on 3G inducible expression system containing pLVX-Tet3G and pLVX-TRE3G-

ZsGreen1 vectors was used following manufacturer’s instruction (Clontech). Fosl1 cDNA 

was prepared by PCR using primers listed in Supplemental Table 1 and cloned into the 

pLVX-TRE3G-ZsGreen1. The Tet3G or TRE3G-Fosl1 expression vectors were transfected 

with pCMV-Δ8.9 and VSV-G helper plasmids into 293T cells using Fugene (Promega), 

according to the manufacturer’s instruction. After 24 h, the 293T medium was replaced with 

ES medium. The supernatants containing virus particles were collected 48 h post 

transfection and filtered through 0.45 μm pore-size cellulose acetate filters (Pall). E14 ES 

cells were plated at ~2.5 × 105 cells per one well of 24-well plate with Tet3G virus-

containing supernatant. After 24 h, the cells were selected with G418 for 2 days and re-
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infected with the TRE3G-Fosl1 virus. The co-infected E14 ES cells were placed under G418 

and puromycin selection for 2 days. Fosl1 was induced by 500 ng/ml of doxycycline in ES 

cell culture media.

2.4. Western blotting

Cells were washed with PBS and lysed in 2× Laemmli sample buffer (Bio-Rad). Cell lysates 

were boiled at 100 °C for 15 min and centrifuged prior to loading. Proteins were separated 

on 4–20% gradient acrylamide gels (Bio-Rad) and transferred onto PVDF membranes using 

Trans-Blot® Turbo™ Transfer Starter System (Bio-Rad). After transfer, membranes were 

blocked with 5% BSA (Sigma) in TBST (20 mM Tris-HCl, pH 7.6, 13 mM NaCl, and 0.1% 

Tween-20) for an hour and incubated with primary antibody (or streptavidin-HRP) at 4 °C 

overnight. Membranes were then washed with TBST and incubated with secondary antibody 

for 1 h at room temperature. Antigens were detected using ECL reagents (GE Healthcare 

Amersham ECL prime) with Bio-Rad Molecular Imager® ChemiDoc™ XRS+ system. The 

antibodies used are streptavidin-HRP (1:2000, RPN1231V, GE Healthcare Life Sciences), 

anti-Fosl1 (1:1000, sc-183, Santa Cruz Biotechnology), and anti-β-actin (1:20,000, ab20272, 

Abcam).

2.5. Alkaline phosphatase (AP) staining

Alkaline phosphatase (AP) staining was performed according to manufacturer’s protocol 

using Alkaline Phosphatase Detection Kit (Millipore).

2.6. Real time-quantitative PCR (RT-qPCR)

Total RNA was isolated using RNeasy plus Mini Kit (Qiagen). 500 ng of total RNA was 

used for cDNA synthesis with ReadyScript® cDNA Synthesis Mix (Sigma). cDNA 

generated was diluted (20×) and RT-qPCRs were performed using 2 μl of diluted cDNA and 

PerfeCTa SYBR® Green FastMix, Low ROX™ (Quanta). RT-qPCR primers were designed 

to amplify exon junctions. Primer sequences are listed in Supplemental Table 1 and Gapdh 

was used as an internal control.

2.7. bioChIP-seq

bioChIP assays were performed as previously described (Beck et al., 2014; Lee et al., 2015). 

Briefly, cells were cross-linked in 1% formaldehyde for 7 min at room temperature. The 

reaction was quenched for 5 min with 125 mM glycine followed by washing with PBS. Cells 

were centrifuged and the pellets were used immediately for experiments or stored at −80 °C. 

Cells were resuspended in ChIP buffer (1% TritonX-100, 2 mM EDTA, 20 mM TrisCl, pH 

8.1, 150 mM NaCl, 0.1% SDS and protease inhibitor), sonicated for 30 min (30 s on/1 min 

off) and centrifuged at maximum speed for 10 min. The supernatant was pre-cleared with 

Protein A beads for 4 h, rotating in 4 °C. Samples were then centrifuged and the supernatant 

was incubated in 10 μg streptavidin beads (Roche) overnight. Beads were washed for 8 min, 

twice with 2% SDS, once with high salt buffer (0.1% Deoxycholate, 1% Triton X-100, 1 

mM EDTA, 50 mM HEPES (pH 7.5), and 500 mM NaCl), once with LiCl wash buffer (250 

mM LiCl, 0.5% NP40, 0.5% Deoxycholate, 1 mM EDTA, and10mM TrisCl pH 8.1), and 

twice with TE buffer. Samples were eluted by incubating the beads in SDS Elution buffer 
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(1% SDS, 10 mM EDTA and 50 mM TrisCl pH 8.1) overnight at 65 °C. 200 μl of TE buffer 

with 1 μg RNase A was added and incubated for 30 min at 37 °C. 1 μg of Proteinase K was 

added and incubated for 2 h at 37 °C. ChIP-seq library prep kits (New England BioLabs) 

were used to generate ChIP-seq libraries and the libraries were sequenced using an Illumina 

HiSeq 2500 machine.

2.8. ChIP-seq data processes and analysis

75 bp reads from ChIP-seq were mapped onto the mouse genome assembly (mm9) using 

Bowtie2 (Langmead and Salzberg, 2012), allowing for 2 base pairs mismatch followed by 

peak calling with model-based analysis for ChIP-seq (MACS) (Zhang et al., 2008) with a 

default setting. To identify Fosl1 targets, Fosl1 binding sites were assigned to the region 

surrounding 8 Kb up- and 2 Kb down-stream of transcription start sites (TSSs) of all RefSeq 

genes. We used the following hierarchy to assign one binding site to one genomic feature: 

promoter > upstream > intron > exon > intergenic regions. A promoter and an upstream 

feature were defined as a region within ±2 kb from the TSS and as a region between 2 kb 

and 20 kb upstream from the TSS, respectively. Binding sites not belonging to promoter, 

upstream, in-tron, or exon were considered as intergenic target loci. Overlapping binding 

sites among ChIP-seq data were identified using a moving window. If the centers of peaks 

from different ChIP-seq data were found within a 500 bp window, we considered them 

common peaks. Peak calling followed by an overlap analysis identified the common binding 

sites of TFs to generate the binding site correlation map. Score 0 and 1 were assigned to 

unique and overlapped binding sites of two TFs, respectively. A paired-wise Pearson 

correlation coefficient between the binding sites of two TFs was calculated for each pair of 

TFs. Clustering analysis and visualization of the data were done by Cluster 3.0, and Java 

Treeview, respectively (de Hoon et al., 2004; Saldanha, 2004).

2.9. Library generation and data process of RNA-seq

Total RNA (1 μg) was used to prepare libraries for RNA-seq. mRNAs were isolated from 

total RNA using NEBNext Poly(A) mRNA Magnetic Isolation Module (E7490, New 

England BioLabs), and then RNA-seq libraries were constructed using NEBNext Ultra RNA 

Library Prep Kit for Illumina (E7530, New England BioLabs). RNA-seq libraries were 

sequenced using an Illumina HiSeq 2500 machine. Raw RNA-seq reads were mapped onto 

mm9 mouse genome using TopHat followed by analysis of differential gene expression 

using Cufflinks (Trapnell et al., 2012). We further narrowed down up- and down-regulated 

gene by applying cut-off criteria (absolute fold >0.7).

2.10. Data sets used for analysis

To perform GSEA analysis, we downloaded expression data from GSE12985 (time-course 

differentiation of TS cells) and GSE20177 (ES and TS cells). ATAC-seq data (GSE90752) 

was used to investigate chromatin accessibility in ES cells.

2.11. Data deposit

Raw and processed RNA-seq and ChIP-seq data have been deposited at the public server 

GEO database under accession number GSE100000.
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3. Results and discussion

3.1. Overexpression (OE) of Fosl1 leads to differentiation of mouse ES cells

To examine whether Fosl1 can promote trans-differentiation of mouse ES cells to TS-like 

cells, we overexpressed Fosl1 using an FB vector system as previously described in mouse 

J1 ES cells (Kim et al., 2009). First, we confirmed the ectopic expression of Fosl1 using RT-

qPCR (Fig. 1A) and Western blot (Fig. 1B). While the level of Fosl1 mRNA in Fosl1 OE 

cells even under the ES cell culture condition was comparable to the level in differentiated 

TS cells (for 7 days) (Fig. 1A), it was almost undetectable in control ES cells (Fig. 1A). 

Furthermore, compared to the typical round colony morphology of control ES cells, Fosl1 

OE colonies were flattened with decreased AP activity, indicating exit from self-renewal 

(Fig. 1C). This aberrant morphology was consistently observed in another mouse ES cell 

line, E14, upon induction of Fosl1 by a doxycycline-inducible system under the ES cell 

culture condition (Supplemental Fig. 1).

Interestingly, despite the differentiated morphology, expression of the core pluripotency 

genes remained almost undisturbed in Fosl1 OE cells (Fig. 1D and Supplemental Fig. 1D), 

suggesting that the morphology obtained upon OE of Fosl1 is not a direct outcome of 

downregulation of the core pluripotency factors. Since Fosl1 is implicated in trophoblast 

differentiation (Kubota et al., 2015), we monitored the levels of various TE lineage markers. 

Self-renewal markers of TS cells, such as Cdx2, Elf5, and Esrrb, showed marginal induction 

(Fig. 1E). Conversely, the genes associated with TS cell differentiation, including Krt8, 

Krt18, Prl2c2, and Hand1, were highly induced, regardless of whether OE of Fosl1 was 

constitutive (Fig. 1E) or inducible (Supplemental Fig. 1E). Thus, Fosl1 can induce 

differentiated TE lineage gene expression programs in ES cells.

3.2. Fosl1 OE globally induces the genes active in differentiated TS cells

To investigate to what extent OE of Fosl1 affects the global gene expression programs in ES 

cells, we performed RNA-seq and found 1338 up-regulated as well as 1052 down-regulated 

genes compared to control cells (Supplemental Table 2). Up-regulated genes include many 

TE-related genes, such as H19, Eomes, Hand1, JunB, and Krt19 (Fig. 2A). Gene ontology 

(GO) analysis showed enrichment of genes involved in embryonic placenta development 

(Fig. 2B).

Notably, the levels of the core pluripotency, mesoendoderm, endoderm, ectoderm, and 

mesoderm genes were not significantly changed in Fosl1 OE cells (Fig. 2C). In drastic 

contrast, the genes more active in differentiated TS cells or later stage of TE lineage 

development, such as H19, Hand1, and Krt8 were dramatically induced (Fig. 2C). Since OE 

of a single factor, such as Cdx2 and Gata3, can induce ES cells to TS-like cell fate 

conversion (Ralston et al., 2010), we compared their expression patterns with that of Fosl1 

OE cells. Approximately 35% and 40% of genes induced upon Cdx2 and Gata3 overlapped 

with the up-regulated genes in Fosl1 OE cells, respectively, suggesting that Fosl1 activates, 

to some degree, a different set of target genes from Gata3 or Cdx2 (Fig. 2D). Interestingly, 

prolactin (Prl) family genes, known to be highly expressed in trophoblast giant cells (Hamlin 

et al., 1994; Sahgal et al., 2005), were dramatically up-regulated only in Fosl1 OE cells 
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(Supplemental Table 2), further indicating that Fosl1’s role is in TE lineage differentiation 

rather than self-renewal of TS cells.

We further performed Gene Set enrichment analysis (GSEA) to compare the gene expression 

profile of Fosl1 OE cells to those of ES cells and TS cells (Sakaue et al., 2010). As shown in 

Fig. 2E (top panel), ES cell-specific genes were not enriched in Fosl1 OE cells and there was 

only modest enrichment of TS cell-specific gene set in Fosl1 OE cells, showing that OE of 

Fosl1 in ES cells is sufficient to induce a moderate switch from an ES cell-specific to a TS 

cell-specific gene expression program (Fig. 2E, bottom). Then, we sought to investigate 

which stages of differentiated TS cells are similar to Fosl1 OE cells. For this, we used a 

published dataset obtained from time-course differentiation of TS cells for 6 days (Ralston et 

al., 2010) to perform GSEA (Fig. 2F). Remarkably, we found that the activity of the genes 

up-regulated upon Fosl1 OE gradually increases as differentiation of TS cells progresses, 

with the highest correlation seen on day 6. Thus, genes up-regulated upon differentiation of 

TS cells are also induced upon Fosl1 OE in ES cells. Since TS cells undergo epithelial-

mesenchymal transition (EMT) as they differentiate (Sutherland, 2003), we additionally 

tested the EMT-associated gene set and found a strong correlation between EMT-associated 

genes, such as Serpine2, Col4a1, Itgb5, Ecm1, and Mmp14 and the genes up-regulated upon 

Fosl1 OE (Fig. 2G). The results clearly reveal that Fosl1 OE cells harbor expression 

programs of more differentiated TE lineages.

3.3. Global Fosl1 target occupancy patterns reflect its role in cell fate conversion and TE 
lineage development

To elucidate the transcriptional regulatory mechanisms of Fosl1 during the cell fate 

conversion, we mapped global binding sites of Fosl1 using bioChIP followed by massive 

parallel sequencing (bioChIP-seq) (Beck et al., 2014), identifying 19,568 Fosl1 binding sites 

in Fosl1 OE cells (Supplemental Table 3). Most Fosl1 binding sites are located far away 

from the transcription start sties (TSSs) (Fig. 3A). In particular, Fosl1 tends to bind within 

50 to 500 Kb from the TSS (Fig. 3B), suggesting that Fosl1 binds to distal enhancers. 

Notably, Fosl1 occupies its own promoter and distal enhancer regions (Fig. 3C), implying 

that Fosl1 forms an auto-regulatory loop to activate its own gene, indicative of master 

regulators.

Consistent with the expression data, we found that Fosl1 directly regulates TE lineage-

specific genes at distal regulatory regions (Fig. 3C). Moreover, the most strongly enriched 

motif in Fosl1 binding sites is almost identical to the known consensus Fosl1 motif (Fig. 

3D), which tends to be found near the center of the Fosl1 peaks (Fig. 3E), and the motifs of 

Fos and Jun family member genes were also enriched within the Fosl1 peaks (Fig. 3F). Fosl1 

also occupies regulatory regions of JunB (Supplemental Table 3), collectively suggesting 

that Fosl1 collaborates with Jun family, particularly with JunB, to form an AP-1 complex 

during cell fate conversion.

We also evaluated the enrichment of Fosl1 target genes in biological processes, mouse 

development, and disease phenotypes using Genomic Regions Enrichment of Annotations 

Tool (GREAT). We found that Fosl1 target genes are strongly enriched in placenta 

development-related GO terms, such as placenta development, trophectodermal cell 
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differentiation, and labyrinthine layer development (Fig. 3G). Fosl1 target genes are highly 

expressed in TE, decidua, and ectoplacental cone that constitute placenta (Fig. 3H). Aberrant 

expression of Fosl1 target genes is also associated with trophoblast abnormality and 

trophoblast giant cell deficiency (Fig. 3I). Additional analyses disclosed that the Fosl1 

targets are strongly enriched in the MAPK signaling pathway (Fig. 3J) which is implicated 

in TE formation from ES cells and mouse embryo (Lu et al., 2008). Altogether, our analyses 

reveal not only the mode of target gene regulation of Fosl1 during the cell fate conversion, 

but also the putative involvement of the Fosl1 in TE lineage development and placentation.

3.4. Fosl1 functions as a pioneer factor and activates TE lineage genes during cell fate 
conversion

Recently, we reported that TE lineage-specific TFs, such as Cdx2, Gata3, and Arid3a, 

function as both activators and repressors during reprogramming (Rhee et al., 2017b). To 

interrogate how OE of Fosl1 induces cell fate changes, we integrated global gene expression 

analysis with target occupancy of Fosl1. We found that Fosl1 strongly occupies most of the 

genes that are up-regulated upon its own OE but not the down-regulated genes as Arid3a 

does (Fig. 4A). Thus, Fosl1 acts mainly as an activator, not as a repressor, unlike other TFs 

that can mediate ES to TS-like cell reprogramming processes. Additionally, target 

correlation analysis revealed that Fosl1’s targets are distinct from those of both ES cell 

factors and Arid3a (Fig. 4B). These results additionally support that the trans-differentiation 

mechanism of Fosl1 might be distinct from the other known TFs-mediated ES to TS-like cell 

fate conversion and Fosl1 may act independently of the Oct4 depletion-mediated 

differentiation towards TE lineages.

Since reprogramming factors, such as Oct4 (for the generation of induced pluripotent stem 

cells) and Gata3 (for TS-like cells) function as pioneer factors that can bind to closed 

chromatin and promote gene activation (Soufi et al., 2015; Takaku et al., 2016), we 

investigated whether Fosl1 can do the same by comparing the Fosl1 binding sites with the 

chromatin accessibility measured by ATAC-seq in ES cells (Rhee et al., 2017b). We found 

that approximately 29% and 71% of Fosl1 binding sites belong to open and closed 

chromatin, respectively (Fig. 4C and D). Fosl1 motif is preferentially observed in the closed 

Fosl1 binding sites compared to the open Fosl1 sites (Fig. 4E). Closed Fosl1 sites are 

enriched with the genes implicated in placenta development. Open Fosl1 sites are associated 

with blastocyst formation as well as TS cell differentiation, suggesting that some portion of 

genes implicated in placenta development is already open in ES cells (Fig. 4F). Collectively, 

these results suggest that Fosl1 can bind onto its own motif in closed chromatin as a pioneer 

factor to activate placenta-related genes during the cell fate conversion.

4. Conclusion

In summary, we show that the ectopic expression of Fosl1 in ES cells is sufficient to induce 

TE lineage-specific gene expression programs and trans-differentiate mouse ES cells to 

differentiated TS-like cells. Our data show that Fosl1 directly induces genes implicated in 

placental development and trophectodermal differentiation, acting primarily as a 

transcriptional activator unlike other reprogramming factors, such as Arid3a, Cdx2, and 
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Gata3. We further reveal that Fosl1 functions as a pioneer factor, binding to closed 

chromatin of TE lineage-specific genes to directly transcriptionally activate them.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Fosl1 overexpression induces trans-differentiation of ES cells to TS-like cells. A) Relative 

mRNA levels of Fosl1 in Fosl1 OE cells and differentiated TS cells (for 3 and 6 days) to the 

indigenous level of Fosl1 in ES cells. B) Western blots showing the protein levels of Fosl1 in 

Fosl1 OE and control cells. Arrowhead indicates non-specific. C) Bright field (upper panel) 

and AP activity (bottom panel) images in control and Fosl1 OE cells. D and E) Relative 

mRNA levels of the core pluripotency factors (D) and various TE lineage marker genes (E) 

in Fosl1 OE cells to control ES cells. Fosl1 OE cells were maintained under the ES cell 

culture condition and error bars in the bar graphs depict standard deviations of biological 

triplicates.
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Fig. 2. 
Global expression profiling reveals that Fosl1 OE induces genes implicated in the later stage 

of TE differentiation. A) Heatmap showing numbers of genes that are up- and down-

regulated upon OE of Fosl1 in ES cells. Several TE lineage-specific genes are shown in the 

right side of the heatmap. B) Bar graphs presenting the enriched Gene Ontology (GO) terms 

of biological processes in up-regulated genes of Fosl1 OE cells. C) Relative transcript levels 

of various markers of lineages and pluripotency factors in Fosl1 OE cells to control cells. D) 

Venn diagrams showing overlaps of up-regulated genes between Fosl1 OE cells and Cdx2-

OE cells (upper panel) or Gata3-OE cells (bottom panel). E–G) Gene Set Enrichment 

Analysis (GSEA) showing enrichment of gene sets such as ESC-specific genes as well as 

TSC-specific genes (E), active genes in differentiated TS cells (for 3 and 6 days) (F), and 

epithelial-mesenchymal transition in Fosl1- OE cells over control ES cells.
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Fig. 3. 
Mapping of global binding sites of Fosl1 unveils that Fosl1 directly activates TE lineage-

specific genes by occupying their distal enhancers. A) A pie chart presenting the distribution 

of Fosl1 binding sites across the mouse genome. Promoters: regions within ±2 K from the 

TSSs; Upstream: regions between 2 K and 20 K upstream of the TSSs; Intergenic: regions 

except promoters, upstream, exons, and introns. B) Percentage of Fosl1 binding sites 

discovered in a given distance from transcription start sites of genes. C) ChIP-seq track 

images showing Fosl1 occupancy near TE lineage-specific genes in Fosl1 OE cells. D) 

Consensus sequence of Fosl1 motif (upper panel) and sequence that are the most enriched in 

Fosl1 binding sites. E) A histogram presenting the distribution of percentage peaks 

harboring the Fosl1 motif in a given distance from the center of Fosl1 binding sites. F) 

Percentage of Fosl1 binding sites containing consensus motifs of Jun or Fos family 

transcription factors. G–J) GO terms of biological processes (G), MGI expression (H), MGI 

phenotype (I), and KEGG pathway (J) enriched in Fosl1 binding sites.
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Fig. 4. 
Fosl1 functions as an activator as well as a pioneer factor. A) Heatmaps presenting ranked 

relative gene expression of Fosl1 OE cells (left panel) and Arid3a-OE cells (right panel) to 

control cells. Beside the heatmaps, line graphs showing occupancy scores of Fosl1 and 

Arid3a that are averaged by moving window average (a window size of 100). B) Heatmap 

showing the similarity of their binding sites among diverse factors that belong to three 

modules (MYC, CORE, and PRC) and insulator binding protein CTCF tested in ES cells 

(Beck et al., 2014) as well as Arid3a OE (Rhee et al., 2014) and Fosl1 OE in ES cells. 

Arid3a and Fosl1 binding sites were obtained when they were overexpressed in ES cells. C) 

A bar graph showing percentage of peaks that are open or closed. D) Heatmaps depicting 

occupancy signals of ATAC-seq in ES cells (left panel) and Fosl1 in Fosl1 OE cells (right 

panel) within ±5 K from the center of peaks. E) A bar graph presenting percentage of peaks 

harboring motifs in open Fosl1 peaks or closed Fosl1 peaks. F) GO terms of biological 

processes enriched in the closed (upper panel) and the open (bottom panel) Fosl1 binding 

sites.
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