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Abstract
In real-world environments, humans comprehend speech by actively integrating prior knowledge (P) and expectations
with sensory input. Recent studies have revealed effects of prior information in temporal and frontal cortical areas and
have suggested that these effects are underpinned by enhanced encoding of speech-specific features, rather than a
broad enhancement or suppression of cortical activity. However, in terms of the specific hierarchical stages of
processing involved in speech comprehension, the effects of integrating bottom-up sensory responses and top-down
predictions are still unclear. In addition, it is unclear whether the predictability that comes with prior information may
differentially affect speech encoding relative to the perceptual enhancement that comes with that prediction. One way
to investigate these issues is through examining the impact of P on indices of cortical tracking of continuous speech
features. Here, we did this by presenting participants with degraded speech sentences that either were or were not
preceded by a clear recording of the same sentences while recording non-invasive electroencephalography (EEG). We
assessed the impact of prior information on an isolated index of cortical tracking that reflected phoneme-level
processing. Our findings suggest the possibility that prior information affects the early encoding of natural speech in
a dual manner. Firstly, the availability of prior information, as hypothesized, enhanced the perceived clarity of degraded
speech, which was positively correlated with changes in phoneme-level encoding across subjects. In addition, P
induced an overall reduction of this cortical measure, which we interpret as resulting from the increase in predictability.
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Introduction
Successful speech comprehension in noisy, real-world

environments is conducted by a complex hierarchical

system in the human brain (Chang et al., 2010; Okada
et al., 2010; Peelle et al., 2010; DeWitt and Rauschecker,
2012; Hickok, 2015). In such cases, it is widely acknowl-
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Significance Statement

The human ability to comprehend speech despite challenges such as loud noise and competing speech
derives in large part from the use of prior knowledge (P) of the upcoming speech. Here, we examine the
cortical underpinnings of this process by using P to modulate the perceived intelligibility of degraded stimuli.
We find two distinct effects of P: a positive correlation between perceptual enhancement and phoneme-
level encoding and an overall suppression of this cortical encoding.
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edged that an active cognitive process takes place where
speech perception is strongly influenced by prior knowl-
edge (P) and a contextual expectation of upcoming
speech input (McClelland and Elman, 1986; Davis and
Johnsrude, 2007; McClelland, 2013; Heald and Nusbaum,
2014; Leonard and Chang, 2014). However, the nature of
this influence is not yet well understood.

Firstly, it remains unclear at what hierarchical process-
ing stages, and in particular how early, the encoding of
speech is affected by top-down influence (Davis and
Johnsrude, 2007). Studies using prior information to en-
hance the perception of degraded speech report that
subjects experience a strong perceptual pop out effect
whereby they report a marked increase in the perceived
clarity of the speech as they process it in real time (Blank
and Davis, 2016; Holdgraf et al., 2016; Tuennerhoff and
Noppeney, 2016). This suggests that prior information
might affect speech processing in situ in lower-level sen-
sory processing areas at the acoustic and phonetic en-
coding stages, something that has been observed for
effects such as phoneme restoration in noise (Leonard
et al., 2016). However, event-related potential evidence
on this issue has suggested that prior information first
modulates activity in higher-order areas, which then feeds
back to affect lower-level sensory processing at longer
latencies (Sohoglu et al., 2012).

A second unresolved issue is the mechanism through
which prior information affects bottom-up sensory pro-
cessing. One view is that the neural encoding of a stim-
ulus is enhanced by expectation (sharpening theories;
McClelland and Elman, 1986; Mirman et al., 2006). An
alternative theory, known as predictive coding, proposes
that discrepancies (or errors) between what is predicted
and what is received are passed from one level to the next
within the speech processing hierarchy (Friston, 2005;
Arnal and Giraud, 2012; Giraud and Poeppel, 2012). One
recent functional magnetic resonance imaging (fMRI)
study has provided strong evidence for a dominant role
for predictive coding in the superior temporal sulcus
(STS), by demonstrating interacting effects of prior expec-
tation and sensory detail on multivoxel BOLD patterns
(Blank and Davis, 2016). However, a recent study with
invasive electrocorticography (ECoG) appeared to be
more in line with the sharpening theory (Holdgraf et al.,
2016). In particular, that study showed that P induces an
enhancement of high-� activity driven by rapid and auto-
matic shifts in spectrotemporal tuning in auditory cortical

areas. And the authors suggested that these shifts lead to
changes in responsiveness to specific speech features,
rather than a more general increase or decrease in activity
(Holdgraf et al., 2016).

In this study, we aim to examine these two issues: (1)
how early in the hierarchy is speech encoding affected by
prior information; and (2) is the increase in perceived
clarity that comes with prior information reflected in an
enhancement or suppression of activity at particular hier-
archical stages. To do this, we will use a recently intro-
duced approach to EEG analysis that allows us to isolate
early stage speech encoding with precise temporal reso-
lution. The approach builds on the fact that dynamic
cortical activity tracks the amplitude envelope of ongoing,
natural speech (Aiken and Picton, 2008; Lalor and Foxe,
2010). It does so by assuming that this cortical speech
tracking phenomenon reflects the activity of distinct neu-
ral populations that implement different functional roles
(Ding and Simon, 2014). In particular, we seek to use
forward encoding models to disambiguate contributions
reflecting the processing of low-level speech acoustics
from those reflecting the processing of categorical pho-
netic features (Mesgarani et al., 2014; Di Liberto et al.,
2015). We aim to use this framework to analyze data
collected during a perceptual pop-out speech experi-
ment. Our primary hypothesis is that we will see a marked
increase in the strength of the online encoding of phonetic
features, in particular, between the cases where subjects
hear unintelligible degraded speech versus when they can
understand that same degraded speech as a result of
having prior information.

Materials and Methods
Participants and data acquisition

Fourteen healthy subjects (eight males, aged between
21 and 31 years) participated in this study. Electroen-
cephalographic (EEG) data were recorded from 128 elec-
trode positions (plus two mastoid channels). Data were
filtered over the range 0–134 Hz and digitized with a
sampling frequency of 512 Hz using a BioSemi Active Two
system. Monophonic audio stimuli were presented at a
sampling rate of 44.1 kHz using Sennheiser HD650 head-
phones and Presentation software from Neurobehavioral
Systems (http://www.neurobs.com). Testing was con-
ducted in a dark room and subjects were instructed to
maintain visual fixation on a crosshair centered on the
screen, and to minimize motor activities for the duration of
each trial. The study was undertaken in accordance with
the Declaration of Helsinki and was approved by the
Ethics Committee of the School of Psychology at Trinity
College Dublin. Each subject provided written informed
consent. Subjects reported no history of hearing impair-
ment or neurologic disorder.

Stimuli and experimental procedure
Audio-book versions of two classic works of fiction read

in American English by the same male speaker were
partitioned into 10-s speech snippets using MATLAB soft-
ware (The MathWorks Inc.). A total of 120 snippets were
randomly selected for the experiment. To alter the intelli-
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gibility of the speech, a method known as noise vocoding
was implemented (Shannon et al., 1995; Davis and John-
srude, 2003). This method filters the speech into a number
of frequency bands and uses the amplitude envelope of
each band to modulate band-limited noise. Specifically,
the speech for this experiment was vocoded using three
frequency bands logarithmically spaced between 70 and
5000 Hz according to Greenwood’s equation (70–494–
1680–5000 Hz; Greenwood, 1961).

Each EEG standard trial consisted of the presentation
of three speech segments (Fig. 1A). The first segment [no
P (NP)] was degraded using noise vocoding; the second
one [clear (C)] was the same 10-s speech segment, but in
its original clear form; and the third presentation (P) was

the noise-vocoded version again. As such, the first (NP)
and third (P) speech segments involved identical acoustic
stimuli, but it was hoped that the perceived clarity of the
third segment (P) would be improved by the prior infor-
mation provided by the interleaved segment C (perceptual
pop-out effect). As a control measure, we also included
deviant trials. These trials consisted of a modified version
of NP and/or P, where a random chunk of �5 s was
replaced with words from a different trial. For both NP and
P, the probability of a deviant stimulus was set to 10%.

Participants were asked to make two judgements
based on the stimuli. First, after presentation of segment
C, they were asked to decide whether the first vocoded
segment, NP, was deviant (different from C) or standard

Figure 1. A pop-out experiment to modulate speech perception. A, Experimental setup. EEG data were recorded while subjects
listened to groups of three 10-s long speech snippets. In standard trials, the first (NP) and the third (P: prior knowledge) speech
snippets were a three-channel noise-vocoded version of the second snippet (C: clear). In deviant trials, either the first or third snippets
(or both) did not fully match the second snippet. After C and P, participants were asked to identify the first and the second vocoded
snippets, respectively, as matching the clean speech or not (i.e., standard or deviant trial). B, Analysis approach. A linear regression
approach was used to derive mappings from different speech representations to the EEG. Regression models were fit for the acoustic
spectrogram (S), a set of time-aligned phonetic features (F), and a combination of the two (FS). Each model was then tested for its
ability to predict the EEG using leave-one-out cross-validation.
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(the same as C). And second, after presentation of the
second vocoded segment, P, they were asked to decide
whether it was a deviant (different from C) or standard (the
same as C). More specifically, they were asked to make
both of these decisions using a level of confidence from 1
to 5 (“definitely a deviant,” “probably a deviant,” “I don’t
know,” “probably a standard,” and “definitely a stan-
dard”). For standard trials, a higher confidence level when
comparing segments P and C than when comparing seg-
ments NP and C was taken as evidence of enhanced
perceived speech clarity. This score was normalized by
subtracting a subject-specific baseline that was obtained
by performing the same operation on deviant trials (see
Results for a better understanding of the rationale behind
this normalization).

Before the taking part in the full experiment the partic-
ipants were presented with a number of noise-vocoded
speech snippets for �10 min. The goal of this was to
enable subjects to become familiar with the peculiarity of
noise-vocoded speech without allowing so much expo-
sure as to enable substantial perceptual learning to take
place (Sohoglu and Davis, 2016).

Stimulus characterization
This study builds on a framework recently introduced

by Di Liberto et al. (2015) that uses forward encoding
models to predict EEG responses to natural speech. More
specifically, it seeks to model how EEG responses vary as
a function of particular features of the speech stimulus
that are theorized to map onto different hierarchical levels
of speech processing in the brain. To this end, three
representations of the speech stimuli were used:

1. The spectrogram (S) was obtained by partitioning the
speech signal into three frequency bands logarithmi-
cally spaced between 70 and 5000 Hz according to
Greenwood’s equation (70–494–1680–5000 Hz, the
same used for the vocoder; Greenwood, 1961), and
computing the amplitude envelope for each band,
which was calculated asEnv � �xa�t��, xa�t� � x
�t� � jx̂�t�, where xa�t� is the complex analytic signal
obtained by the sum of the original speech x�t� and its
Hilbert transform x̂�t�.

2. The phonetic-features (F) representation was com-
puted using the Prosodylab-Aligner software (Gor-
man et al., 2011), which, given the speech file and its
orthographic transcription, automatically partitions
each word into phonemes from the American English
International Phonetic Alphabet (IPA) and performs
forced-alignment, returning the starting and ending
time points for each phoneme. Each phoneme was
then mapped to a corresponding set of 18 phonetic
features, which was based on the University of Iowa’s
phonetics project. In particular, the chosen features
are related to the manner of articulation (plosive,
fricative, nasal, liquid, and glide), to the place of arti-
culation (bilabial, labio-dental, lingua-dental, lingua-
alveolar, lingua-palatal, lingua-velar, and glottal), to the
voicing of a consonant (voiced and voiceless), and to
the backness of a vowel (front, central, and back). Also,
a specific feature was reserved for diphthongs. As a

result, this procedure produced a multivariate time
series composed of 18 phonetic features, which de-
scribe specific articulatory and acoustic properties of
the speech phonetic content.

3. Finally, we built a representation that combined F and
S (FS) by applying a concatenation of the two repre-
sentations. The idea of this combined representation
is that the above spectrogram and phonetic feature
representations are highly mutually redundant. This is
because, on average, each phoneme will have a par-
ticular characteristic spectrotemporal profile. So if
each phoneme were always spoken in the same way,
then the two representations would be equivalent.
However, in natural speech this is not the case, with
significant variation in the spectrotemporal profile of a
given phoneme across instances. So one might thus
expect that an EEG encoding model based on cate-
gorical phonetic features (F), which is ignorant of
these variations, would underperform relative to the
abovementioned S model. However, it is also true
that human listeners categorically perceive pho-
nemes despite spectrotemporal variations, a fact that
is presumably underpinned by consistent neural re-
sponses to those phonemes (Okada et al., 2010;
Peelle et al., 2010). Such consistent responses
would be captured by our F model and underrep-
resented by our S model because the latter is
ignorant of the categorical nature of these utter-
ances. As such, we contend that an EEG encoding
model based on the concatenated representation,
FS, should capture responses to both variable low-
level acoustic fluctuations and categorical higher-
level phonetic features.

Based on the above three representations, we have
also previously suggested that one can attempt to isolate
the unique contribution that derives from phonetic-feature
level processing by subtracting the performance of the S
model from that of the FS model (i.e., FS–S; Di Liberto
et al., 2015; Di Liberto and Lalor, 2017).

A couple of final notes on our stimulus representations.
Below, we also used a univariate envelope representation
of the speech (E) for visualization purposes. This was
calculated as the sum of the three band-limited envelopes
that compose the S representation. In previous work, our
framework has also included a phonemic representation
of the speech (a multivariate time series of forced aligned
phonemes, similar to F; Di Liberto and Lalor, 2016). How-
ever, because of the limited amount of speech data used
in the present study, less frequent phonemes would not
have a sufficient number of occurrences to produce a
good model fit. As a result, we did not include this repre-
sentation in the present study and focused our analysis on
the more fundamental phonetic-features model. As an
aside, if it were of interest, the scalp responses to pho-
nemes can still be visualized by performing a linear pro-
jection of the F model (in fact, a phoneme can be
represented as a combination of specific phonetic fea-
tures).
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EEG data analysis
The EEG signals were analyzed offline using MATLAB

software. Because of suggestions that speech tracking in
the �-band (1–4 Hz) and �-band (4–8 Hz) might have
different functional roles in speech processing (Ding and
Simon, 2014), we analyzed these two EEG bands sepa-
rately. Specifically, the data were digitally filtered into the
two frequency bands of interest using Chebyshev type-2
bandpass filters with pass-band between 1 and 4 Hz
(�-band) and between 4 and 8 Hz (�-band). Next, signals
were down-sampled to 128 Hz, and referenced to the
average of the two mastoid channels. EEG channels
whose time-series data had a variance that exceeded
three times that of the surrounding channels were identi-
fied as being excessively noisy. And the data on those
channels were replaced by spline interpolating the data
from the surrounding clean channels using EEGLAB soft-
ware (Delorme and Makeig, 2004).

Linear regression was used to create a mapping be-
tween the EEG and the abovementioned three speech
stimulus representations (Fig. 1B). For each representa-
tion, the result of the linear regression consists of a set of
weights referred to as a multivariate temporal response
function (TRFs; Crosse et al., 2016). A multivariate TRF
(mTRF) can be interpreted as a filter that describes the
brain’s linear mapping of a continuous stimulus feature,
S(t), to the corresponding continuous neural response
R(t), i.e.,

R�t� � mTRF*S�t�,

where � represents the convolution operator. The mTRFs
were calculated by performing ridge regression between
the stimulus features and the corresponding EEG. This
approach allows for the use of a regularization parameter
(�), which can improve the quality of fit (in the case of
noisy data) and controls overfitting by assuming a certain
level of temporal smoothness (Crosse et al., 2016b).

Speech stimuli and the corresponding EEG responses
were partitioned into 10 equal-sized subsets S1, S2, . . .,
S10, and R1, R2, . . ., R10, respectively; k-fold cross-
validation (k � 10) was employed on these partitions to
compare how each speech representation (S, F, and FS)
mapped to the EEG. In particular, EEG signals of a subset
i (Ri) were predicted using models that were fit to each
distinct speech representation on all the left-out partitions
(1,. . .,i-1,i � 1,. . .,10), and prediction accuracies were
quantified for each electrode using a Pearson correlation.
To optimize performances, we conducted a parameter
search (over the range 10�3, 10�2, . . ., 105) for the regu-
larization parameter � within each speech representation
model. This procedure maximized the EEG prediction
accuracy averaged across trials, subjects, and all 128
electrodes. The combination of regularization and cross-
validation controlled for overfitting and prevented bias
toward the test data used for quantifying the prediction
accuracies.

The mTRF mapping from speech to EEG signals is
sensitive to the selection of both a temporal window and
an electrode set of interest. The time window specifies
which time lags between speech and EEG are considered

for the model fit. The basic rationale is that an unpredict-
able stimulus (delivered at time lag zero) induces a cortical
response that begins after lag zero and may continue for
a certain length of time, which is on the order of hundreds
of milliseconds and depends on the complexity of the
related cortical process. For this purpose, a time-lag win-
dow between �50 and 250 ms was selected, as it pro-
duced the best EEG prediction accuracies for clear
speech. After the time-lag window selection and � opti-
mization, a set of 12 consistently well-predicted elec-
trodes (six on the left side of the scalp and their
symmetrical counterparts on the right; Di Liberto et al.,
2015) from fronto-temporal regions of the scalp were
selected for calculating the EEG prediction accuracies.

This procedure resulted in EEG prediction measures for
all the speech representations described in Stimulus char-
acterization above. And, as mentioned above, an addi-
tional quantitative measure was derived that accounted
for the unique gain in predictability provided by the use of
phonetic features, compared to when only spectral fea-
tures were used, i.e., FS–S (Di Liberto et al., 2015; Di
Liberto and Lalor, 2017).

Statistical analysis
Statistical analyses were performed using a repeated

measures ANOVA to compare distributions of Pearson
correlation values across models. ANOVA analyses were
conducted after verifying that the normality assumption
was not violated, which was assessed both visually (QQ
plots; data not shown) and quantitatively (Shapiro–Wilk
test). The values reported use the convention F(df, dfer-
ror). Greenhouse-Geisser corrected degrees of freedom
are reported where the assumption of sphericity was not
met (as indicated by a significant Mauchly’s test). All post
hoc model comparisons were performed using Bonferroni-
corrected paired t tests. Two-tailed permutation tests with
200,000 repetitions were used for pair-wise comparisons
if the assumption of normality was violated (Shapiro–Wilk
test). While it is customary to apply Fisher’s z-trans-
formation to Pearson correlation scores before perform-
ing statistical analysis on those scores, we did not do that
for the results presented below. The rationale for the
Fisher transform is to normalize the sampling distribution
of the (usually skewed) Pearson’s r values and to produce
a less biased statistic. However, in our case, the r values
are really quite low and are, generally speaking, already
normally distributed. And it has been suggested that with
large numbers of data points and small r values, applying
a Fisher’s z-transformation can in fact lead to a more
biased result (Corey et al., 1998). (Incidentally, despite our
concerns that Fisher transforming our data may produce
a larger bias, we ran the same set of analyses on both the
raw r values and the Fisher transformed values. No qual-
itative differences were observed, so we only present the
results from the raw r values for the abovementioned
reasons.) Effect size is reported for both t test and ANOVA
analyses. Specifically, Cohen’s effect size absolute value
(|d|) is reported for t test and partial eta-squared (�2) is
used for ANOVA. Linear mixed-effects models were fit
using the maximum likelihood criterion and Satterthwaite
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approximation was used for computing the denominator
degrees of freedom for the F statistics reported.

Results
P enhances perceived speech clarity

Participants were asked to identify the first (NP) and the
second (P) speech vocoded streams as a standard (St) or
deviant (D) presentation using a level of confidence from
1-5 (from ‘definitely a deviant’ to ‘definitely a standard’
respectively). The response distribution for each condition
(averaged across subjects; Fig. 2A) indicates that partic-
ipants were more confident in identifying standard trials
when P was available (standard P compared to standard
NP), while this was not the case for deviant trials (deviant
P compared to deviant NP). Note that subjects were
instructed to report detection of a deviant trial only if they
heard a difference with the corresponding clear speech
snippet. But because perceptual pop-out did not occur
for the modified portion of the DP trials, this was a more
difficult determination for subjects to make. For this rea-
son, P improved the standard but not the deviant detec-
tion scores.

A significant enhancement of the detection score from
NP to P was observed for standard trials (StP � StNP,
permutation test, p � 0.001), which confirms that P had
an effect on subjects’ confidence in detecting standard
trials. However, this alone is not sufficient to draw con-
clusions about the effects of P on the perceived speech
clarity. This is because it was possible that subjects may
have been biased to respond to both standard and devi-
ant stimuli as standard trials when prior information was
available. For example, this was the case for subject 12,
whose individual behavioral scores are reported in Figure
2B, bottom panel. In contrast, subject 5 (Fig. 2B, top)
exhibited an increase of speech clarity with P, as detec-
tion for both standard and deviant improved for P trials. to

control for such biases across individual subjects, a
subject-specific baseline was derived using deviant trials
and subtracted from the confidence level for standard
trials. This corrected behavioral measure (St � D) exhib-
ited a significant interaction with P (StP � StNP � DP �
DNP, permutation test, p � 10�6). This result, which is
depicted in Figure 2C, indicates an increase in perceived
speech clarity due to P of the upcoming stimulus. This
perceptual enhancement can be summarized for each
single subject using the following quantitative measure:

	Clarity � (STP 
 STNP) 
 (DP 
 DNP).

Interestingly, the result in Figure 2 shows that the NP
vocoded speech snippets, although severely degraded,
were perceived as partially intelligible rather than com-
pletely unintelligible (StNP � DNP, permutation test, p �
10�6). These results indicate that, as hypothesized, prior
information led to clearer perception of the noise-
vocoded speech stimuli, a perceptual difference that we
have quantified as 	Clarity.

Dual effect of P on the cortical entrainment to
speech features

EEG predictability measures were derived using a for-
ward mTRF model that estimates an optimal linear map-
ping from a speech representation to the corresponding
scalp-recorded EEG signal. These predictability measures
were derived for different frequency bands (delta and
theta) and models (S, F, and FS). A significant interaction
between these two factors emerged from a unified 2 � 3
ANOVA analysis for the C and NP conditions, but not for
P (two-way ANOVA, C: F(1.37,17.85) � 6.261, p � 0.015,
effect size � 0.33; NP: F(1.19,15.48) � 8.454, p � 0.008,
effect size � 0.39; P: F(1.26,16.42) � 0.233, p � 0.692, effect
size � 0.018). Based on this interaction, follow-up one-

Figure 2. A behavioral measure of speech clarity reflects the effect of P. Subjects were presented with sequences of vocoded-
original-vocoded speech snippets and were asked to identify the two noise-vocoded streams (NP and P stimuli) as standard or
deviant presentations by comparing them with the original speech snippet. Responses consisted of a level of confidence from 1
(definitely a deviant) to 5 (definitely a standard). A, The response distributions (mean percentage occurrence � SEM) confirm that
subjects were more confident in detecting standard trials when P was available. B, The confidence level for two selected subjects.
The result in the top panel shows that subject 5 improved in detecting both standard and deviant trials when P was available, which
we interpret as evidence for an increase in perceptual clarity. In contrast, subject 12 (bottom panel) responded with higher values to
P stimuli for both standard and deviant trials. In this case, the positive StP-StNP cannot be assumed to purely reflect an increase in
perceived clarity, as deviants were not detected. C, The confidence level averaged across all subjects (mean � SEM) is here reported
for NP and P stimuli, and for both standard and deviant trials. The increase in confidence due to P is larger for standard than for
deviant trials (�p 	 0.05).
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way ANOVAs were conducted for the �-band (1–4 Hz) and
�-band (4–8 Hz) separately and the results were com-
pared between the NP, C, and P stimuli. In the �-band, the
analysis for C stimuli (Fig. 3A, top) showed that the com-
bined FS model performed better than both S and F
models, and that the F model performed better than the S
model (ANOVA: F(1.41,19.70) � 48.226, p � 1.7 � 10�7,
effect size � 0.763; post hoc paired t test comparisons:
p � 10�6, p � 3.5 � 10�5, p � 9 � 10�4 for S vs FS, F vs
FS, and S vs F, respectively). Furthermore, the analysis for
C stimuli in the �-band (Fig. 3A, bottom) showed that the
combined FS model performed better than both S and F
models; however, no significant difference emerged be-
tween the F model and the S model (ANOVA: F(1.26,16.37) �
14.490, p � 8.5 � 10�4, effect size � 0.527; post hoc
paired t test comparisons: p � 0.002, p � 5 � 10�6, p �
1 for S vs FS, F vs FS, and S vs F respectively). These
results are consistent with those obtained previously for
clear natural speech using a different dataset (Di Liberto
et al., 2015).

As mentioned above, and in our previous studies, we
have suggested that isolated indices of speech-specific
processing can be quantified using our analysis frame-
work. In particular, as depicted in Figure 1B, we suggest
that this can be done by noting that the FS model is
sensitive to activity reflecting the processing of both
sound acoustics and categorical phonetic features, while
the S model does not explicitly encode phonetic features
and should thus be less sensitive to the categorical pro-

cessing of those features (Di Liberto et al., 2015). There-
fore, we propose that any difference in EEG prediction
accuracy between the two models would be due to the
fact that the FS model captures extra activity reflecting
the processing of categorical phonetic features. And, as
such, we suggest that one can isolate a measure of
speech-specific cortical processing at this level by sub-
tracting rS from rFS (i.e., FS–S). Here, we hypothesized that
this measure would be particularly sensitive to differences
in perceived clarity as a result of P. Specifically, our
hypothesis was that, because the perceived speech clar-
ity (and therefore intelligibility) of the two conditions dif-
fered as a result of P, we would see a clear increase in our
proposed isolated measure of phonetic feature-level pro-
cessing (FS–S) with P. In line with other work (Holdgraf
et al., 2016), we also wished to explore the possibility that
top-down effects on the processing of speech may im-
pact even earlier stages of speech encoding at the level of
acoustics, as indexed via the S model. The effect of P on
the FS–S measure was quantified as:

	(FS 
 S) � (rFS 
 rS)P 
 (rFS 
 rS)NP.

In line with our primary hypothesis, we found that

(FS–S) in the �-band was positively correlated with the
behavioral measure 	Clarity across subjects (Fig. 3B). That
is to say, the larger the enhancement in speech clarity due
to prior information for a given subject, the bigger 
(FS–S)
for that subject (Pearson’s correlation coefficient r � 0.63,

Figure 3. The effect of P on EEG predictability. Linear regression was used to fit models known as multivariate temporal response
functions (mTRFs) between the low-frequency (�-band: 1–4 Hz and �-band: 4–8 Hz) EEG and different representations of the speech
stimulus. In particular, speech was represented as its spectrogram (S), a time-aligned sequence of categorical phonetic features (F),
or a combination of both (FS; �p � 0.05, ��p � 0.01, ���p � 0.001). The difference in performance between the FS and S models
(i.e., FS–S) is taken as an isolated measure of phoneme-level encoding. A, Correlations (mean � SEM) between recorded EEG and
EEG predicted using the mTRF models for spectrogram (S), phonetic features (F), and their combination (FS) for clear speech. B, A
significant positive correlation emerges between the change in perceived intelligibility (measured as 
clarity) and the change in our
isolated index of phoneme level �-band entrainment from NP to P speech segments ((FS–S)P – (FS–S)NP) as a result of P. C,
Correlations (mean � SEM) between recorded EEG and EEG predicted using the mTRF models for spectrogram (S), phonetic features
(F), and their combination (FS) for noise-vocoded speech. In the �-band, the FS model performs best for the NP speech segments
(NP) but not for the P segments (P). No significant differences emerge in the �-band.
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p � 0.015). Somewhat surprisingly, no such correlation
emerged for �-band 
(FS–S) (Pearson’s correlation coef-
ficient r � 0.40, p � 0.158). This result suggests that the
�-band neural measure FS–S, which we take as in index of
phonetic-feature encoding, is sensitive to increases in the
perceived clarity of speech that come with access to P.

An additional statistical analysis was conducted to ex-
clude possible effects of subject variability due to noise.
This was a possibility because the neuro-behavioral cor-
relation shown in Figure 3B is the result of a between-
subject analysis. This confound was excluded by means
of a linear mixed-effects analysis that accounts for both
inter-trial and inter-subject variability. Our speech-
specific neural index (FS–S) was the continuous numeric
dependent variable and P (P vs NP) was a continuous
numeric fixed factor. Between-subject and between-trial
variation were accounted for as random effects. We found
a significant main effect of P on FS–S (p � 0.034) and on
the behavioral measures (p � 1.6 � 10�214). Interestingly,
however, for a majority of subjects (11 out of 14), and
despite the positive correlation with behavior, our neural
index of phoneme level processing (FS–S) actually de-
creased with prior information, a finding that ran counter
to our primary hypothesis. This suggests the possibility of
a second effect involving a suppression of responses at
this hierarchical processing level to the P condition rela-
tive to NP (t test on FS–S: p � 0.003, effect size � 0.863).

To clarify the factors that led to the suppressive effect
of P on the �-band cortical index FS–S, the various model
performances were compared for the NP and P stimuli. It
is important to re-emphasize that each pair of NP and P
stimuli had identical physical properties. Therefore, signif-
icant differences in the corresponding scalp responses
must be due to some combination of the following two
factors: (1) it could be related to the enhancement of
perceived clarity with prior information, a suggestion that
is supported by our abovementioned positive correlation
between 
Clarity and 
(FS–S), and (2) it could be related to
the fact that the P stimulus is a repetition of a previously
presented stimulus, while the NP stimulus is always a first
presentation. If the latter is a factor in causing a reduction
in �-band EEG prediction accuracy, it should be evident in
the pattern of model performances, although it would still
remain to explain precisely what mechanisms underlie
such effects (e.g., predictive coding vs adaptation – see
discussion). Indeed, results for the NP and P stimuli ex-
hibited different patterns in terms of the relative model
performances (Fig. 3C). Specifically, the model perfor-
mances for NP were similar to those for clear speech, with
the combined FS model performing better than both S
and F (ANOVA: F(1.14,14.87) � 7.22, p � 0.014, effect size �
0.357; post hoc paired t test comparisons of FS with all
other models: p � 0.012, p � 0.001 for S and F respec-
tively). This was not the case for the responses to the P
stimuli. In fact FS performed better only than F, while no
significant difference emerged when compared with S
(ANOVA: F(1.29,16.72) � 4.24, p � 0.040, effect size �
0.246; post hoc paired t test comparisons of FS with all
other models: p � 1, p � 0.001 for S and F respectively).
The model predictions were generally lower for NP stimuli

than for clean speech (paired t test on S: p � 0.88, effect
size � 0.056; F: p � 0.04, effect size � 0.658; FS: p �
0.01, effect size � 0.832), but had a similar relative per-
formance pattern between models, which was not partic-
ularly surprising given that noise vocoding reduced the
intelligibility of the NP stimuli, but did not make them
completely unintelligible.

This pattern of results suggests that the �-band EEG
predictability measures are sensitive to the effect of P,
and that this P primarily affected the interaction between
acoustic (S) and phonetic (F) speech models, rather than
any individual model performance. In fact, no significant
effect (enhancement nor suppression) emerged for any
single speech representation/model between NP and P
(paired t test on S: p � 0.16, effect size � 0.287; F: p �
0.16, effect size � 0.317; FS: p � 0.29, effect size �
0.200). Unlike in the �-band, EEG predictability in the
�-band did not exhibit different results patterns for NP and
P stimuli. Importantly, no significant difference emerged
between FS and S for either NP or P stimuli, suggesting
that cortical entrainment measures in the �-band are not
affected by differences in perceived clarity (NP stimuli:
ANOVA, F(1.17,15.16) � 4.83, p � 0.039, effect size � 0.271;
post hoc paired t test comparisons: p � 1, p � 0.002, p �
0.208 for S vs FS, F vs FS, and S vs F, respectively; P
stimuli: ANOVA, F(1.09,14.22) � 5.97, p � 0.026, effect size �
0.314; post hoc paired t test comparisons: p � 1, p � 4.3 �
10�5, p � 0.292 for S vs FS, F vs FS, and S vs F,
respectively).

Differential effects of P on distinct phonetic features
The results so far suggest that P affects the EEG-

measured cortical tracking of speech and, crucially, the
correlation between perceived clarity and FS–S links this
effect directly with the cortical processing of phonetic
features of speech. To examine how prior information
affects specific speech features, we compared the model-
weights across conditions, speech representations, and
time lags in the �-band (Fig. 4). It is important to note that
the advantages of using EEG prediction accuracy as a
dependent measure are that (1) it can combine informa-
tion across features and frequency bands into one optimal
prediction and (2) it produces a long vector in the time
domain that, despite its low SNR, produces robust and
reliable correlations with the actual EEG. Analyzing the
TRF weights over different features typically involves
dealing with a lot of variability, at least with the amount of
data in the present study. Nonetheless, we conducted this
analysis on a time lag window of �100 � 500 ms, which
allowed for a clearer contrast between more and less
meaningful time lags. In addition, the TRF-weights shown
in the figure were averaged across a set of 12 fronto-
central well-predicted electrodes.

Unfortunately, it is not straightforward to examine the
model weights of FS–S itself, given that these two models
correspond to feature-spaces with different dimensional-
ity. However, one can still seek some extra insight by
separately examining the weights of the acoustic and
phonetic models. The acoustic models, which were fit
using the envelope and the 3-band spectrogram of
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speech, showed similar weights for NP and P, while there
were stronger average responses in the C condition com-
pared to NP and P, although these differences were not
significant (Fig. 4A). A more interesting pattern of results
emerged for the F model (Fig. 4B). In particular, there

appeared to be differences between the C, P, and NP
models in the vowel-based features of the TRF (Fig. 4B).
These differences were supported by a simple exploratory
statistical cluster analysis that compared the phonetic
feature TRFs between conditions (uncorrected t tests at

Figure 4. The effect of P on the TRFs. A, The TRF (model weights) for the spectrogram representation of speech (S) are shown for
all conditions after averaging across 12 selected electrodes (see Materials and Methods, EEG data analysis). To allow a direct
comparison of all conditions, the TRF for the C model is shown using only three frequency bands, although the model used in the
analysis included all 16 bands. Colors indicate the TRF magnitude (arbitrary units). B, TRF models fit using phonetic features (F) are
shown for all conditions. C, F model weights were compared between each pair of conditions using t tests at each time lag and
phonetic feature. D, To more directly compare the TRF weights between conditions, univariate models are shown for the envelope
of speech and for four distinct groups of phonetic features (average weights of each group are reported): manner of articulation,
voicing, vowels, and place of articulation.
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every time lag and for every feature; Fig. 4C). While there
were some time points that also showed differences be-
tween NP and P, these effects were not very robust
and did not survive correction for multiple comparisons.
To examine this in another way, we collapsed the TRFs
across phonetic-feature categories (Manner of Articula-
tion, Voicing, Vowels, and Place of Articulation) and
examined the resulting one-dimensional TRFs across
conditions (along with the standard Envelope TRF for
comparison; Fig. 4D). A significant suppression of the
N1TRF and P1TRF components for vowel features emerged
for NP and P compared with C (permutation test between
NP and C models: p 	 0.05 for �15–85 ms and 195–312
ms; permutation test between P and C models: p 	 0.05
for �15–54 ms and 187–250 ms; significant clusters with
more than two contiguous time lags were excluded; Fig.
4D). Interestingly, although not significant, the average
suppression was greater for P compared to NP. Qualita-
tively, consonant voicing and place of articulation features
resemble the weights for clear speech in the P but not in
the NP condition, while no obvious similarity across con-
ditions emerged for manner of articulation features, al-
though there were no statistically significant effects on
this.

Discussion
This study investigated the effect of P on the cortical

tracking of acoustic and phonetic speech features using
non-invasive EEG and an analysis framework based on
ridge regression and EEG predictability (Di Liberto et al.,
2015; Crosse et al., 2016). The results observed for the
clear speech reproduced the ones shown previously by Di
Liberto et al. (2015). In the �-band, a weaker but similar
pattern emerged for NP stimuli, which were only partially
intelligible because of a severe degradation of their
acoustic properties. Crucially, a different results pattern
was observed for P stimuli, indicating that P modulates
the cortical entrainment to speech features. We hypoth-
esized that this phenomenon would be reflected in an
increase in a novel measure of cortical entrainment to
speech-specific phonetic features (FS–S). This hypothesis
turned out to be partially supported by our data, which
exhibited two top-down effects of P. The first effect was in
line with our hypothesis and took the form of a positive
correlation between our neural measure and perceived
clarity across subjects. The second, post hoc effect, ran
counter to our hypothesis and took the form of an overall
reduction in EEG prediction accuracy for the P stimuli.

Previous research has failed to find any effect of per-
ceived speech intelligibility on low-frequency cortical
tracking of the speech envelope using a perceptual pop-
out task (Millman et al., 2015; Baltzell et al., 2017). This is
consistent with our findings in that we saw no correlation
between perceived clarity and tracking of low-level
acoustics (via the S model). It was only by using differen-
tial model performances as our index (FS–S) that we were
able to isolate processing at the phonetic-feature level
and reveal a relationship. This points to a concern about
relying on envelope tracking as a measure of speech
processing (Obleser et al., 2012). Specifically, it is highly

likely that such a reliance leads to neural indices that
reflect multiple, distinct functional processes (Ding and
Simon, 2014), making it difficult to determine to what
extent the indices reflect speech-specific activity. This
might explain why there has been a lack of consistency
across studies aimed at examining the effects of speech
intelligibility on neural measures of envelope tracking
(Howard and Poeppel, 2010; Peelle et al., 2013; Ding
et al., 2014). We suggest that our approach may represent
one way of partially disentangling the multiple processes
that must be active during natural speech perception.

The idea that our approach could allow us to distinguish
between different levels of hierarchical processing may
also explain the apparent contrast between our results
and recent ECoG work showing changes in spectrotem-
poral tuning in auditory cortex using a very similar para-
digm (Holdgraf et al., 2016). The results of that study
might suggest that we should have seen changes in our S
model performance as a function of P, something that we
did not observe. While we originally hypothesized that our
paradigm should lead to the strongest effects at the
phonetic-feature level, there is no obvious reason why
top-down information could not penetrate further down
the hierarchy to affect the acoustic encoding of speech.
So why do we not see it in the S model? There are several
possible reasons. It may be that there is a dissociation
between the information carried by high-� in the ECoG
data (Holdgraf et al., 2016) and by our low-frequency
EEG. Or it may be that the lower SNR of EEG makes it
difficult to see what may only be subtle effects in the S
model. Another possibility, though, is that the spectro-
temporal tuning changes in the superior temporal gyrus
(STG) reported by Holdgraf et al. (2016), may actually
reflect changes in the encoding of categorical phonetic
features. As we discuss above, there is undoubtedly a lot
of redundancy between acoustic and phonetic-feature
representations. But also it has been suggested that STG
may be a transitional stage, early enough to still encode
acoustic features of speech but high enough to exhibit
response selectivity to feature combinations and encod-
ing of categories (Mesgarani et al., 2014; Shamma, 2014).
So, while we cannot be conclusive on this point, it may be
the case that our approach has allowed for a finer-grained
analysis in terms of the hierarchical stages that are af-
fected by prior information.

While our results indicate that P affects the cortical
encoding of speech-specific features, it remains unclear
how this effect comes about. One possibility is that top-
down prior information directly impacts lower-level sen-
sory processing at the acoustic and phonetic encoding
stages, leading to enhanced perceptual clarity. This inter-
pretation is in line with ECoG recordings in STG that
showed that phonemic restoration of missing speech can
be predicted by specific neural activity patterns (Leonard
et al., 2016). Another possibility is that our effects may be
more indirectly driven by increases in attention due to the
perceptual enhancement. Future work will aim to examine
this by adding controlled attentional manipulations and by
quantifying the causal impact of frontal signals on our
auditory cortical measures, as has been done for enve-
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lope tracking (Park et al., 2015) and event-related re-
sponses (Sohoglu et al., 2012).

The effects of P discussed here emerged only in the
�-band of the EEG. This is in line with a current view
suggesting that �- and high-frequency activity (�40 Hz)
are reliable indicators of perceived linguistic representa-
tions, while �-band activity may primarily reflect the anal-
ysis of the acoustic features of speech (Kösem and van
Wassenhove, 2016). Indeed one study, in particular, ex-
amined the cortical tracking of vocoded speech in back-
ground noise and found that �-band tracking correlated
with speech recognition scores across subjects (Ding
et al., 2014), a result that corresponds very nicely with our
neural-behavioral correlation. However, the specificity of
our effects to the �-band also appears to run counter to
other studies examining the relationship between cortical
tracking of vocoded speech and intelligibility (Peelle et al.,
2013). That study reported significant differences be-
tween the cortical tracking of intelligible and unintelligible
(vocoded) speech in the �-band. That said, the authors of
that study reported no correlation between their behav-
ioral measures of intelligibility and their �-band tracking
indices. In addition, they did not control for the fact that
their intelligibility manipulation (vocoding) covaried with
the amount of sensory detail in their stimuli, an issue that
we have attempted to address and that has been shown
to be important in their more recent work (Blank and
Davis, 2016). So it is possible that their �-band effects
actually reflect something other than intelligibility and,
therefore, that they do not in fact conflict with our findings.
Future work including intelligibility manipulation with mul-
tiple levels of strength will be needed to more directly
compare our finding with the current literature.

Our results suggest the emergence of two effects of
perceptual pop-out. This is consistent with previous stud-
ies suggesting that P may produce counteracting effects
(e.g., Tuennerhoff and Noppeney, 2016). One view is that
predictions increase the perceived clarity by inducing a
better synchronization of the cortical responses to speech
(Peelle et al., 2013), which would produce larger cortical
entrainment measures. Along the same lines, it has been
proposed that increased entrainment measures may re-
flect the activation of higher-order areas that would have
been “inactive” or less responsive when perceived clarity
was degraded (Davis and Johnsrude, 2003; Peelle and
Davis, 2012; Tuennerhoff and Noppeney, 2016). Both of
these ideas are consistent with our positive neural-
behavioral correlation across subjects. On the other hand,
predictive coding theories assert that P of an upcoming
stimulus should suppress the measured cortical re-
sponses, as those responses are proposed to represent
the error between what is predicted and the bottom-up
sensory input (Friston, 2005; Clark, 2013). And this would
be consistent with the overall suppression we see in our
neural index of phonetic-feature encoding.

While the neural-behavioral correlation we report was in
line with our initial hypothesis, we did not anticipate the
overall suppression of the neural index FS–S. However,
the latter result is consistent with the late suppression in
left STG shown by Sohoglu et al. (2012) and in line with

predictive coding theories. Indeed, because of our exper-
imental design, the stimulus repetition for P trials may
contribute to this suppressive phenomenon. On the one
hand, it has been hypothesized that such suppressive
effects are automatic and due to stimulus-induced neural
adaptation (Grill-Spector et al., 2006). On the other hand,
the suppression may be a consequence of top-down
predictions and could be explained via the theory of
predictive coding (Summerfield et al., 2008; Todorovic
et al., 2011). Research on repetition suppression usually
involves short, isolated auditory stimuli (e.g., tones), which
are very different from the 10-s sentences used in the
present study. As such, we are inclined to tentatively
suggest that repetition suppression and adaptation will
not have played a major role in our findings, but rather that
our suppression effects are likely a consequence of pre-
dictive coding. Indeed a review of predictive coding the-
ory has proposed that there may exist two distinct units
within our sensory processing hierarchies: representa-
tional/state units and error units (Friston, 2010; Hohwy,
2013). And this idea fits well with our dual effects. It may
be the case that activity from representational units in
deeper cortical layers is increased with P in our experi-
ment, while activity from error units in more superficial
layers is suppressed. Future work involving a more bal-
anced factorial design may be able to more clearly
separate these two effects. In particular, it would be
interesting to manipulate both the strength and validity of
predictions, and the level of speech degradation, so as to
be able to disentangle the effects of prediction and pre-
diction error on our tracking measures. This type of design
has been used before to show, not only changes in
evoked activity, which is what likely what our �/� predic-
tions are capturing, but also how those changes relate to
beta and gamma oscillations within a discrete, multisen-
sory speech paradigm (Arnal et al., 2011). The ensuing
results supported the notion that beta activity reflects
top-down predictions, while gamma power carries infor-
mation about prediction errors. In the context of continu-
ous speech, it would be very interesting to see if the
relationship between our evoked tracking measures and
oscillatory activity fluctuates as a function of the strength
and validity of predictions, and to examine any such
relationship using source-localized connectivity ap-
proaches and/or dynamic causal modeling (Friston et al.,
2003). We examined the model weights of the various
TRFs in an effort to determine what specific processes
might be driving our EEG prediction accuracy effects (Fig.
4). The most notable finding was that there appeared to
be differences between the C, P, and NP models in the
vowel-based features of the F model TRF. We think this
makes good sense when comparing the C condition with
the two vocoded conditions as vowels are primarily de-
fined by their spectral content, which is what is lost by
noise vocoding. But, importantly, a small number of time
points showed differences in vowel-related activity be-
tween NP and P, which may reflect some kind restoration
of vowel processing with prior information in the P con-
dition. We intuitively feel that the restoration of vowel
processing with prior information makes sense given the
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nature of the information lost in noise vocoding. That said,
these effects were not robust to correction for multiple
comparisons as they showed a high-degree of variability
across subjects. This, combined with the likely counter-
acting effects of increased clarity and reduced prediction
error make it impossible for us to be too definitive on this
point. Finally, we saw interesting qualitative similarities
between the TRFs for “place of articulation” and “voicing”
between the P and C conditions, suggesting that these
may also be interesting targets for future research in
terms of which features are restored with prior informa-
tion.

In summary, we contend that the present work provides
an isolated quantitative measure of the cortical encoding
of speech-specific features. This measure, here referred
to as FS–S, was shown to correlate with the behaviorally-
measured perceived clarity of degraded speech. We pre-
viously suggested that this measure might index the
cortical encoding of phonetic features, which has formerly
been associated with the STS (Hickok and Poeppel, 2007;
Overath et al., 2015). And, interestingly, a recent fMRI
study has pointed to a specific role for the STS in under-
pinning the improved perception of degraded speech that
comes about with P (Blank and Davis, 2016). In particular,
multivariate BOLD analysis showed interacting effects of
sensory detail and prior information in STS. While it is
difficult to definitively relate these effects to our study, the
fact that our data suggests the possibility of two counter-
acting mechanisms (overall suppression and between-
subject increase of FS–S), leads us to speculate that the
FS–S index reflects activity, at least partially, from STS. In
the opposite direction it also provides a link between
those fMRI findings and the low-frequency cortical en-
trainment phenomenon.
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