Skip to main content
. 2018 Mar;13(3):408–409. doi: 10.4103/1673-5374.228715

Figure 1.

Figure 1

Frequency adaptation paradigm in a STN-GPe Oscillator.

A network of STN and GPe cells generates coupled oscillation due to PD. These oscillations are measured through LFPs (yellow electrode) and filtered by a damped harmonic oscillator defining the feedback control variable. The frequency of stimulation is then adapted based on the amplitude of oscillations. High and low amplitudes of the filtered and shifted LFP require HFS and LFS, respectively. The new stimulation signal with adapted frequency is then applied to the centric point of the STN population (grey electrode) for better desynchronization. The HFS-LFS mixture in DBS signal attains lower battery usage. STN: Subthalamic nucleus; GPe: globus pallidus externa; LFP: local field potential; HFS: high frequency stimulation; LFS: low frequency stimulation; PD: Parkinson’s disease.