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ABSTRACT

Control of messenger RNA (mRNA) stability is an important aspect of gene regulation. The gold standard for measuring mRNA
stability transcriptome-wide uses metabolic labeling, biochemical isolation of labeled RNA populations, and high-throughput
sequencing. However, difficult normalization procedures have inhibited widespread adoption of this approach. Here, we
present DRUID (for determination of rates using intron dynamics), a new computational pipeline that is robust, easy to use,
and freely available. Our pipeline uses endogenous introns to normalize time course data and yields reproducible half-lives,
even with data sets that were otherwise unusable. DRUID can handle data sets from a variety of organisms, spanning yeast to
humans, and we even applied it retroactively on published data sets. We anticipate that DRUID will allow broad application of
metabolic labeling for studies of transcript stability.
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INTRODUCTION

A critical component in controlling gene expression, RNA
decay is essential for nearly all biological processes, from early
development to inflammatory responses (Giraldez et al.
2006; Tadros et al. 2007; Brooks and Blackshear 2013). How-
ever, transcriptome-wide measurements of mRNA half-lives
have long been challenging and represent a major barrier for
broad investigations of howmRNA stability is regulated. One
strategy has been to shut off transcription, thereby repressing
synthesis of all transcripts. In Saccharomyces cerevisiae, these
experiments typically involve using a temperature-sensitive
mutant of RNA polymerase II (Herrick et al. 1990; Grigull
et al. 2004; Presnyak et al. 2015), and work in mammalian
cell lines has predominantly relied upon drugs that target
RNA polymerases, such as actinomycin D and α-amanitin
(Ross 1995; Bensaude 2011). Each of these treatments places
substantial stress on the cell and can alter the stability and lo-
calization of numerous transcripts, as well as broader pheno-
types like cell growth (Bensaude 2011; Sun et al. 2013;
Geisberg et al. 2014).
Metabolic labeling has emerged as a powerful alternative

strategy for determining RNA stabilities under more physio-
logical conditions (Ross 1995; Rabani et al. 2011; Tani et al.

2012; Neymotin et al. 2014; Duffy et al. 2015). This approach
uses nucleobase or nucleoside analogs, such as 4-thiouridine
(4SU), 5-bromouridine, or 5-ethynyl uridine, all of which al-
low subsequent isolation of labeled RNA populations (Rabani
et al. 2011; Tani et al. 2012; Paulsen et al. 2013; Imamachi et al.
2014; Neymotin et al. 2014; Duffy et al. 2015). The selected
RNA is then quantified, often by high-throughput sequenc-
ing. Several experimental variations of metabolic-labeling
methods have been previously described (Munchel et al.
2011; Tani et al. 2012; Imamachi et al. 2014; Neymotin
et al. 2014; Paulsen et al. 2014; Herzog et al. 2017). Onemeth-
od uses an approach-to-equilibrium strategy (Fig. 1A). Here,
cells are harvested after increasing times of incubation with
the analog. Over the time course, transcript abundance of the
labeled population approaches steady-state levels. Because the
rate of this approach is determined by transcript stability,
thesemeasurements can be used to infer half-lives (Greenberg
1972; Ross 1995; Neymotin et al. 2014).
However, metabolic labeling has been used with mixed

success for a number of reasons. First, although approach-
to-equilibrium experiments have been successfully used to-
gether with microarrays (Friedel et al. 2009; Tippmann
et al. 2012; Duan et al. 2013), RNA-seq–based quantitation
and analysis is more challenging due to the inherent compo-
sitional nature of high-throughput sequencing (see below).
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that are not commercially available, but these are essential,
especially in the case of quantitation using RNA-seq. Third,
the resultant data are complicated and less easily analyzed
than shut-off experiments whose results can be fit to simple
exponential decay models. Thus, despite the clear benefits of
metabolic labeling, RNA polymerase inhibitors remain much
more broadly used (Burow et al. 2015; Kumagai et al. 2016;
Mauer et al. 2016; Ayupe and Reis 2017).

Here, we describe DRUID, a computational method for
determining transcript half-lives on a transcriptome-wide
scale using metabolic labeling. By normalizing to intron-
mapping reads, our method allowed us to determine
mRNA stabilities with higher reproducibility and ease than
other methods. Because DRUID makes use of endogenous
normalization standards, it can be used with any approach-
to-equilibrium labeling and purification approach. Our re-
sults also suggest that variation between replicates in meta-

bolic labeling experiments is partly due to technical
differences that can be overcome through the use of these in-
ternal standards. Underscoring this conclusion, DRUID can
also rescue poorly behaving, and previously unusable, data
sets, and can even be applied to data sets from species with
few introns, such as S. cerevisiae. Finally, we have developed
a computational package that is publicly available to enable
broader use by the community.

RESULTS

The conceptual underpinnings of metabolic labeling
and approach-to-equilibrium kinetics

The approach-to-equilibrium strategy relies upon incorpora-
tion of a nucleotide analog into nascent transcripts so that,
with increasing incubation periods, the fraction of transcripts
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FIGURE 1. Conceptual underpinnings of the approach-to-equilibrium method. (A) Representation of the approach-to-equilibrium experimental
method. Cells are incubated with 4SU for increasing amounts of time. Isolated RNA is then biotinylated in vitro and purified using streptavidin.
The eluate is then prepared for high-throughput RNA sequencing. (B) Representation of typical RNA-seq results. Reads for each gene represent a
fraction of the total library, which changes through time, depending on individual synthesis and decay rates as well as overall transcription levels.
Representative results are shown for an unstable transcript (pink), a stable transcript (blue), and a spike-in (purple). (C) Simulation of abundances
during an approach-to-equilibrium experiment for the transcriptome (top) and individual transcripts (bottom), scaled to the total abundance of the
transcriptome (top) or the total abundance of an individual transcript (bottom) when labeling starts. (Left) As cells are incubated longer with 4SU, the
labeled RNA population increases at a rate sufficient to replace the unlabeled population and for cell growth. The unlabeled population for unstable
transcripts (pink) necessarily decreases faster than for stable transcripts (blue). (Center) Once the RNA is extracted, spike-ins are added at a constant
ratio to the total amount of RNA, and information about cell growth is lost. (Right) After purification, the ratio of spike-in to labeled sample behaves
stereotypically with a rapid decrease over the initial time points and convergence to an asymptote, which represents the ratio of the RNAs in the
unpurified sample. Note that at early time points, unstable transcripts represent a larger fraction of the library than their eventual steady-state ratios.
(D) Simulation of normalization strategies. The pie charts (from B) are normalized to spike-in levels to calculate the relative abundance of the entire
transcriptome or specific transcripts, as appropriate. These measurements can then be growth-corrected, and, using a bounded growth equation, half-
lives can be calculated. Note that correcting for growth has a larger effect on stable transcripts than on unstable ones.
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labeled increases until steady state has been reached. The
RNA-seq readout of metabolic-labeling experiments can be
envisioned as a series of pie charts through time with each
slice representing the relative proportion of reads mapping
to each transcript (Fig. 1B). Unlike most RNA-seq experi-
ments, where only a handful of transcripts will change in
abundance, during metabolic labeling experiments, the rela-
tive and absolute abundance of every transcript will change
over the experiment (Fig. 1C). For an individual transcript,
its relative abundance is determined by synthesis and decay
rates, but the absolute abundance of the total labeled popula-
tion increases with longer exposure to the nucleotide analog
at a rate sufficient to replace degraded, unlabeled RNA as well
as to allow for cell growth (Fig. 1C, left panels). Determining
transcript half-lives requires taking both classes of behaviors
into account.
The current solution uses exogenously added spike-ins to

convert relative RNA-seq measurements into absolute mea-
surements of RNA abundance (Fig. 1C, middle panels).
Typically, spike-ins are added to the harvested RNA from
each time point prior to biochemical purification, and infor-
mation about growth rate is necessarily lost at this step.
Because the proportion of spike-ins to the total RNA sample
remains constant, once the labeled population has been puri-
fied in vitro, the proportion of spike-ins decreases over time
while that of the labeled sample increases. These ratios ap-
proach that in the original, unpurified sample (Fig. 1C, right
panels). Individual transcripts will reach equilibriumwith dif-
fering kinetics, determined entirely by their stability, with the
most unstable transcripts reaching equilibrium the fastest. To
calculate half-lives, the RNA-seq libraries are normalized to
the spike-ins and further corrected for cell growth. A bounded
growth equation is used to infer the decay rate of the unlabeled
RNA population (Fig. 1D). Thus, the normalization scheme
influences both the magnitude of the calculated half-lives as
well as the number of genes for which half-lives can be deter-
mined (because poor normalization will give behavior that is
not easily fit by a bounded growth equation).
Spike-ins are thus absolutely essential for determining

half-lives using metabolic labeling. Although there are com-
mercially available RNA-seq spike-ins (such as the ERCC
set), these lack nucleotide analogs, such as 4SU, and so cur-
rently each laboratory in vitro transcribes their own stan-
dards, as needed (Imamachi et al. 2014; Neymotin et al.
2014). However, there is no broadly accepted standard for
these spike-ins, in terms of the number of transcripts, their
nucleotide make-up, or length, and variations in spike-in
make-up can have large effects on the eventual half-life
determination.

Normalizing to exogenous whole organism spike-ins
allows for the calculation of RNA half-lives

We identified twomajor barriers for the acceptance of the ap-
proach-to-equilibriummethod: the cost, difficulty, and tech-

nical variation associated with current spike-ins; and the
computational complexities for analyzing subsequent data
sets. Our goal was to develop a method easy enough for wide-
spread use of metabolic labeling, and so we set about reduc-
ing these barriers.
Because of the variability inherent in using a handful of in

vitro transcribed spike-ins, we initially opted to use RNA
from two organisms that differed from the species being in-
terrogated. For example, in experiments with HEK293 cells,
we used 4SU-labeled RNA from Drosophila S2 cells (for nor-
malization) and unlabeled S. cerevisiae RNA (to determine
the enrichment obtained during the purification). The Dro-
sophila and S. cerevisiae genomes differ sufficiently enough
from the human one that even short reads can be unambig-
uously assigned (Supplemental Fig. S1A). We routinely ob-
served 100-fold enrichment of 4SU-labeled Drosophila
RNA compared to unlabeled yeast RNA, indicating that
<1% of the signal in the selected population was due to non-
specific background (Fig. 2A). Subsequent analysis indicated
that theDrosophila S2 RNAwas less labeled than the HEK293
RNA (Supplemental Fig. S1B,C), and so these enrichment
values likely represent a lower bound.
As incubation with 4SU increased, samples showed re-

duced similarity in the abundance of human mRNAs (Fig.
2B). Consistent with most transcripts having reached equilib-
rium by the last time point, the unpurified sample was
most similar to the 24 h one and least similar to the 1-h sam-
ple (rs = 0.98 and rs = 0.84, respectively). In contrast, reads
mapping to theDrosophila genome were unaffected by differ-
ent harvesting times (Fig. 2C; rs = 0.92 to 0.97).
Longer 4SU-incubation times also resulted in a higher

fraction of reads mapping to the human genome and a lower
fraction to the Drosophila genome (Fig. 2D). Although the
behavior of individual transcripts from the Drosophila
spike-in varied, the sum of all reads mapping to the Droso-
phila genome was resistant to outliers (Fig. 2E). We normal-
ized the human-mapping reads by the sum of Drosophila-
mapping reads, fit a bounded-growth equation to the data,
and corrected for a 24-h doubling time. Unlike other ap-
proaches (Dölken et al. 2008; Neymotin et al. 2014), we did
not rely upon the unselected sample for calculating half-lives,
and thus our calculations were unaffected by differential se-
lection biases (such as that reported for longer transcripts
[Duffy et al. 2015]).
We calculated half-lives for 12,890 genes in HEK293 cells

(Fig. 2F). There was wide variation in transcript stability in
these cells, with the most unstable transcript (ID1) having a
half-life <15 min, and others having half-lives longer than
the cell cycle. For these long-lived transcripts, cell growth
and dilution make a major contribution to their dynamics.
The half-lives were similar to those we generated with the
transcription inhibiters actinomycin D and α-amanitin
(Supplemental Fig. S1E,F; rs = 0.65 and 0.62, respectively)
and with those previously reported (rs = 0.62 [Tani et al.
2012]). The half-lives generated with metabolic labeling
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were generally consistent between biological replicates in their
rankorder, but less so inmagnitude (Fig. 2G; rs = 0.61 vs. rp =
0.52): in particular, the longest-lived genes varied the most in
magnitude between replicates.

In these experiments, we had included six time points in
addition to steady-state measurements. However, we hypoth-
esized that not all of these time points would be necessary to
determine stabilities, and using fewer samples could reduce
the associated library preparation and sequencing costs. We
repeated our analysis, but this time omitting individual
time points. With the exception of the 24 h time point, the
calculated half-lives were robust to the omission of a single
time point (Supplemental Fig. S1F; rs = 0.95 to 1 vs. rs =
0.89). The 24-h time point is likely critical for calculating
half-lives, especially for more stable transcripts, because it
represents near-equilibrium measurements. Surprisingly, us-
ing only three time points (1, 8, and 24 h) gave similar mea-
surements as with all the time points (Fig. 2H; rs = 0.94).
Although calculations become more robust with more time
points, these three represent the minimum requirement for
calculating half-lives in human cells using the approach-to-
equilibrium method.

Internal short-lived RNA species can be used
to determine mRNA stabilities

In the process of obtaining these half-life measurements, we
generated flawed data sets that resulted from insufficient
spike-in reads or inconsistent labeling bias, each of which
gave a characteristic signature (Supplemental Fig. S2A,B).
Such data sets would typically be excluded from downstream
analysis, but we wondered if they could be rescued with alter-
native normalizationmethods. We hypothesized that because
unstable endogenous RNA species quickly reach equilibrium,
they could perform a role similar to that of the labeled spike-
in RNA.
Consistent with previous observations (Gaidatzis et al.

2015), we noted that introns were abundant in our libraries,
especially at the earliest time points, where theymade up 19%
of the total reads (Fig. 3A). As with the Drosophila spike-ins,
the overall proportion of reads mapping to introns exhibited
a time-dependent decrease (Fig. 3A), and the relative abun-
dance of individual introns did not show a large time-depen-
dent decrease in similarity (Supplemental Fig. S2C; rs = 0.90–
0.95), indicating that equilibrium levels were generally

A
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FIGURE 2. Exogenous, whole-organism spike-ins can be used to calculate transcript half-lives. (A) Enrichment of 4SU-labeled transcripts. Plotted
is the mean enrichment of Drosophila S2 RNA compared to yeast RNA for purified 24-h samples (red) relative to unpurified (black) samples for
two biological replicates. The black line represents range. (B) Comparisons of human transcript abundance between samples. A heatmap is plotted
comparing the abundance of human transcripts in each purified sample, as well as the unpurified (UP) sample. Values in each box are Spearman
correlations. (C) Comparisons of fly mRNA abundances between samples. As in B, except for transcripts encoded in the Drosophila genome. (D)
Ratios of fly to human reads through the time course. The fraction of reads mapping to the human (blue) or Drosophila (purple) genome is plotted
for each time point. (E) The behavior of individual Drosophila genes. Plotted is relative abundance for each of the top 10 most highly expressed
genes (dashed lines) and the sum of reads mapping to these genes (in red). (F) Distribution of half-lives in human cells. The histogram shows the
distribution of half-lives in human cells for 12,890 genes. (G) Comparison of half-lives between biological replicates. A scatterplot comparing hu-
man transcript half-lives for two biological replicates. The red dashed line represents the x = y line. (H) Half-lives calculated using only three time
points. A scatterplot comparing half-lives calculated by using all time points or only three (1, 8, and 24 h). The red dashed line represents the x = y
line. See also Supplemental Figure S1.
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reached before the first time point. We thus calculated half-
lives instead normalizing to intron reads and found signifi-
cant similarity between replicates (Supplemental Fig. S2D;
rs = 0.77).

However, we noted that (i) these half-lives were shorter
than those determined with the exogenous spike-ins
and (ii) not all introns had the same dynamics (Fig. 3B;
Supplemental Fig. S2E). We reasoned that improper

A B C
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FIGURE 3. DRUID uses intron measurements to calculate transcript half-lives. (A) Behavior of reads mapping to introns during the 4SU-labeling
time course. The fraction of reads mapping to exons (blue) or introns (purple) is plotted for each time point in replicate 1. (B) Dynamics of intron
abundance. Individual introns expressed in HEK293 cells were clustered by their behavior over the 4SU time course in replicate 1. Those introns
showing the expected decrease (marked by the purple line) were used in downstream analyses. (C) Comparison of half-lives calculated using exog-
enous spike-ins or DRUID. A scatterplot comparing half-lives in HEK293 cells calculated with exogenous spike-ins or with introns (DRUID). The red
dashed line represents the x = y line. (D) Reproducibility of human transcript half-lives calculated using DRUID. A scatterplot comparing half-lives
determined using DRUID for two biological replicates. The red dashed line represents the x = y line. (E) Reproducibility of transcript half-lives in
NIH3T3 cells calculated using DRUID, otherwise as in D. (F) Comparison of HEK293 and NIH3T3 transcript half-lives. A scatterplot comparing
mean half-lives in HEK293 and NIH3T3 cells. (G) Comparison of DRUID-calculated half-lives with published half-lives. A scatterplot comparing
the half-lives in NIH3T3 cells calculated with DRUID with those from Schwanhäusser et al. (2011), otherwise as in D. (H) Comparison of
DRUID-calculated half-lives with published half-lives. A scatterplot comparing the half-lives in NIH3T3 cells calculated with DRUID with those
from Herzog et al. (2017), otherwise as in D. (I) Comparison of human and mouse mRNA stabilities. A scatterplot comparing the half-lives in
HEK293 cells with those in NIH3T3 cells, otherwise as in D.
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annotation might affect our calculations, and so we clus-
tered introns based on their behavior over the time-course.
We then manually chose the set with a time-dependent
decrease in abundance, as would be expected for unstable
RNA species. In our first replicate, this cluster contained
1045 introns; another 1564 introns were expressed at suffi-
cient levels, but did not show evidence of being highly un-
stable. These unexpectedly long-lived introns were likely
included in the eventual mature transcript, either due to in-
tron retention or alternative splicing (Braunschweig et al.
2014), or were misannotated.

We next used the sum of all reads mapping to the well-be-
having introns (Supplemental Table S1) and calculated half-
lives for 12,673 genes in a pipeline we termed “DRUID” (for
determination of rates using intron dynamics). Unlike with
exogenous spike-ins, DRUID does not require correction
for cellular growth. These half-lives again correlated with
those obtained by normalizing to exogenous spike-ins (Fig.
3C; rs = 0.99), and now they were only slightly shorter, indi-
cating that improper intron annotation had impacted the ab-
solute magnitude of our original, intron-based calculations
(Supplemental Fig. S2E,F).

DRUID yielded half-lives significantly more similar between
replicates than those we obtained earlier with exogenous
spike-ins (rs = 0.77 vs. rs = 0.61; Fisher’s R-to-z transforma-
tion, P < 10–50). Moreover, the skew that we had observed be-
tween replicates for long-lived transcripts was not apparent
when we used DRUID (Fig. 3D cf. Fig. 2G), indicating that
DRUID gives reproducible rank order and magnitudes for
mRNA half-lives (rs = 0.77 vs. rp = 0.74). Intron normaliza-
tion likely captures in vivo experimental variation better
than the exogenous spike-ins and is thus better equipped to
normalize for these differences. When we generated half-lives
using only three time points (1, 8, and 24 h), DRUID gave
similar results (Supplemental Fig. S2G; rs = 0.92) and was
consistent between replicates (rs = 0.73).

We next used a previously published set of human cell line
half-lives (Tani et al. 2012) to benchmark the four different
sets of half-lives we had determined: namely, transcriptional
inhibition with actinomycin D or α-amanitin, metabolic la-
beling with normalization to exogenous standards, and met-
abolic labeling with normalization to endogenous standards
(i.e., DRUID). Of the four sets, half-lives determined by met-
abolic labeling and normalization to exogenous standards
performed the worst when compared to the benchmarking
data set (Supplemental Fig. S3A; rs = 0.46; Fisher’s R-to-z
transformation, P < 10–16), and half-lives determined by ei-
ther transcriptional inhibition method were significantly
more correlated (Supplemental Fig. S3B,C; rs = 0.56–0.58;
Fisher’s R-to-z transformation, P < 10–16). However, despite
being derived from the same raw data sets as those for exog-
enous standards, DRUID-calculated half-lives outperformed
the other three sets and were significantly more correlated
with the benchmarking data set (Fig. 3E; rs = 0.68; Fisher’s
R-to-z transformation, P < 10–26). Similarly, DRUID-calcu-

lated half-lives performed significantly better than exoge-
nous-standard–derived half-lives when each was compared
with half-lives determined by transcription inhibition
(Supplemental Fig. S3D,E; Fisher’s R-to-z transformation,
P < 10–100). Thus, we conclude that DRUID represents a
powerful computational method for calculating half-lives.

Orthologous mouse and human genes have similar
mRNA half-lives

To further confirm the applicability of our method, we used
DRUID to calculate mRNA half-lives in NIH3T3 cells
again using a restricted intron set (Supplemental Table S2).
We obtained measurements for 10,705 genes with high sim-
ilarity between replicates (Fig. 3E; rs = 0.77). As with our
HEK293 experiments, DRUID performed better than using
exogenous spike-ins for normalization (Supplemental Fig.
S2E; Fisher’s R-to-z transformation, P < 10–30). These values
were similar to those previously calculated (Supplemental
Fig. S2F–H; rs = 0.66 [Schwanhäusser et al. 2011]; rs = 0.61
[Herzog et al. 2017]) although using our method we were
able to determine half-lives for a larger number of genes
(<6000 vs. 10,705).
We next compared mRNA half-lives and equilibrium lev-

els of orthologous human and mouse genes (Fig. 3F;
Supplemental Fig. S2G). Surprisingly, given that these two
cell lines are from different organisms and derived from dif-
ferent cell types, we found a high correlation between RNA
abundance and half-lives between mouse and human ortho-
logs (rs = 0.57 and 0.63, respectively). Thus, although some
transcripts, such as MBNL3, display striking differences in
stability between HEK293 and NIH3T3 cells (26 h vs. 36
min, respectively), many conserved transcripts are degraded
at similar rates.

DRUID can retroactively rescue data sets

Having established that DRUID can be used on high quality
data sets, we finally asked whether this normalizationmethod
could rescue previously unusable data sets. We focused on
two data sets: one with too few spike-in reads and the other
with abnormal spike-in behavior (Supplemental Fig. S2A,
B). In both cases, this behavior of the exogenous spike-ins re-
sulted in normalized dynamics for endogenous genes that
only poorly fit to the bounded growth equation: For the first
data set, we were unable to calculate any half-lives; for the
second, we obtained half-lives for only 3987 genes. Although
measurements from the second set did correlate with other
replicates (Fig. 4A, rs = 0.51), we observed a strong skew for
long-lived transcripts.
Strikingly, for both data sets, intron normalization was

able to overcome both types of technical difficulties, and
we generated half-lives for over 10,000 genes. (As noted
earlier, the number of genes for which half-lives can be
determined is affected by normalization strategies.) These
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half-lives correlated well with our other data sets (Fig. 4B,C;
rs = 0.63–0.75). Importantly, we no longer observed the
difference in half-life magnitude for stable transcripts
that we saw with exogenous normalization (Fig. 4A vs. Fig.
4B). Thus, DRUID can be used for otherwise recalcitrant
data sets.
One potential drawback of intron normalization is its ap-

plicability to organisms with few introns, such as S. cerevisiae.
We thus applied DRUID to published data sets from budding
yeast (Neymotin et al. 2014). When we calculated half-lives
using the three exogenous spike-in transcripts originally in-
cluded in this experiment, RNA half-lives were correlated
(Fig. 4D; rs = 0.58). However, DRUID generated half-lives
that were significantly more correlated (Fig. 4E; rs = 0.72;
Fisher’s R-to-z transformation, P < 10–70) and for a larger
number of genes (3563 vs. 3981). We note that, irrespective
of the computational scheme, the magnitude of half-lives dif-
fered between these two experiments, suggesting that there
may be additional technical differences, such as labeling
bias, that cannot be completely accounted for by DRUID.
Thus, these results demonstrate that normalizing to introns
can be used on data sets not originally intended for
DRUID. Furthermore, DRUID is a robust and widely appli-
cable normalization method, appropriate even for organisms
with few introns.

DISCUSSION

Despite known and important issues in transcriptional shut-
off approaches, RNA polymerase inhibitors remain in com-
mon use for determining transcript stability. To enable wider
adoption of approach-to-equilibrium metabolic labeling
strategies, we developed DRUID, a computational method
that robustly calculates mRNA half-lives on a transcrip-
tome-wide scale. Although we initially envisioned using ex-
ogenous spike-ins for a normalization approach, we were
surprised that this framework was surpassed by intron nor-
malization. Despite using oligo(dT) selection to generate
our libraries, we found that introns were abundant in our
data sets; these reads are possibly derived from processing in-
termediates and are consistent with previous observations
(Gaidatzis et al. 2015). We found that intron-based normal-
ization was effective for all data sets we examined, irrespective
of the organism examined, even for data sets that were other-
wise recalcitrant. Our computational pipeline is publicly
available to enable wider use of the approach-to-equilibrium
strategy (see Materials and Methods).
Due to the wide use of 4SU-labeling followed by bio-

tinylation (Rabani et al. 2011, 2014; Neymotin et al. 2014),
here we have focused on data sets derived from approach-
to-equilibrium 4SU-labeling experiments. However, DRUID

A B C

D E

FIGURE 4. DRUID can rescue recalcitrant data sets. (A) Effect of poorly behaving data sets on transcript half-lives calculated with exogenous spike-
ins. A scatterplot comparing the half-lives in HEK293 cells calculated in one biological replicate and a recalcitrant data set with poorly behaving spike-
ins. The red dashed line represents the x = y line. (B) Comparison of transcript half-lives calculated with DRUID. As in A, except half-lives were cal-
culated using DRUID. (C) Comparison of half-lives calculated with DRUID. As in B, except for a second, recalcitrant data set, whose spike-ins be-
haved so poorly that no half-lives could be calculated using exogenous spike-ins. (D) Comparison of yeast half-lives calculated using exogenous spike-
ins, otherwise as in A. (E) Comparisons of yeast half-lives calculated using DRUID, otherwise as in A. See also Supplemental Figure S2.
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can be used with data sets from any approach-to-equilibri-
um labeling experiments and is agnostic to the specific bio-
chemical approach to purify labeled RNA. There are two
main requirements for DRUID, as there are with all ap-
proach-to-equilibrium strategies (Greenberg 1972; Ross
1995). First, the labeling reagent, such as 4SU, must be
readily taken up by the cell and incorporated into newly
synthesized transcripts at concentrations that do not have
negative physiological effects. Second, an underlying as-
sumption of metabolic labeling and DRUID is that the sys-
tem is at steady state. Thus, in its current form, DRUID
cannot be used to investigate scenarios where rates of syn-
thesis and decay change throughout the experiment. Of
course, biological processes, such as differentiation, are fre-
quently defined by changes in both mRNA transcription
and decay, and so an important next step will be to generate
experimental and computational methods that can monitor
dynamic systems while remaining accessible to the broader
community.

Given the success of DRUID for calculating half-lives, is
there any utility for including exogenous spike-ins? Although
in principle they are not required, in practice we still routine-
ly include them in our experiments for two reasons. First,
our exogenous spike-in strategy allows us to calculate the en-
richment of labeled RNA in each data set, thus confirming
that the purification has worked as expected. Second, and
more importantly, the exogenous spike-ins provide an inde-
pendent normalization scheme and thus a useful quality
control. Comparing between normalization schemes greatly
increases confidence in the calculated half-lives and is
particularly important when new cell types or systems are
being used.

MATERIALS AND METHODS

Cell lines and strains

Human HEK293 epithelial cells (ATCC CRL1573) were cultured in
Eagle’s minimum essential medium (EMEM) supplemented with
10% fetal bovine serum (FBS) and 1% penicillin–streptomycin sol-
ution. Murine NIH3T3 fibroblasts (ATCC CRL1658) were cultured
in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% donor calf serum (DCS) and 1% penicillin–streptomycin
solution. Both mammalian cell lines were cultured at 37°C in a
humidified incubator with 5% CO2. Drosophila melanogaster
Schneider 2 (S2) cells (Thermo Fisher Scientific R69007) were
cultured in ExpressFive SFMmedia (Thermo Fisher Scientific), sup-
plemented with 10% heat-inactivated FBS and 20mML-Glutamine,
at 28°C.

S. cerevisiae USY006 was grown in YPD liquid or plates at 30°C.
RNA was isolated using the standard hot phenol method
(Rissland and Norbury 2009). Synchronized populations of L1
C. elegans were grown on NGM plates for 60 h until adult staged.
Worms were washed off of plates with PBS buffer and resuspended
in ultrapure water. RNAwas extracted using TRI reagent (Molecular
Research Center), according to manufacturer’s instructions.

Metabolic labeling

For metabolic labeling experiments, cells were treated with 100 µM
4SU and harvested after 1, 2, 4, 8, 12, and 24 h. S2 cells treated
with 100 µM 4SU for 24 h were used for the generation of labeled
spike-ins. When harvesting adherent cells, cells were dislodged
with PBS and subjected to two PBS washes. S2 cells were pelleted
and subjected to two PBS washes. RNA was extracted using TRI re-
agent (Molecular Research Center), according to manufacturer’s
instructions.

Transcription shut-off experiments

HEK293 cells were treated with either 5 µg/mL actinomycin D or
50 µg/mL α-amanitin for 0, 1, 2, 4, 8, 12, and 24 h and were harvest-
ed as described above.

In vitro biotinylation and biotin–streptavidin
pull down

A 1 mg/mL solution of HPDP-biotin (Thermo Fisher Scientific) in
dimethylformamide was incubated at 37°C for 30 min. Of note, 40–
100 µg of RNA was combined with 20% w/w unlabeled yeast
RNA and 20% w/w 4SU labeled fly RNA (human RNA for fly sam-
ples) and 120 µL of 2.5× citrate buffer (25 mM citrate pH 4.5, 2.5
mM EDTA) in a total volume of 240 µL. A total of 60 µL of
HPDP–biotin solution was added, and the RNA was incubated for
2 h at 37°C, covered and shaken at 300 rpm. RNA was then phe-
nol–chloroform extracted and ethanol precipitated with 2 µL of
glycoblue (Life Technologies). The RNA pellet was resuspended in
200 µL of 1× wash buffer (10 mM Tris–Cl pH 7.4, 50 mM NaCl,
1 mM EDTA).

A total of 50 µL of MACS microbeads (Miltenyi Biotec) were in-
cubated with 48 µL of 1× wash buffer and 2 µL of yeast tRNA for
20 min at room temperature with rotation. MACS microcolumns
(Miltenyi Biotec) were washed with 100 µL of nucleic acid equilibra-
tion buffer (Miltenyi Biotec) and then five times with 100 µL of 1×
wash buffer. Beads were applied to the column in 100 µL aliquots
and washed five times with 100 µL of 1× wash buffer. Columns
were demagnetized and beads eluted with two 100 µL washes with
1× wash buffer, and columns were remagnetized. The 200 µL
bead solution was combined with RNA sample and rotated at
room temperature for 20 min. The sample was then applied to the
column in 100 µL aliquots. Columns were washed three times
with 400 µL of wash 1 buffer (10 mM Tris–Cl pH 7.4, 6 M urea,
10 mM EDTA) prewarmed to 65°C and then three times with
400 µL wash 2 buffer (10 mM Tris-Cl pH 7.4, 1 M NaCl, 10 mM
EDTA). RNA bound to the column was eluted with five washes of
1× wash buffer with 0.1 M dithiothreitol, and then ethanol precip-
itated with 2 µL of glycoblue.

RNA sequencing

Sequencing libraries were prepared using the TruSeq Stranded
mRNA Sample Preparation Kit (Illumina), according to manufac-
turer’s instruction manual (Rev. E), and sequenced at The Centre
for Applied Genomics (SickKids).
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Computational analysis: read mapping

Libraries were pooled and sequenced on an Illumina HiSeq 2500 to
give 50 bp single-end reads. RTA v1.18.54 or later was used for
base calling and quality scores, bcl2fastq2 v2.17 or later was used
to demultiplex samples and to convert reads to fastq format.
Library quality was assessed using FastQC v0.11.5 (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were trimm-
ed and clipped for Illumina adaptors using Trimmomatic v0.36
(Bolger et al. 2014) with the following options: LEADING:3
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36. Reads were
aligned to merged reference genomes (hg38 + sacCer3; hg38 +
dm6 + sacCer3; hg38 + dm6 + ce10; mm10 + dm6 + sacCer3) ob-
tained using the UCSC Table Browser (Karolchik et al. 2004; Rose-
nbloom et al. 2015) and kentUtils v302 using STAR version
2.5.2a_modified (Dobin et al. 2013). STAR was invoked with
default settings aside from outFilterMultimapNmax 10, outFilter-
MismatchNoverLmax 0.05, outFilterScoreMinOverLread 0.75,
outFilterMatchNminOverLread 0.85, alignIntronMax 1, and out-
FilterIntronMotifs RemoveNoncanonical.
Mapped reads were quantified using two different methods. First,

an in-house R script (v3.2.3) was used to select the longest tran-
script for every gene, using the GenomicFeatures (Lawrence et al.
2013), rtracklayer (Lawrence et al. 2009), and plyr packages as
well as packages from Bioconductor (Gentleman et al. 2004;
Huber et al. 2015). Any introns that overlapped with an exon in
any other isoform were removed. HTSeq 0.6.1p2 (Anders et al.
2015) was used to count reads mapping to introns and exons. In ad-
dition to HTSeq, an in-house intersection method was used to cal-
culate intron coverage, based on tools provided by the BEDTools
suite v2.26.0 (Quinlan and Hall 2010). Briefly, coverage was deter-
mined at the nucleotide level and subsequently averaged at the in-
tron level, providing finer quantitation than a simple count-based
approach. This quantitation method is available in the DRUID
GitHub repository and is the recommended method for down-
stream analysis with DRUID.

Computational analysis: half-life determination

All downstream analyses were performed using in-house R scripts
utilizing the follow libraries: scales, plyr, gplots, Hmisc, and limma
(Ritchie et al. 2015). Read counts were first filtered to require that
each gene had a minimum of one mapped read in all time points
with five or more mapped reads in at least one time point.
Transcriptomic reads were normalized to spike-ins.
For transcription inhibition experiments, half-lives were deter-

mined by fitting an exponential decay model to normalized data us-
ing nonlinear least squares. Exponential decay is described by N(t)
=N0e

−λt, whereN(t) is the amount of transcript remaining at time t,
N0 is the amount of a transcript at steady state, and λ is the tran-
script-specific decay constant. The transcript-specific half-life (hl)
can then be obtained with the simple equation, hl = ln(2)/λ.
For 4SU time courses, a bounded growth equation was fit using

weighted nonlinear least squares. Using the above notation, the
bounded growth equation can be written as N(t) =N0(1−e−(λ+γ)t),
where the additional term, γ, is the dilution due to growth and
can be calculated using the doubling time (δ) of the model under
study by the equation γ = ln(2)/δ.
In DRUID, introns were used for normalization. In order to

quantify intron abundance, introns were filtered such that the

mean coverage spanning the intron was 0.5 reads and clustered
based on their time-dependent expression profiles using k-means
clustering with four clusters. The cluster exhibiting behavior closest
to the expected nonincreasing time-dependent abundance was cho-
sen manually. Exon-mapping reads were then normalized to the
sum of all reads mapping to the well-behaved intron set. As before,
to calculate half-lives, a bounded growth equation was fit using
weighted nonlinear least squares. DRUID is available on GitHub:
https://github.com/risslandlab/DRUID. A list of human–mouse
orthologs was downloaded from Mouse Genome Informatics
(http://www.informatics.jax.org/).
For half-lives derived from other studies, we used the published

half-lives (Schwanhäusser et al. 2011; Tani et al. 2012; Herzog
et al. 2017) or, in the case of Neymotin et al. (2014), calculated
the half-lives using either exogenous normalization or DRUID, as
described above.

DATA DEPOSITION

Data generated in this study are available from the GEO, accession
number GSE99517.
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