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Autophagy is a highly conserved catabolic pathway that is
vital for development, cell survival, and the degradation of dys-
functional organelles and potentially toxic aggregates. Dysregu-
lation of autophagy is associated with cancer, neurodegenera-
tion, and lysosomal storage diseases. Accordingly, autophagy is
precisely regulated at multiple levels (transcriptional, post-
transcriptional, translational, and post-translational) to prevent
aberrant activity. Various model organisms are used to study
autophagy, but the baker’s yeast Saccharomyces cerevisiae con-
tinues to be advantageous for genetic and biochemical analysis
of non-selective and selective autophagy. In this Minireview, we
focus on the cellular mechanisms that regulate autophagy tran-
scriptionally and post-transcriptionally in S. cerevisiae.

Overview

In response to external environmental and internal homeo-
static cues, cells must efficiently and successfully adapt to
ensure survival during stress conditions. Macroautophagy/au-
tophagy is a highly conserved (from yeast to human) catabolic
mechanism of “self-eating” that is vital for homeostasis, devel-
opment, and the clearance of damaged or superfluous organ-
elles and protein aggregates, substrates that cannot be degraded
by the proteasome, the other major degradative pathway in
eukaryotic cells. Autophagy occurs in all eukaryotic cells (1),
underlying its importance. The classical morphological feature
of autophagy is the formation of the double-membrane struc-
ture termed the autophagosome. In most cells, basal autophagy
generally occurs at a low level but is markedly induced in
response to nutrient deprivation, pathogen infection, and other
forms of stress. Autophagic flux results in the fusion of the
autophagosome with the vacuole (in yeast or plants) or a lyso-
some (in mammalian cells). In yeast, vacuolar hydrolases
degrade the autophagic cargo. This degradation is followed by
efflux of the breakdown products for reuse, helping to safe-
guard cell survival particularly during starvation or low-energy
conditions.

When induced by nutrient deprivation or pharmacological
means, non-selective autophagy targets bulk cytoplasm for
uptake into the phagophore, the autophagosome precursor.
During selective types of autophagy, the phagophore sequesters
specific cargo (such as organelles or invasive pathogens)
through receptor-mediated interactions between selective
autophagy receptors and Atg8 (which is located on both sides of
the phagophore), and unique cargo-localized ligands, thereby
generally excluding bulk cytoplasm. In addition to receptor tar-
geting, specific cargos are further selected by proximity to the
expanding phagophore membrane (2). In yeast, under nutrient-
rich conditions, a biosynthetic form of selective autophagy, the
cytoplasm-to-vacuole targeting (Cvt)2 pathway, delivers resi-
dent hydrolases to the vacuole (3–6). Multiple forms of selec-
tive autophagy in yeast have been characterized, including
mitophagy (7, 8), pexophagy (9), reticulophagy (10, 11), ribo-
phagy (12), granulophagy (13), aggrephagy (14), nucleophagy
(11, 15), lipophagy (16, 17), and piecemeal microautophagy of
the nucleus/micronucleophagy (18, 19). Although not consid-
ered to be a selective type of autophagy, the degradation of bulk
RNA has also been described (20). At least in yeast, the recep-
tors utilized to target cargos are unique to the form of selective
autophagy that the cell is undergoing (5, 7, 8, 21). For further
discussion on the topic of selective autophagy, see Refs. 22, 23.

Autophagy is a highly complex and rigorously coordinated
process; at present, 41 unique autophagy-related (ATG) genes
have been identified in fungi, and many have homologs in
higher eukaryotes. Autophagy dysregulation is associated with
multiple human pathologies such as cancer, neurodegenera-
tion, microbial infection and lysosomal storage diseases. Thus,
autophagy must be strictly modulated to maintain an appropri-
ate level, as too much or too little can be deleterious to the cell.
Accordingly, eukaryotic cells have evolved mechanisms to
tightly control and coordinate autophagy at multiple levels
(transcriptional, post-transcriptional, translational, and post-
translational; see Fig. 1). In this Minireview, we focus on
autophagy regulation, particularly at the transcriptional and
post-transcriptional levels, in the yeast Saccharomyces cerevi-
siae. In addition to its high degree of conservation with other
systems, S. cerevisiae continues to be particularly advantageous
for genetic and biochemical analysis of non-selective and selec-
tive forms of autophagy.
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Autophagy is a dynamic process that requires constant fine-
tuning at multiple levels to maintain the appropriate timing of
induction and magnitude within the cell. Cells control the level
of the autophagic response largely by regulating the size and
frequency (i.e. number) of autophagosomes (24, 25). Here, we
will briefly describe the main phases of the autophagic process
and the machinery involved before further reviewing recently
published work on its transcriptional and post-transcriptional
regulation.

Autophagy in S. cerevisiae

There are five main stages of autophagy, including: 1) induc-
tion and nucleation of the phagophore membrane; 2) expan-
sion of the phagophore; 3) closure and maturation to form the
autophagosome; 4) autophagosome–vacuole fusion; and 5)
degradation/efflux of the breakdown products (see Fig. 2).
Briefly, in yeast, autophagy is typically stimulated through
nutrient deprivation (most commonly with nitrogen starva-
tion) or with the use of a pharmacological agent such as rapa-
mycin. Rapamycin treatment inhibits target of rapamycin
(TOR), a serine/threonine kinase and major negative regulator
of autophagy induction in yeast (26). In addition to TOR,
upstream nutrient sensors such as protein kinase A and Snf1
(the homolog of mammalian AMP kinase) integrate signals for
autophagy regulation (27). In yeast, the phagophore assembly
site (PAS) is the intracellular location of autophagosome for-
mation. At the PAS, Atg proteins assemble in a hierarchical
order. The first complex recruited to the PAS includes Atg1,
Atg13, and the Atg17–Atg31–Atg29 ternary subcomplex (28,

29). Next, Atg9 (along with Atg2 and Atg18) localizes to the
PAS (30). The phagophore, a dynamic cup-shaped membrane
structure, transiently envelops bulk cytoplasm or specific cargo.
This sequestration event is followed by expansion and closure
of the phagophore to form the mature autophagosome and
requires two conserved ubiquitin-like (Ubl) conjugation sys-
tems, which involve Atg12 and Atg8.

The Atg12 Ubl system includes Atg5, Atg7, Atg10, Atg12,
and Atg16 and leads to the formation of the heterotrimeric
complex Atg12—Atg5–Atg16, which may function as an
E3-like enzyme for the Atg8 conjugation system, although this
complex is not absolutely required for conjugation to occur
(31–34). The conjugation of Atg12 to Atg5 at the phagophore
occurs sequentially, requiring Atg7, an E1-like enzyme that
activates Atg12, and Atg10, an E2-like enzyme (35, 36). The
Atg8 Ubl system is necessary for membrane expansion and clo-
sure of the phagophore, and this second system includes Atg3,
Atg4, Atg7, and Atg8 (30). Non-lipidated Atg8 is converted to
its lipidated phosphatidylethanolamine-conjugated species fol-
lowing Atg4-mediated proteolytic processing of its C terminus,
Atg7-dependent activation, and Atg3-facilitated conjugation at
a conserved C-terminal glycine (37, 38).

The next major step in autophagy involves fusion between
the outer membrane of the autophagosome and the vacuole.
The resulting vesicle formed by this event is termed the
autophagic body and consists of the remaining inner autopha-
gosome membrane found within the vacuole lumen. The final
events in autophagic flux include degradation of the cargo, fol-
lowed by efflux of the resulting macromolecules. In yeast, the
vacuole has enzymes for degrading the major macromolecules;
however, an efflux mechanism has only been identified for
amino acids (39), and catabolized RNA products appear to be
secreted from the cell (20). For a more comprehensive review
on the main stages of autophagy and the role of ubiquitin, please
see Refs. 28, 40, 41.

Transcriptional regulation of autophagy

Background

As mentioned above, cells must successfully fine-tune and
integrate signals at multiple regulatory levels to maintain
appropriate control over autophagy. Here, we focus on tran-
scriptional and post-transcriptional regulation of autophagy in
S. cerevisiae. For further discussion on autophagy regulation,
particularly at the epigenetic and post-translational levels,
please see these recent reviews in Refs. 40, 42– 45.

Major transcriptional regulators in yeast

Ume6 —Ume6 is a DNA-binding protein that has dual func-
tions both as a transcriptional activator and as a repressor
depending on the growth conditions (46, 47). Ume6 is depen-
dent on the corepressor Sin3 and histone deacetylase Rpd3, and
all are components of the multisubunit Rpd3 large (Rpd3L)
complex in yeast (48 –50). Rpd3L is one of the 2 Rpd3 histone
deacetylase complexes that regulate gene expression (50 –52).
A Ume6 consensus-binding site (URS1 region) is found within
the ATG8 promoter (53); Ume6 directly binds (and thereby
represses) the ATG8 promoter under nutrient-rich conditions
(53). Ume6 undergoes phosphorylation by the kinase Rim15
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Figure 1. Autophagy regulation occurs at multiple levels. Because of the
essential role that autophagy plays in maintaining homeostasis and the myr-
iad of diseases that can result from perturbations to the pathway, cells must
strictly modulate the entire process, beginning at transcription through post-
translational modification. At the level of transcription, ATG gene expression
can be regulated both positively and negatively through the action of specific
transcription factors and epigenetic changes at histones. These transcripts
can then be controlled further at the post-transcriptional and translational
levels through the mechanisms of non-coding (nc) RNA, RNA-binding pro-
teins (RBPs), mRNA localization, and RNA decay. At the protein level, post-
translational modification such as phosphorylation, ubiquitination, acetyla-
tion, glycosylation, and protein–protein interactions can further regulate
autophagy activity.
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(further detailed below) during nitrogen starvation, which leads
to the derepression of ATG8, thus promoting ATG8 transcrip-
tion (53). Deletion of UME6, SIN3, and/or RPD3 significantly
up-regulates ATG8 mRNA (and consequently protein) under
nutrient-rich conditions, and autophagy is more rapidly
induced in ume6� cells during nitrogen starvation (53). Impor-
tantly, the amount of Atg8 directly correlates with the size of
autophagosomes during starvation conditions (24). These find-
ings support a mechanism whereby the cell is primed for a rapid
autophagic response once it encounters starvation conditions.
Although Ume6 is not conserved in more complex eukaryotes,
the mammalian SIN3 proteins appear to play a similar role in
regulating the expression of the Atg8 homolog MAP1LC3B
(53).

Pho23—Pho23 is another member of the Rpd3L complex (50,
54) and a negative regulator of autophagy activity in yeast (25).
Deletion of PHO23 results in the up-regulation of multiple ATG
transcripts, including ATG1, -7–9, -12, -14, and -29 and an
increased frequency of autophagosome formation (i.e. number)
(25). Pho23 represses ATG9 under nutrient-replete conditions,
and levels of Atg9 directly affect the frequency of autophago-
some formation (25). Atg9 is the only integral membrane pro-
tein component of the core autophagy machinery—those pro-
teins that are essential for autophagosome formation (55). Atg9
cycles between the PAS and peripheral sites close to the mito-
chondria during autophagy; these sites are also known as tubu-
lovesicular clusters and are thought to correspond to donor
membranes (56 –58). Phosphorylation of Atg9 at serine 122
(Ser-122) regulates anterograde movement between the periph-
eral sites and the PAS, thereby controlling the rate of autopha-
gosome formation (59). These data support a model in which
Atg9 functions to provide membrane or to direct membrane
delivery for phagophore expansion; thus, increased levels of
Atg9 (through Pho23 derepression) allow for a greater number
of autophagosomes to form, which would have a direct effect on
the magnitude of autophagy activity.

Rph1—Rph1 is a Jumonji C catalytic domain-containing his-
tone demethylase (60). However, the role of Rph1 in autophagy
is independent of its demethylase activity (61). Deletion of
RPH1 enhances autophagy, and overexpression of Rph1
strongly inhibits autophagy and autophagosome formation
(61). Rph1 functions as a negative transcriptional regulator of
autophagy by repressing the expression of a subset of ATG
genes under nutrient-replete conditions, particularly ATG7,

but also including ATG1, -8, -9, -14, -29, and -32 (61). Further-
more, Rph1 directly regulates ATG7 by binding to its promoter;
this binding does not occur when the DNA-binding domains of
Rph1 are eliminated (61). As described above, Atg7 plays an
essential role in the conjugation of phosphatidylethanolamine
to Atg8, which is critical for autophagosome formation. Levels
of Atg7 have an impact on the magnitude of the autophagic
response (61, 62). When cells are starved for nitrogen, Rim15
phosphorylates Rph1, inhibiting its repression of ATG tran-
scripts (61). KDM4A, a mammalian homolog of Rph1, has a
conserved role in autophagy induction (61). Additionally, Rph1
may mediate transcriptional control over other as yet uniden-
tified ATG genes (63).

Rim15—The Rim15 protein kinase integrates signals from
the two major nutrient sensing pathways in yeast, TOR and
protein kinase A, to positively regulate autophagy (64 –65).
Although not a direct transcriptional regulator, Rim15 phos-
phorylates the DNA-binding proteins Ume6 (53) and Rph1 (61)
to influence ATG gene transcription (66); Rim15-dependent
phosphorylation inhibits these transcription factors, leading to
the derepression of ATG genes (61). Future studies will deter-
mine whether Rim15 mediates the phosphorylation of addi-
tional autophagy regulatory factors, particularly those involved
in other aspects of transcriptional or post-transcriptional
autophagy modulation.

Gcn4 —Gcn4 is a basic leucine zipper (bZIP) transcriptional
activator that primarily binds to the 5�-TGACTC-3� consensus
site in the promoter regions of target genes (67). Gcn4 was
initially identified to function in the amino acid starvation
response and has been described as a principal regulator of
autophagy gene expression (68). During growing conditions,
Gcn4 positively mediates delivery of precursor aminopeptidase
I in the Cvt pathway (69). When cells undergo starvation, Gcn4
regulates non-selective autophagy activity through ATG gene
transcription (69). Gcn4 activates ATG1, ATG13, and ATG14
gene expression during amino acid deprivation (68) and ATG1
during nitrogen starvation (69). Gcn4 controls ATG41 mRNA
expression during nitrogen starvation-induced autophagy
through transcriptional activation (70). Recently, Atg41 was
identified to function in Atg9 cycling and the delivery of donor
membrane to expand the phagophore at the PAS (70). The
translation of GCN4 is stimulated by the phosphorylation of
Sui2/eIF2� by the protein kinase Gcn2 (71). Gcn2 itself also
positively regulates autophagy, presumably by its downstream
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Figure 2. Non-selective autophagy in S. cerevisiae. Autophagy occurs through a sequential series of events in the yeast S. cerevisiae, including induction and
nucleation of the phagophore at the PAS, expansion of the phagophore, closure and maturation to form the autophagosome, autophagosome–vacuole
fusion, and cargo degradation followed by efflux of the breakdown products.
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effects on Gcn4-mediated ATG transcription (72, 73) and pos-
sibly through the inhibition of TOR (74).

Gln3—Gln3 is a GATA-like transcription factor that shares
only 65% homology with other known GATA factors in yeast
(75, 76). Gln3 binds to the consensus sequences 5�-GATAAG-3�
and 5�-GATTAG-3�, which have been previously identified as
nitrogen-responsive upstream activation sequences within the
promoter regions of target genes (77). During rich conditions,
Gln3 mediates biosynthetic delivery of precursor aminopepti-
dase I to the vacuole (69). When cells are starved, Gln3 posi-
tively regulates non-selective autophagy by targeting ATG14
(78), -7–9, -29, and -32 (69). Unexpectedly, in nutrient-replete
conditions, deletion of GLN3 results in the accumulation of
ATG8 and ATG29 transcripts, demonstrating either direct or
indirect negative control over basal autophagy (69).

Gat1—Gat1 is another GATA-type transcription factor that
has a GATA1-type zinc finger DNA-binding motif and binds to
5�-GATAAG-3� upstream activation sequence regions in the
promoters of nitrogen-sensitive genes, similar to Gln3 (79).
Gat1 functions as a positive factor for autophagy induction;
deletion of GAT1 results in decreased autophagy activity (69).
Also similar to Gln3, deletion of GAT1 significantly down-reg-
ulates ATG7–9, -29, and -32 mRNAs; however, no additive
effect is observed on ATG transcript levels when both GAT1
and GLN3 are deleted in the same strain (69).

Other transcriptional regulators—Yap1 is a bZIP transcrip-
tion factor with a preference for binding at promoter sites con-
taining 5�-TTACTAA-3� sequences (80). It has been recently
reported that Yap1 positively regulates transcription of the
lipase gene ATG15 during starvation-induced autophagy (81).
Atg15 preferentially hydrolyzes phosphatidylserine and facili-
tates autophagic body lysis within the vacuole (82, 83). Sfl1
functions as a transcriptional repressor and activator (84, 85)
and has also been recently identified to function as a positive
regulator of the Cvt pathway, autophagy, and ATG8 expression
(69). Fyv5 negatively regulates the expression of ATG1, -8, -9,
and -14, but this effect may not be direct; in contrast, the Cvt
pathway appears to be positively affected by this factor (69).
Spt10, a histone H3 acetylase, represses ATG8 and ATG9 at
both the RNA and protein levels (69). Although key transcrip-
tional regulators have been identified to affect core ATG gene
transcripts, the potential exists for novel factors to be discov-
ered, particularly those that may target selective autophagy
pathways.

Post-transcriptional regulation of autophagy

Background

Although novel transcriptional mediators of autophagy have
recently been identified (25, 53, 61, 69), post-transcriptional
regulation of autophagy in yeast is largely uncharacterized. In
mammals, non-coding RNAs such as microRNAs (miRNAs)
and RNA-binding proteins can modulate autophagy at the
post-transcriptional level (42, 45, 86 – 89). However, the RNA
interference system (which is required for miRNA processing
(90, 91)) is not present in S. cerevisiae (92). Alternatively,
another mechanism whereby cells exert post-transcriptional
control over gene expression is through RNA decay pathways

(which can degrade transcripts in either the 5� to 3� or the 3� to
5� direction). During canonical 5� to 3� degradation, transcripts
undergo a reversible process known as deadenylation (which
removes the 3� poly(A) tail), followed by decapping. The decap-
ping enzyme Dcp2 removes the 5�-methylguanosine cap of the
mRNA, resulting in an exposed 5�-monophosphate. Finally, the
decapped cytoplasmic mRNAs undergo 5�- to 3�-mediated deg-
radation by the cytoplasmic exoribonuclease Xrn1.

Dcp2 and RCK family RNA helicases Dhh1/Vad1/DDX6

A role has recently been described for Dcp2 and RCK family
RNA-binding proteins as post-transcriptional regulators of
ATG mRNAs, autophagy, and autophagy-dependent innate
immune responses in yeast and mammalian cells (93). RCK
family members–Dhh1 in S. cerevisiae, Vad1 in Cryptococcus
neoformans, and DDX6/p54 in mammals–are RNA helicases
acting in part as decapping accessory factors that interact with
target mRNAs through recruitment to the decapping complex
by binding the 5�- and/or 3�-untranslated region of selected
transcripts (40, 94). Dhh1 also physically interacts with the
decapping enzyme Dcp2 (95).

In the report by Hu et al. (96), deletion of DHH1 or a tem-
perature-sensitive (ts) mutation of DCP2 caused a significant
up-regulation of ATG transcripts. In particular, of the ATG
transcripts that were examined in this study, dhh1� cells dem-
onstrated significantly increased levels of ATG3, -7, -8, -19, -20,
-22, and -24 mRNA under nutrient-replete conditions (96). In
the dcp2-7� ts strain, transcript levels for ATG1 through ATG9,
ATG11, ATG13 through ATG24, and ATG29, -31, -32, and -34
were significantly up-regulated in rich conditions (96). Both the
dhh1� and dcp2-7� ts strains demonstrated higher levels of
autophagy activity through multiple assays when starved for
nitrogen (96). This mechanism is highly conserved across the
two fungal species examined (S. cerevisiae and the pathogen
C. neoformans) and up through mammalian cells (96). In
C. neoformans, the Dhh1 homolog Vad1 mediates decapping of
ATG mRNAs, especially ATG8 (96). Furthermore, Hu et al. (96)
demonstrated that Dcp2 is phosphorylated by TOR under
nutrient-rich conditions in C. neoformans, which drives its
association with (at least) ATG8 mRNA, stimulating recruit-
ment of the transcript to the decapping machinery, followed by
subsequent decapping. Thus, TOR acts as a negative regulator
of the translation of ATG genes under conditions where it
promotes the translation of the vast majority of cellular tran-
scripts. In mammalian cells, mechanistic TOR phosphory-
lates DDX6, the homolog of Dhh1/Vad1, resulting in decap-
ping of the MAP1LC3B transcript under nutrient-rich
conditions to repress autophagy (96). Transcripts are then
presumably degraded to maintain autophagy at a basal level.
In contrast, starvation conditions inactivate TORC1, arrest-
ing degradation of the targeted transcripts and promoting
sustained autophagy (96).

Xrn1

The data on Dhh1/Vad1 and Dcp2 imply a role for 5� to 3�
mRNA degradation in autophagy regulation. Recent work
shows that the RNase Xrn1/XRN1, which functions down-
stream of the decapping complex in the canonical 5� to 3� RNA
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decay pathway, is also a negative post-transcriptional regulator
of autophagy in both yeast and mammalian cells (97). Chromo-
somal deletion of XRN1 induces a more rapid and robust
autophagy response as determined through multiple assays in
yeast (97). We also found that the frequency of autophagosome
formation increases in starved xrn1� cells compared with wild-
type cells based on transmission electron microscopy (97). Fur-
thermore, when xrn1� cells are assessed by quantitative PCR
under nutrient-rich conditions, select ATG transcripts are
found to be up-regulated, including ATG1, -4, -5, -7, -8, -12, -14,
-16, -29, and -31. Regulation of (at least) ATG8, ATG12, and
ATG29 is dependent upon the RNase activity of Xrn1 (97).

In mammalian cells, there is enhanced autophagy activity in a
starvation-independent manner when XRN1 is depleted by
small interfering RNA (97). The impact on autophagy is
blocked in BECN1 or ATG5 CRISPR knockout cells, supporting
the role of the canonical autophagy pathway (97); BECN1 is a
component of the phosphatidylinositol 3-kinase complex
required for autophagy induction (98). In addition, reduction of
XRN1 levels is associated with an up-regulation of poliovirus
infection in an autophagy-dependent manner (97), underlying
the role of Xrn1/XRN1 as a conserved autophagy regulator.
Poliovirus, similar to other picornaviruses, utilizes host mem-
branes that are proposed to be derived from autophagosomes to
support viral genome replication (97, 99, 100).

Summary

The studies by Hu et al. (96) and Delorme-Axford et al. (97)
provide a paradigm for post-transcriptional autophagy regula-
tion, but they also represent the limit of what is known about
this type of regulation of autophagy in yeast. Although these
findings are exciting and novel, it is still not clear why there
appears to be differential targeting of transcripts in the strains
examined (dcp2–7� ts, dhh1�, and xrn1�) even though they
encode components of a related pathway of RNA degradation
(96, 97). Thus, despite these insights, much work remains to
further understand how autophagy is controlled post-tran-
scriptionally. For example, how are transcripts selected for deg-
radation under nutrient-replete conditions? Although Dhh1
and Xrn1 are likely to drive some degree of specificity, many
more ATG transcripts are affected in the dcp2-7� ts cells com-
pared with the dhh1� and xrn1� strains (96, 97). Based on these
data, Dhh1 and Xrn1 are likely not the only factors mediating
selective transcript targeting. Furthermore, although S. cerevi-
siae does not post-transcriptionally regulate gene expression
through miRNA, additional non-coding RNA mechanisms
such as long non-coding RNA could potentially play a role in
autophagy regulation. Future studies should be aimed toward
uncovering additional components moderating ATG gene
expression through RNA decay.

Conclusions

Here, we present a concise review of what is currently known
regarding the transcriptional and post-transcriptional regula-
tion of autophagy in the yeast S. cerevisiae (see Fig. 3 for a sum-
mary). Recent advances in the field have provided additional
clues as to the myriad of regulatory mechanisms that cells
maintain to tightly control and coordinate autophagy. How-

ever, many questions remain, particularly concerning how
autophagy is regulated post-transcriptionally, not only in yeast
but in other eukaryotic systems as well. Additional novel post-
transcriptional regulatory factors have yet to be identified and
characterized. Further investigation into the mechanisms by
which cells control the major stages of autophagy— especially
induction and magnitude—at multiple regulatory levels is
critical to enhance our understanding of how this essential
process is maintained in the cell to promote normal physio-
logical processes and how its dysregulation contributes to
disease pathogenesis.
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here due to space limitations.
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