
IChem: A Versatile Toolkit for Detecting, Comparing, and
Predicting Protein–Ligand Interactions
Franck Da Silva,[a] Jeremy Desaphy,[a, b] and Didier Rognan*[a]

Structure-based ligand design requires an exact description of
the topology of molecular entities under scrutiny. IChem is a
software package that reflects the many contributions of our
research group in this area over the last decade. It facilitates
and automates many tasks (e.g. , ligand/cofactor atom typing,

identification of key water molecules) usually left to the model-
er’s choice. It therefore permits the detection of molecular in-

teractions between two molecules in a very precise and flexi-

ble manner. Moreover, IChem enables the conversion of intri-
cate three-dimensional (3D) molecular objects into simple rep-

resentations (fingerprints, graphs) that facilitate knowledge ac-
quisition at very high throughput. The toolkit is an ideal

companion for setting up and performing many structure-
based design computations.

IChem is a suite of tools consisting of about 50 000 lines of

computer code written in C + + , decomposed in nine mod-
ules, for detecting and comparing molecular objects (proteins,

ligand-binding cavities, ligands, protein–ligand and protein–
protein complexes) frequently manipulated in structure-based

computational chemistry (Table 1). Herein we describe four of

the most frequent and important uses. For deeper investiga-
tion of all modules, the reader should refer to the publicly

available user guide.[1]

Setting the scene: pdbconv. A reasonable start to any struc-

ture-based design project is the retrieval of experimentally de-
termined protein structures from the Protein Data Bank
(PDB),[2] a web resource that currently stores over 134 000 en-

tries. Unfortunately, PDB structures cannot be used directly, as
many important features (e.g. , protonation and ionization
states, atom types and bond orders for organic molecules) are
missing. The pdbconv module of the IChem toolkit automates

the preparation of ready-to-use protein–ligand structures. The

process first assigns a specific class to each residue name

(Table 2).

It then applies a correct atom type to every heavy atom,
generates the corresponding covalent bonds, and selects

strongly bound water molecules while removing bulk water.
The process relies on a predefined list of all possible residues

with the corresponding templates for every HET record of the
PDB file. Correct atom types and 3D coordinates are provided

for every template by converting, with Corina,[3] PDB SMILES

strings into the corresponding MOL2 file.
The residue list (Table 2) assigns the encountered HET record

to one of the 12 possible residue classes (cofactor, ion, ligand,
metal, modified amino acid, nucleic acid, organometallic, pros-

thetic, standard amino acid, sugar, unwanted, water). Please
note that molecules originating from crystallization buffer (“un-

Table 1. IChem modules.

Module Purpose

pdbconv Post-process raw PDB files
realign Structural alignment of two molecules
sims Fingerprint comparison
utils Miscellaneous
Volsite Cavity detection and druggability prediction
IFP Fingerprinting protein–ligand interactions
Ints Fingerprinting protein–ligand interaction patterns
Grim Converts protein–ligand interaction pattern in graphs
DetectPPI predict biologically relevant PPIs[a]

[a] Protein–protein interfaces.

Table 2. HET residue classes in IChem, exemplified by one residue.

HET[a] Template[b] Updated[c] Class[d]

ACO 1 / COFACTOR
3NI 1 / ION
001 1 / LIGAND
3CO 1 / METAL
004 1 / MOD_AA
02I 1 / NUCLEIC
01L 1 / ORGANOMET
BH1 0 BPH PROSTHETIC
ALA 1 / STD_AA
045 1 / SUGAR
000 1 / UNWANTED
HOH 1 / WATER

[a] Three-character alphanumeric code of each chemical component.
[b] Template present (1) or absent (0). [c] Updated (/) or deprecated and
replaced (e.g. , BH1 updated into BPH). [d] Residue class.
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wanted” class) are automatically identified and discarded. Once
atom types have been properly defined for every molecule

type (protein and accessory molecules, solvent, ligand), any
third-party tool (e.g. , Protoss)[4] can be used to finally add the

missing hydrogen atoms while optimizing both the ionization
and tautomeric state of each molecule of the PDB entry.

Working with predefined residue lists and molecular tem-
plates provides both advantages and drawbacks. The main ad-

vantage is a uniform treatment of all chemical components of

a PDB entry with a presumably correct atom typing. As a main
drawback, the procedure requires an updated residue list and

thus fails in case of a newly released PDB entry. We therefore
propose regular updates along every new release of the in-

house developed sc-PDB database of druggable protein–ligand
complexes.[5]

Detecting ligandable cavities: Volsite. Volsite is a tool to

automatically detect cavities at the surface of a macromolecule
of interest, and predict its structural druggability.[6] It can be

run in two modes depending on whether coordinates of a
bound ligand are given (ligand-restricted mode) or not (full un-

restricted mode). In any case, the target is first placed in a 2 a
resolution grid lattice and each voxel is assigned a state as

whether its accessibility exceeds a user-defined threshold. Ac-

cessible voxels are then assigned a pharmacophoric property
(hydrophobic, aromatic, hydrogen bond donor, hydrogen

bond acceptor, positive ionizable, negative ionizable) comple-
mentary to that of the nearest protein atom according to a set

of topological rules.[7] The pharmacophoric properties of all
atoms are detected on the fly by the general IChem atom

parser thereby enabling to consider accessory molecules

(Table 2) or not during the cavity detection. Because every
voxel has a fixed volume, the total number of pharmacophore-

annotated voxels approximates the overall cavity volume. The
method is fast (a few seconds) and precisely delineates the

cavity borders at a very high precision (Figure 1).
In addition, a set of 73 cavity descriptors are computed for

each cavity and used as input to a support vector machine

(SVM) classifier to predict the structural druggability (or ligand-
ability) of the inspected cavity. In a standard benchmarking ex-

ercise consisting of 113 cavities of known druggability, Volsite
presented the highest accuracy when compared with state-of-
the-art tools.[6] In case of multiple cavities, all druggable cavi-
ties are saved as readable MOL2 files, along with their predict-

ed druggability score.
Interestingly, the similarity of two Volsite cavities can be esti-

mated by analogy to classical ligand similarity measurements,
using a companion tool (Shaper)[6] that uses a smooth Gaussian
function to maximize the overlap of their volume and pharma-

cophoric properties. High-throughput cavity comparisons are
increasingly used in computational chemistry notably to identi-

fy ligands for novel cavities, design inhibitors with precise se-

lectivity patterns and predict their possible side effects.[8]

Converting protein–ligand complexes into fingerprints
and graphs: IFP, GRIM. A major feature of IChem is the possi-
bility to generate diverse simplified representations (finger-

prints, graphs) of protein–ligand interactions. For example, the
IFP module enables to list all protein–ligand interactions occur-

ring in a complex and to output an interaction fingerprint as a
bit string (Figure 2).

Several years ago, we[7] and other groups[9] proposed the

use of IFPs to post-process docking data and pick poses pro-
ducing IFPs similar to that of known actives. Computing inter-

action fingerprints (IFPs) from docking poses is a robust and
very efficient manner to predict ligand binding modes,[10] pro-

pose reliable scaffold hops,[11] and enrich virtual hits in true ac-
tives.[12] The success of this post-processing approach is based

Figure 1. Cavity detection at the surface of the heat shock protein HSP90a

(PDB ID: 4YKR). The Volsite cavity (volume = 502.87 a3, druggability = 1.11) is
represented by pharmacophoric points (hydrophobic, cyan; aromatic, green;
hydrogen-bond donor, blue; hydrogen bond acceptor, red; positive ioniza-
ble, dark slate blue; negative ionizable, orchid; dummy, white). Volsite
points nicely encompass the bound inhibitor (HET code 4ep, yellow sticks)
ignored during the cavity detection procedure.

Figure 2. Table of protein–ligand interactions and interaction fingerprint
(IFP) generated by IChem. For every ligand-binding residue, seven bits are
switched either on (1) or off (0) as whether a particular interaction is detect-
ed or not with the ligand. Interactions are registered in a precise order (hy-
drophobic, aromatic face-to-face, aromatic edge-to-face, hydrogen bond ac-
cepted by ligand, hydrogen bond donated by ligand, ionic bond with ligand
negatively charged, ionic bond with ligand positively charged).
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on the idea that true ligands of a same target often share key
interactions with key anchoring residues and thereby produce

relatively similar IFPs. However, a clear limitation is the strict
dependence to the number of active site residues, preventing

to compare interaction fingerprints across binding sites of dif-
ferent sizes.

We therefore recently designed size-invariants descriptors
conceptualized by a graph describing the exact protein–ligand

interaction pattern.[13] The method called GRIM (Graph Interac-

tion Matching) defines three interaction pseudoatoms (IPAs)
for every detected protein–ligand interaction: one on the
ligand-interacting atom, one on the protein-interacting atom
and one at the barycenter of the latter two atoms (Figure 3).

The full set of IPAs defines an interaction pattern that is
unique to every protein–ligand complex and that can be con-

verted into a graph where IPAs will define nodes.[13]

A particular interaction pattern can be easily compared and
aligned to another one by a simple graph matching technique
aiming at identifying the maximal common subgraph
(clique).[13] The similarity of two interaction pattern graphs is
measured by an empirically derived score (GRIMscore) that can
be used for example to post-process docking poses and

reward those corresponding to interaction patterns already vis-
ited in reference X-ray structures (Figure 4). In three consecu-
tive international docking contests aimed at predicting ligand
binding modes prior to the release of the corresponding X-ray
structures, GRIM rescoring was always quoted as one of the

very best methods for generating near-native docking poses.[14]

The same advantage over fast scoring functions was reported

in virtual screening against diverse target families (e.g. , G pro-

tein-coupled receptors, nuclear hormone receptors, protein
kinases).[13]

GRIM presents several advantages over alternative knowl-
edge-based rescoring strategies : 1) it can be coupled to any

docking algorithm, 2) it does not constrain ligand docking but
rewards interaction patterns already present among PDB tem-

plates, 3) it takes advantage of ligands with similar binding
modes and not necessarily similar chemical structures, 4) it can

be applied in a target family-biased pose selection process in
which PDB templates from the same protein but also from

similar targets can be used to store reference interaction pat-

terns, and 5) it permits to directly quantify binding mode simi-
larity between a predicted protein–ligand complex and any

PDB template at a very high throughput.
Detecting biologically relevant protein–protein interfaces:

detectPPI. Protein–protein interfaces (PPIs) represent challeng-
ing but very promising targets for drug discovery.[15] Hence,
PPIs describe a vast unexplored biological space for which

small molecular weight modulators[16] are expected to offer
very high potency and selectivity profiles. Although mainly dis-
covered by biophysics-driven fragment-based approaches,
computational chemistry is expected to play a major role in

designing the future PPI modulators,[17] notably upon relying
on the huge structural information already available in the Pro-

tein Data Bank. To discriminate biologically relevant from crys-
tallographic artifacts, computational methods are needed to
rapidly detect PPIs and predict their biological relevance from
a structural point of view. IChemPIC[18] was designed to address
this need. The detectPPI module uses the general IChem func-

tions (molecule reader, interaction detection) to detect the in-
terface, identifies the corresponding IPAs and generate a fixed-

length property vector (Figure 5) as input for a Random Forest

classifier previously trained on a set of 400 PPIs (200 biological-
ly relevant, 200 irrelevant interfaces). IChemPIC is equally

robust to detect both classes with the same accuracy, inde-
pendently on the size of the PPI.[18]

Interestingly, this new IChem module can be used at a high
throughout to detect biologically relevant PPIs at the PDB

Figure 3. Example of a set of interaction pseudoatoms (ligand-based, red;
protein-based, cyan; centered, gray) for the b2 adrenergic receptor in com-
plex with carazolol (PDB ID: 2RH1).

Figure 4. Surflex-Dock rescoring 20 docking poses of the MAP27 inhibitor[14b]

to the human MAP4K4 by graph similarity (GRIMscore) to the X-ray structure
of the same kinase with the inhibitor GNE-495 (PDB ID: 4ZK5). The top-
ranked pose according to Surflex-Dock (cyan circle) is irrelevant. The two
best poses according to GRIM (red circles) are <1.0 a RMSD away from the
true X-ray pose. All poses are numbered from 1 to 20 according to the Sur-
flex-Dock score.
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scale. Alternatively, the method can be used on-line (http://
bioinfo-pharma.u-strasbg.fr/IChemPIC) by just specifying the

PDB three-letter code.
In conclusion, IChem is a suite of software dedicated to the

analysis and comparison of three-dimensional molecular ob-
jects. It converts an intricate three-dimensional information

into much simpler fingerprints or graphs, thereby enabling

high-throughput comparisons and fueling machine learning
models for predicting important features like protein–protein

interfaces, druggable cavities, interaction patterns and binding
poses. IChem is available for nonprofit academic research at

http://bioinfo-pharma.u-strasbg.fr/labwebsite/download.html.
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Figure 5. Prediction of biologically relevant protein–protein interfaces by
IChem. Interaction pseudoatoms (IPAs) are first computed from the 3D struc-
ture of the protein–protein complex and converted into a 45 real vector, fea-
turing important physicochemical properties (interface size, pharmacophoric
properties, buriedness), read by a Random Forest classifier for relevance pre-
diction.
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