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Abstract: A weakly focused laser beam can exert sufficient radiation pressure to manipulate 
microscopic particles over a large depth range. However, depth-resolved continuous 
measurement of radiation-pressure force profiles over an extended range about the focal plane 
has not been demonstrated despite decades of research on optical manipulation. Here, we 
present a method for continuous measurement of axial radiation-pressure forces from a 
weakly focused beam on polystyrene micro-beads suspended in viscous fluids over a depth 
range of 400 μm, based on real-time monitoring of particle dynamics using optical coherence 
tomography (OCT). Measurements of radiation-pressure forces as a function of beam power, 
wavelength, bead size, and refractive index are consistent with theoretical trends. However, 
our continuous measurements also reveal localized depth-dependent features in the radiation-
pressure force profiles that deviate from theoretical predictions based on an aberration-free 
Gaussian beam. The combination of long-range radiation pressure and OCT offers a new 
mode of quantitative optical manipulation and detection with extended spatial coverage. This 
may find applications in the characterization of optical tractor beams, or volumetric optical 
manipulation and interrogation of beads in viscoelastic media. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 
The ability of optical forces to manipulate microscopic particles was first demonstrated in 
1970 by Ashkin [1]. Using a low numerical aperture (NA) beam to illuminate a suspension of 
latex beads in water, his seminal experiments revealed two phenomena: the acceleration of 
particles along the beam propagation direction by scattering-mediated axial radiation 
pressure, and the pulling of particles into the optical axis of the beam by gradient forces in the 
radial direction. The latter has formed the basis for the now ubiquitous single-beam high-NA 
gradient force optical traps, also widely known as “optical tweezers” (OTs) [2]. Since its 
conception in 1986, OTs have enabled numerous breakthroughs in the nanoscale sciences and 
the study of sub-cellular biological processes [3–5]. Advances in both theoretical and 
experimental approaches have established ways to quantify the femtonewton-to-piconewton 
forces exerted by an optical trap [5–9], and enabled quantitative optical manipulation at 
nanometer-to-micrometer length scales. 
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The applications of optical manipulation have predominantly been limited to manipulation 
of micro-particles in 2D plane(s), i.e., confined to a small depth range (a few micrometers) 
about the focal plane. This is because OTs utilize high-NA beams, which can only exert 
significant optical forces near the focal plane. In order to overcome this limitation, optical 
manipulation based on Bessel beams [10–13], other interferometric structured beams such as 
optical tractor beams [14–17], as well as holographic OTs [18–20], have been developed to 
enable parallel manipulation over a larger axial range. These experiments typically utilize 
wide-field imaging from the side [14] or digital holographic microscopy [15,17] to observe 
the axial motion of the particles. For the acceleration of particles along the beam axis, 
Ashkin’s original configuration of radiation pressure from a low-NA Gaussian beam could 
also exert transversely localized axial force over a greater depth range than is accessible with 
conventional OTs. Radiation pressure from a low-NA beam has been leveraged in relatively 
few applications, including optical stretching of cells [21–23], particle sorting [24–27], 
particle levitation [28,29], and parallelized optical pushing of biomolecules on a plane [30]. 
However, the supporting measurement of the radiation-pressure force profile over an 
extended depth range has not been demonstrated experimentally. Although extensive 
theoretical works have conducted estimates of the magnitude of radiation-pressure forces as a 
function of distance from the focal plane for both Gaussian [9,31–34] and other shaped beams 
[17,35–37], experimental measurements of radiation-pressure force have only been performed 
at a single depth or a limited set of selected depths [9,13,17,28,32,38–40]. In order to take full 
advantage of optical manipulation with larger axial coverage, it is important to be able to 
experimentally measure the depth-resolved radiation-pressure force profile over an extended 
depth range. 

We present an experimental method based on real-time monitoring of particle dynamics 
with OCT to reconstruct depth-resolved axial radiation-pressure force profile of an optical 
manipulation beam. Although OCT has been combined with OTs for imaging of cells in a 
micro-flow environment [41], OCT imaging of particle dynamics induced by radiation 
pressure has not been demonstrated. Using a low-NA Gaussian beam for demonstration, we 
investigated the effects of beam power, wavelength, bead size, and refractive index on 
radiation pressure and provide comparisons with theoretical predictions. We show that 
radiation pressure from an actual (experimentally achieved) beam may yield a substantially 
different force profile over an extended depth range compared to the theoretical predictions 
based on an ideal Gaussian beam description. We also demonstrate that radiation pressure 
from a low-NA beam can induce detectable changes in the dynamics of microscopic particles 
over a depth range of several hundred micrometers about the focal plane. 

2. Theoretical framework 
2.1 Forces on a dielectric particle from a weakly-focused laser beam 

In his seminal paper, Ashkin conceptually described the magnitude of radiation-pressure force 
exerted by a focused low-NA laser beam with power P  on a neutral particle in vacuum as 
2qP c , where c  is the speed of light in vacuum and q  is a proportionality constant [1]. This 
simplified expression was based on the transfer of photon momentum as a result of 
backscattering events. The factor q  describes the scattering of photons incident upon the 
bead, accounting for the effects of bead shape and size, beam characteristics, refractive index 
mismatch between the bead and the medium, and the location of the bead relative to the beam 
focus. For a bead of radius comparable to the wavelength of the beam, i.e. Mie particles, 
Ashkin had estimated q  to be on the order of 0.1. A more rigorous estimation of the factor q  
can be obtained via Generalized Lorenz-Mie Theory (GLMT) [34]. GLMT provides a 
formulation that enables computation of the radiation pressure cross-section in the direction 
parallel to the optical axis of the beam (hereafter referred to as the axial direction), pr,zC , 
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which describes the fraction of incident photon energy density that gives rise to radiation 
pressure in the axial direction. ẑ  pr,zC  accounts for the ẑ  component of the change in linear 
momentum of all photons that have interacted with the bead. Then, the resultant axial 
radiation-pressure force on the bead is given by: 

 ( ) ( ) ( )
2

2
2

med pr,1 ˆ,
a

zw z n C zPz e
caπ

− 
 = −
 
 

radF z
2

 (1) 

where a  denotes the radius of the bead, w  denotes the 21 e  radius of the beam, and medn  
denotes the refractive index of the medium. ( )pr,zC z  denotes the variation of the radiation 
pressure cross-section as a function of z  for the specified beam parameters and properties of 
the bead and the medium. In Eq. (1), med pr,zn C c  corresponds to the magnitude of axial 
radiation-pressure force per unit power density, while the factor in front describes the average 
power density of the Gaussian beam over the area projected along ẑ  where the beam 
intersects the bead (for 0a w< ). We note that under the GLMT formulation [34], optical force 
cannot strictly be separated into scattering and gradient forces [2]; however, in order to help 
convey some physical intuition, for the case of our low-NA forcing beam we shall refer to 
any radial component of the force as ‘gradient force’ [5,42]. 

2.2 Dynamics of a sphere in viscous fluid under an externally applied force 

The dynamics of a spherical mass illuminated by a weakly focused beam in viscous fluid is 
governed by the radiation-pressure force from the beam, rad ˆF= ⋅radF z , the fluid drag force, 

DF , the buoyancy force, BF , and the weight of the sphere, WF , as shown in Fig. 1(a). For a 
spherical bead with radius a  and density beadρ  in a fluid medium with viscosity medη  and 
density medρ , the equation of motion in the axial direction is given by: 

 ( ) { } ˆ,mz t = + − − ⋅rad w B DF F F F z  (2a) 

 ( ) ( ) ( ) ( )3 3
bead rad bead med med

4 4
3 3

6 ,a z t F t a g a z tπ ρ π ρ ρ π η= + − −   (2b) 

where ( )z t , ( )z t , and ( )z t  denote the axial position, velocity, and acceleration of the bead, 
respectively. Throughout the rest of this paper, we shall define 0z =  as the focal plane of the 
forcing beam, with the unit vector ẑ  pointing in the propagation direction of the beam, i.e. 

0z <  is above the focal plane (the converging part of the beam) and 0z >  is below the focal 
plane (the diverging part of the beam). In Eq. 2(b), the second term on the right-hand-side 
describes the effective weight of the bead, −w BF F , and the last term corresponds to the 
Stokes’ drag force on a sphere in the laminar flow regime [43]. We note that radF  is described 
as being time-varying to reflect the depth-dependent variation in radF  as the bead is displaced 
along the axial direction. Figures 1(b) and 1(c) show simulations of the depth-dependent radF  
and the resulting trajectory of a sphere initially located 80 µm above the focal plane and 
moving at its terminal velocity in a viscous medium while illuminated by a low-NA Gaussian 
beam. The axial trajectory first exhibits acceleration, followed by deceleration after the bead 
passes through the focal plane of the forcing beam. Thermal forces that give rise to Brownian 
motion are neglected from the model in Eqs. 2(a) and 2(b) because the root mean-squared 
displacement due to Brownian motion (estimated from ( ) ( )2

B med2 6x t k T aπη=  for 
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t  = 1 s and T  = 298 K) of a micron-size bead in water is on the order of ≤1 µm, two orders 
of magnitude smaller than the axial displacement simulated in Fig. 1(c). Our method is based 
on using OCT to measure ( )z t , and then solving the equation of motion in Eq. 2(b) at each 

instant in time for ( )radF t , from which the depth-dependent ( )radF z  is obtained. 

 

Fig. 1. Factors affecting the dynamics of a spherical particle in viscous fluid illuminated by a 
low-NA beam. (a) Diagram showing the different types of forces exerted on a sphere in 
viscous fluid, illuminated by a weakly focused laser beam. (b) Theoretical depth-dependent 
profile of Frad exerted by a weakly focused Gaussian beam (w0: 3.2 µm; λ: 789 nm; P: 100 
mW) on a dielectric bead (a: 1.5 µm; nbead: 1.5786; ρbead: 1.05 g/cm3) obtained from GLMT. (c) 
Axial bead trajectory as a result of Frad in (b) obtained from Eq. 2(b) (ρmed: 1 g/cm3; ηmed: 1 
mPa∙s; nmed: 1.3294). 

3. Methods 
3.1 Experimental setup 

The optical setup, shown in Fig. 2, consisted of a spectral-domain (SD)-OCT system, with a 
broadband superluminescent diode (Thorlabs, LS2000B) with a center wavelength of 
1300 nm and full-width-half-maximum bandwidth of 200 nm, for measuring bead 
trajectories, and a fiber-coupled laser diode at the wavelength of 789 nm (Frankfurt Laser 
Company, FLU0786M250, HI780 fiber output), to act as the forcing beam. In one 
experiment, we switched the forcing laser diode to one with a wavelength of 976 nm 
(Innovative Photonic Solutions, I0976SB0500PA). Unless stated otherwise, we used the 789-
nm laser as the forcing beam. The OCT beam was focused with an NA of 0.14, and OCT 
transverse and axial resolutions were 4.5 μm and 3.7 μm in air, respectively. 

The forcing beam was combined with the OCT sample arm beam in free-space via a beam 
control module (BCM) and a long-pass dichroic filter. The BCM was adjusted so that the 
forcing beam was co-aligned with, and focused to, the same position in 3D space as the OCT 
beam after going through the same OCT sample arm objective lens. A photoreceiver 
(Newport, 2051-FS) was used to detect the reflected confocal response of the forcing beam. 
The co-alignment between the OCT beam and the forcing beam was verified before each 
experiment by imaging a USAF target and ensuring that (1) the depths at which the glass 
surface of the USAF target produced the largest OCT intensity and the largest reflected 
confocal response of the forcing beam were co-planar, and (2) the en face OCT image and the 
reflected confocal image of the USAF target were aligned. The 21 e  waist radius, 0w , and the 

confocal parameter, b  (where ( ) 02 2w b w= ), of the forcing beams were measured to be 
3.37 µm and 121.44 µm for the 789-nm laser, and 3.20 µm and 112.48 µm for the 976-nm 
laser, respectively. 
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3.2 Preparation and characterization of samples 

The samples consisted of non-absorbing polystyrene beads of different sizes (Sigma-Aldrich 
LB5 and LB30; Spherotech PP-10-10, PP-15-10, PP-20-10, PP-40-10, and PP-45-10) in fluid 
media of varying refractive index and physical properties. The polystyrene beads were 
assumed to have a density of 1.05 g/cm3 as reported by the manufacturers. The polystyrene 
beads were added at appropriate concentrations for each bead size to achieve mean particle 
separation of 15 µm. The fluid media were based on multiple concentrations of glycerol 
(Fisher, G33-500) in water solutions and dimethyl sulfoxide (DMSO) (Fisher, D128-500). 
Relevant physical properties of the samples are provided in Table 1. Dynamic viscosity was 
measured by a shear rheometer (TA Instruments, DHR-3) in a concentric cylinder geometry. 
Three repetitions of a shear rate sweep (1-100 s−1) flow test were performed for each sample. 
The viscosity was obtained by linear regression of the measured shear stress as a function of 
the applied shear rate. Mass density was measured by weighing 2-22 mL (in 2 mL 
increments) volumes of each fluid sample. The density was obtained from linear regression of 
the measured mass as a function of fluid volume. 

 

Fig. 2. Experimental setup and sample configuration. The optical setup consisted of an SD-
OCT system and a forcing beam combined in free space with the OCT sample arm beam. The 
forcing beam and the OCT beam were co-aligned at the sample. SLD: superluminescent diode, 
LD: laser diode, PR: photoreceiver, LP: long-pass dichroic filter, BCM: beam control module, 
XY: two-axis galvanometer. 

3.3 Data acquisition 

One sample was made for each experimental condition. Three M-mode data sets were 
acquired in each sample, with the beams positioned at different transverse locations in the 
sample for each data set. The forcing beam was operated at a constant power (ranging from 
50 to 180 mW) after the initial turn-on in each data set. The OCT beam had a power of 4 mW 
at the sample. At these power levels, we expected radF  contributions from the OCT beam to 
be <0.7 pN under our experimental conditions (based on GLMT), and at least one order of 
magnitude smaller than that from the forcing beam. Each M-mode image recorded the time-
varying depth of each bead that entered the imaging axis (which was aligned to the optical 
axis of the forcing beam) over a time period of 33 s at a line scan rate of 120 kHz (this 
temporal oversampling was to ensure that fast dynamics could be captured). In this 
configuration, the forcing beam would (1) pull the beads towards its optical axis via the 
gradient force, and (2) push the beads downward against the buoyancy and drag forces via 

radF . We note that because of the gradient force in the radial direction, there was no need to 
align each bead to the imaging axis manually, thereby allowing the trajectories of multiple 
beads to be measured in a single continuous M-mode acquisition. 

All experiments were conducted at the laboratory temperature, controlled at 23 ± 0.5 °C. 
The changes in the temperature-dependent viscosity of the glycerol-water mixtures is 
expected to be on the order of –0.03 mPa·s/°C at this temperature [48,49], corresponding to 
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the error in radF  calculation due to viscosity fluctuation on the order of ± 0.18 pN, 
corresponding to 0.5-3% of the expected radF . 

Table 1. List of fluid samples and relevant properties. 

Fluid  Density (g/cm3)  Viscosity (mPa∙s)  Refractive index 
Water  1.00 ± 0.02  1.1 ± 0.1  1.3294b 

10% glycerola  1.01 ± 0.02  1.3 ± 0.1  1.3469c 

20% glycerola  1.03 ± 0.02  1.7 ± 0.1  1.3608c 

30% glycerola  1.06 ± 0.02  3.7 ± 0.1  1.3748c 

40% glycerola  1.09 ± 0.02  5.6 ± 0.1  1.3893c 

DMSO  1.10 ± 0.02  1.3 ± 0.1  1.4699d 
aPercentage indicates volume percent of glycerol in distilled water. bRefractive index of water 

obtained from [44]. cRefractive index is assumed to scale linearly with glycerol volume fraction 
[45] and calculated based on refractive index of glycerol [46] and water [44]. dRefractive index of 

DMSO obtained from [47]. 

3.4 Reconstruction of depth-dependent radiation-pressure force 

First, the spatial-domain M-mode OCT image was reconstructed by a standard SD-OCT 
reconstruction method (background subtraction, spectrum resampling, dispersion correction, 
and Fourier transformation). For each imaged bead, the depth of the bead in each A-scan was 
extracted by (1) manually locating at least 5 points along the trajectory of the bead from the 
OCT image, (2) interpolating between the located points via cubic spline interpolation, and 
(3) searching, via an automated algorithm, for the pixel with maximum OCT intensity in each 
A-scan in the vicinity of the interpolated curve. Then, the displacement of the bead from the 
focal plane of the forcing beam (determined from the OCT focal plane on the OCT image) 
was calculated from the optical path length; this provided position ( )z t  of each bead. 

The velocity ( )z t  and acceleration ( )z t  of each bead were obtained by numerically 
differentiating the raw z(t) using a finite difference method with second order polynomial 
curve fitting over a sliding window [50]. Briefly, the raw ( )z t  over the window [ ],i k i kt t− +  

was fit to a second-order polynomial function ( ) 2
2 1 0, , ,i i i ip t p t p t p= + +  via least-square 

curve-fitting, where i  is the A-scan index and k  is an integer. Then, the first and second 
derivatives at the ith A-scan are given by: ( ) 2 1, ,2i i iz t p t p= +  and ( ) 2,2i iz t p= . The size of the 
sliding window was determined for each bead based on the time-averaged speed of the bead 
over its entire trajectory. The time-averaged speed is given by ( ) ( )( ) ( )1 1avg n ns z t z t t t= − − , 

where 1t  corresponded to the first time point at which the bead appears on the image and nt  
corresponded to either the time point at which the bead disappeared from the image (via 
diffusion away from the imaging axis), or the time point at which it is joined by one or more 
beads (we excluded trajectories produced by two or more conjoined beads), whichever 
occurred first. The window size was given by ( ) avg25 μmi k it t s+  − =   . Lastly, ( )iz t  and 

( )iz t  were substituted into Eq. 2(b) to solve for ( )rad iF t , from which we obtained 

( ) ( )( )rad rad iF z F z t= . 

3.5 Measurement of depth-dependent forcing beam profiles, and theoretical 
prediction of radiation-pressure force 

The depth-dependent intensity profile, ( )totI z , of the forcing beam was obtained by 
measuring the reflected confocal intensity from a glass slide surface, translated to different 
depths about the focal plane, using a photoreceiver. The focal plane was determined as the 
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depth at which the reflected confocal intensity was at its maximum. The ( )totI z  curve was 

normalized with respect to this maximum value, such that ( )tot 0 1I z = = . 
The 3D point spread function (PSF) of the forcing beam was obtained by taking the 

reflected confocal images of a single 2.29-μm polystyrene bead, resting on an AR-coated 
convex lens, translated to different depths about the focal plane. The depth-dependent beam 
radius, ( )w z , was obtained from the 21 e  radius of the en face bead intensity image at each 
depth by (1) locating maximum bead intensity, corresponding to the ‘center’ of the PSF, (2) 
taking a slice through the ‘center’ of the PSF and locating points r−  and r+ , corresponding to 
radial distances at which the bead intensity was 21 e  of the maximum value on either side of 
the PSF ‘center’, and (3) calculating the beam radius as ( ) 2w r r+ −= − . Steps (2) and (3) 
were repeated 10 times with the slice in step (2) taken at varying angles, 10nπ , where 

0 1 9, , ,n =  . The final ( )w z  curve was obtained from the average of all 10 realizations. 

From the measured ( )w z , we extracted the beam waist radius, ( )0 0w w z= = , and the 

confocal parameter, b , by curve fitting the measured ( )w z  to: 

 ( )
2

0 1 4 .zw z w
b

 = +  
 

 (3) 

Equation (3) has the functional form that is similar to the description of a Gaussian beam, but 
without enforcing the relationship 0 Rw z λ π= , where R 2z b=  is the Rayleigh range. 

For the theoretical comparison with the measured ( )radF z , we implemented the GLMT 

formulation to calculate the ( )pr,zC z  of a Gaussian beam on a homogeneous spherical 
particle (using localized approximation of the first-order Davis beam, LA1, for the beam 
shape coefficient [33]) in MATLAB (R2016b) and obtained the theoretical prediction of 

( )radF z  from Eq. (1). Noting that we did not experimentally achieve an ideal Gaussian beam, 
our theoretical predictions utilize an equivalent Gaussian beam with the same confocal 
parameter, i.e., R 2z b=  and 0 Rw z λ π= , for each of the forcing beams. 

4. Results 
4.1 Axial motion of beads in viscous media 

Figures 3(a)–3(f) shows the M-mode OCT images and representative bead motions in 3 
concentrations of glycerol-water solutions. The beads were initially at their equilibrium 
velocity, governed by WF , BF , and DF . Figure 3(c) shows that the beads in 30% glycerol-
water mixture were initially floating upward at equilibrium due to the higher density of the 
medium at this concentration ( med beadρ ρ> ). Immediately after the forcing beam power 
(140 mW) was turned on (red dotted lines in Figs. 3(a)–(c)), the beads were accelerated 
downward by depth-dependent radF  from the forcing beam, producing trajectories similar to 
that simulated in Fig. 1(c). Notably, multiple beads appear within the imaging axis after 
illumination by the forcing beam, thus, each M-mode data set contained the trajectories of 
multiple beads. 

A representative bead trajectory and corresponding velocity and acceleration profiles, 
obtained via numerical differentiation, in each sample are shown in Figs. 3(d)–3(f). In all 
three samples, the beads reached their maximum velocity and decelerated after passing 
through the focal plane. We observed two local maxima in the velocity profiles (red arrows 
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and inset in Fig. 3(e)), corresponding approximately to the instances when the beads were 
passing through the focal plane. These features were consistently observed on multiple beads 
in media with different glycerol concentrations and power levels of the 789-nm forcing beam 
(data not shown) but were not present in the simulation in Fig. 1(c). The maximum velocity 
and acceleration decreased with increasing viscosity of the medium. 

 

Fig. 3. Dynamics of beads accelerated by radiation pressure in media with different viscosity. 
M-mode OCT images in (a) water (ηmed: 1.1 ± 0.1 mPa∙s), (b) 10% glycerol (ηmed: 1.3 ± 0.1 
mPa∙s), and (c) 30% glycerol (ηmed: 2.4 ± 0.1 mPa∙s). Red dotted lines indicate the moment 
when the forcing beam was turned on. Blue arrows indicate glass surfaces. Green arrows 
indicate beads whose motions were plotted in (d)-(f). Scale bar: 200 µm (vertical) and 3 s 
(horizontal). (d) Axial position of a bead in each sample as a function of time. (e)-(f) Axial 
velocity and acceleration obtained by first and second derivatives of trajectories in (d). Red 
arrows in (e) point to the two local maxima in the velocity profiles, inset shows a zoomed-in 
view of the two local maxima from measurements of multiple beads (see Section 4.2 and 5.1 
for further information). 

4.2 Depth-dependent radiation-pressure force 

The depth-dependent radiation-pressure force was obtained for each bead from its trajectory. 
In order to compare ( )radF z  for different experimental conditions (each contained data from 

5 to 16 beads), we obtained the median values of ( )radF z  from all beads at each depth. The 
comparison with theoretical prediction by GLMT in Fig. 4(a) shows that the measured 

( )radF z  was lower around the focal plane but the measured force had a larger depth coverage 
than the theoretical predictions. To investigate the discrepancy between experiments versus 
theoretical prediction based on a Gaussian beam, we compared the measured ( )radF z  to the 

measured PSF of the forcing beam in Fig. 4(b). Both the total beam intensity, ( )totI z , and the 

beam radius, ( )w z , profiles showed evidence of aberrations and deviations from the 
theoretical Gaussian beam profile. Particularly, the measured confocal parameter (obtained 
from fitting the measured ( )w z  to Eq. (3)) was b = 121.44 µm, whereas the expected 
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confocal parameter of a Gaussian beam with the same waist radius would have been R2z  = 
90.39 µm. Moreover, the ( )totI z  curve exhibited a local maximum above the focal plane 

( z ≈ -50 µm), which also manifested in the measured ( )radF z  (red arrows in Figs. 4(a) and 
4(b)). The en face images of the PSF indicate the depth-dependent impact of optical 
aberrations. We note that the ( )totI z  curve for the 976-nm beam (not shown) also exhibited a 
local maximum above the focal plane, although less prominently than the 789-nm beam. 

 

Fig. 4. Depth-dependent profiles of radiation-pressure force and the point spread function 
(PSF) of the 789-nm forcing beam. (a) Comparison of measured Frad(z) (a: 3 µm; medium: 
10% glycerol) to the theoretical prediction by GLMT for a Gaussian beam with zR = b/2. (b) 
Depth-dependent profiles of reflected confocal intensity, Itot(z), and 1/e2 radius, w(z), of the 
forcing beam. From the fit curve of measured data, the forcing beam w0 = 3.37 µm and b = 
121.44 µm. En face images of the PSF are provided at selected depths; each image was 
normalized by its maximum intensity and has a field-of-view of 30 µm × 30 µm. In (a-b), red 
arrows point to the local maxima above the focal plane that manifested in the measurements of 
both Itot(z) and Frad(z). 

4.3 Effects of beam power, bead size, relative refractive index, and wavelength 

We compared the focal plane force, ( )rad 0F z = , measured with different forcing beam 
power, bead sizes, and relative refractive indices between the bead and the medium in Figs. 
5(a)‒5(c). The results were also compared to the theoretical predictions by GLMT. We 
investigated the expected linear relationship between radF  and the forcing beam powers by 
measuring radF  on 3-µm diameter beads in 10% glycerol at different forcing beam powers. 
Figure 5(a) shows that the measured radF  was indeed linearly proportional to the forcing 
beam power, but had lower magnitude per unit power than the theoretical prediction by 
GLMT (0.11 pN/mW measured versus 0.16 pN/mW predicted). 
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Fig. 5. Effects of beam power, wavelength, bead size, and refractive index on radiation-
pressure force. (a) Frad at the focal plane as function of forcing beam power (a: 1.5 µm; 
medium: 10% glycerol). (b) Frad at the focal plane as a function of bead diameter (P: 140 mW; 
medium: 10% glycerol). (c) Frad at the focal plane as a function of relative refractive index (a: 
1.5 um; P: 140 mW). (d) Comparison of depth-dependent Frad from the forcing beam with 
wavelength of 789 nm versus 976 nm (a: 1.5 um; P: 54, 79, 140 mW; medium: water). Plotted 
data points represent median values of Frad(z) obtained from N = 16 beads for 789 nm and N = 
15 beads for 976 nm. Inset shows GLMT predictions of Frad(z) per unit power for the two 
cases. In (a-c), vertical error bars represent ± 1 standard deviation of results obtained from N = 
10-16 beads (except in (b), N = 5 for 2a = 0.46 µm and in (c), N = 7 for DMSO). In (b), 
horizontal error bars represent the bead size distribution reported by the manufacturers. 

The effect of varying the bead size was investigated by measuring radF  on beads of 
different diameters in 10% glycerol. Figure 5(b) shows that the measured radF  increased 
monotonically with the diameter of the beads. This trend was consistent with the GLMT 
predictions, even though the absolute measured force magnitude at each bead size was 
approximately 20-30% lower. We also investigated the effect of varying the relative 
refractive index, bead medn n , by measuring radF  on 3-µm diameter beads in media of different 
refractive indices. Similar to the previous case, Fig. 5(c) shows that radF  increases with 
increasing mismatch between beadn  and medn  as predicted by GLMT, but the measured force 
magnitude was approximately 20-30% lower. 

Lastly, we compared ( )radF z  on 3-um diameter beads in water for forcing beam 
wavelengths of 789 nm and 976 nm; the latter wavelength has over an order of magnitude 
larger absorption by water [44]. These two wavelengths were chosen to investigate the 
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contributions of any absorption-mediated forces [38,51,52], in order to determine whether our 
measured forces from the 789-nm beam could be predominantly attributed to scattering-
mediated radiation pressure. Figure 5(d) shows that the measured ( )radF z  was comparable 
between the two wavelengths, with the force being slightly lower with the 976-nm beam. The 
ratio of ( )rad 0F z =  per unit power between the two wavelengths, i.e. rad, 976nm rad, 789nmF F  , is 
0.937 for the measurement, comparable to the theoretical prediction of 0.957. 

5. Discussion 
5.1 Comparisons with theory, and implications for theoretical prediction of radiation 
pressure forces in the presence of optical aberrations 

The measured ( )radF z  profile exhibited lower focal plane forces but had a larger depth 
coverage compared to the theoretical prediction. We attribute the discrepancy between 
experiment and theoretical prediction to the depth-dependent impact of optical aberrations in 
our forcing beam. Although we accounted for the actual beam divergence by calculating 0w  
for input to the GLMT formulation from the measured confocal parameter, this approach 
could not account for the presence of aberrations in the forcing beam (Fig. 4(b)). Another 
factor that led to lower measured radF  relative to the theoretical prediction could be the entry 
into the forcing beam path of one or more beads above another; typically, this occurred over 
100 µm above each bead (Figs. 3(a)–3(c)). However, we believe that this effect was minimal 
because >99% of the total scattered intensity of our forcing beam off a Mie particle was in the 
forward direction (average cosine of phase function, g ~0.9) based on GLMT simulation. 
Furthermore, a commercial-grade simulator based on the finite-difference time-domain 
method by Lumerical Inc. [53] predicted <2.5% decrease in ( )rad 0F z =  due to the presence 
of another bead located at z ≤ –100 µm directly above it, corresponding to a drop in 

( )rad 0F z =  of <0.6 pN. Further work is needed to investigate the role of wavefront distortion 
on radF  for more isotropic scattering cases and more highly scattering media. 

Although the absolute magnitude of the measured radF  was lower than the theoretical 
prediction, we validated that the trends of measured radF  as a function of relevant parameters 
agree with theory. Firstly, the linear relationship between ( )rad 0F z =  and the power of the 
forcing beam, which is expected regardless of the beam characteristics, is confirmed (Fig. 
5(a)). Secondly, the expected increasing trends in ( )rad 0F z =  as a  approaches w0 (i.e., a 
larger fraction of photons encounter the bead), and as the mismatch between beadn  and medn  
increases are also observed (Figs. 5(b) and 5(c)). 

Lastly, the comparison to ( )radF z  with a 976-nm forcing beam also agrees with 
theoretical predictions (Fig. 5(d)). This comparison establishes that the contribution of 
absorption-mediated forces [38,51,52] (if present) in our radF  measurements at 789 nm is 
negligible because the two wavelengths produced relative ( )radF z  that agrees with the 

theoretical predictions of ( )radF z  at these two wavelengths, despite the 976-nm beam having 
over an order of magnitude larger absorption by water than the 789-nm beam [44]. We note 
that under different experimental conditions, where the bead displacements are significantly 
lower than those observed here, the contribution of absorption to the measured bead 
trajectories could be more significant. 

Utilizing co-aligned beams and OCT line-scan imaging, axial trajectories of polystyrene 
beads under externally applied radiation-pressure force from the forcing beam were 
monitored in real-time. The measured bead trajectories exhibited unexpected cycles of rapid 
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acceleration and deceleration that resulted in two local maxima in the velocity profiles (red 
arrows in Fig. 3(e)). These particle dynamics subsequently revealed the existence of two local 
maxima in the ( )radF z  profiles, which coincided with the two maxima observed in the 
measured reflected confocal intensity profile of the forcing beam (red arrows in Figs. 4(a) and 
4(b)). This behavior can be predominantly attributed to the optical aberrations in the forcing 
beam. In conventional high-NA optical manipulation, spherical aberrations due to beam 
propagation through interfaces with refractive index mismatch have been previously 
described [54] and incorporated into GLMT simulation (as opposed to an ideal Gaussian 
beam approximation used here) to more realistically model the experiment [55]. However, 
results from ray trace simulation suggest that this phenomenon is negligible for our low-NA 
forcing beam [56], and that aberrations of the beam are predominantly due to the aberrations 
of the BCM and OCT free-space optics. The effects of indeterminate wavefront distortions 
(e.g., those present in the en face views of the PSF in Fig. 4(b)) would be challenging to 
theoretically simulate without experimental measurement of the beam aberrations. An 
approach to determine the beam shape coefficient for GLMT formulation from an 
experimentally measured beam intensity profile has been developed [57], but the extension of 
this approach to predicting radiation pressure of an actual beam, with experimental 
comparisons, has not been done. Our results demonstrate the importance of being able to 
experimentally measure the depth-dependent force profile from an actual beam, which, in 
practice, inevitably contains some level of aberrations that are not completely characterized, 
and therefore deviates from a theoretical description of the beam [34,58]. Our method for 
depth-resolved axial radiation-pressure force measurement can provide an additional 
experimental approach to investigate the effects of beam non-ideality on radiation pressure 
and help improve theoretical predictions of radiation-pressure forces in the presence of optical 
aberrations. 

5.2 Possible extensions of the presented experiments 

Even with low-NA beams, the effects of both axial and radial components of the optical force 
on microscopic particles have previously been demonstrated [1,32]. Although the experiments 
presented here quantitatively measures radF  acting in the axial direction only, the M-mode 
OCT images also qualitatively show the effects of the force in the radial direction on the 
beads. This is evident from the appearance of ‘new’ beads on the image every 1-3 s in the 
presence of the forcing beam (note the number of beads that appear on the OCT images after 
the red dotted lines in Figs. 3(a)–3(c)), as opposed to having only 1-2 beads on the image 
before the forcing beam was turned on. These ‘new’ beads were not originally within the PSF 
of the OCT beam, but were later pulled towards the optical axis of the forcing beam (co-
aligned with the OCT beam) by the gradient force. The presented experimental setup can be 
modified to accommodate scanning of the OCT beam independent of the forcing beam (e.g., 
having the two beams in a counter-propagating configuration). Utilizing high-speed 
volumetric OCT imaging, 3D dynamics of the beads can be captured that allows for depth-
resolved quantification of both axial and radial optical forces by solving the equations of 
motion in Eqs. 2(a) and 2(b) extended to 3D. 

Our method for radF  measurement is not only applicable for charactering a low-NA near-
Gaussian beam, but can also be applied to characterize radiation-pressure forces from other 
types of beams. Of particular interest could be the measurement of axial force profiles on 
different types of particles along the propagation distance of optical conveyor or tractor 
beams, which have been rigorously derived from theory but have not been fully characterized 
experimentally [14–17,20,35–37]. In addition, our method may also be applied to characterize 
axial force profiles in trapping configurations (as opposed to transport of particles), such as 
conventional high-NA OTs, axial OTs [59,60], or Bessel beam optical traps [10–13]. In these 
cases, axial position detection with nanometer resolution is required to track particle 
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displacement over hundreds of nanometers. Typical approaches employed in optical 
manipulation for nanometer-scale 3D particle tracking are back-focal plane interferometry 
with a quadrant photodiode (QPDs) or a position sensitive detector [5,59], and digital 
holographic microscopy with a high-speed camera [5,61]. Although not leveraged in the 
presented experiments, SD-OCT is also capable of axial position detection with sub-
nanometer displacement sensitivity via the phase of the complex OCT signals (not to be 
confused with the micrometer-scale axial resolution of the OCT system) [62]. In SD-OCT, 
the axial displacement is directly obtained from the change in phase of the OCT signal, unlike 
in QPD-based back-focal plane interferometry, where the displacement is obtained from 
voltage-to-displacement conversion. Compared to the computationally intensive 
reconstruction of axial position from 2D holograms in digital holographic microscopy, the 
axial displacement can be obtained from the raw SD-OCT signal via 1D Fourier 
transformation and calculation of the phase angle of the OCT signal. Lastly, OCT operates in 
reflection mode, whereas back-focal plane interferometry and digital holographic microscopy 
in optical manipulation typically operate in transmission mode. Imaging in the reflective 
configuration can be advantageous when conducting measurements in thick or optically dense 
samples. 

Although our presented experiments were designed to measure radF , our experimental 
approach is generally applicable to the measurement of forces in the axial direction that 
cannot be accounted for by known bead-medium interactions (e.g., buoyancy and drag 
forces). In our experiments, radF  was the dominant external force that led to measurable 
changes in the dynamics of beads (note that our measurements with 976-nm beam in Fig. 5(d) 
rules out any significant contribution of absorption-mediated forces). However, if the 
experimental conditions were to change such that other types of external forces were present, 
the same experimental approach could be used to measure those forces. For instance, 
radiometric forces [51,52] can be measured by replacing the non-absorbing polystyrene beads 
with highly absorbing particles. 

5.3 Potential for a new mode of optical manipulation with extended depth range 

Our results demonstrate that the radiation pressure from a low-NA forcing beam could 
influence the dynamics of polystyrene beads over a depth range of several hundred 
micrometers (Figs. 3(a)–3(d)). This implies that parallel, but transversely localized, 
manipulation of multiple microscopic particles distributed over a large axial range can be 
achieved by a single low-NA beam. Combined with real-time detection of particle dynamics 
over an extended depth-of-field by OCT, radiation pressure from a low-NA beam, with a 
large confocal parameter, may open up new opportunities for quantitative optical 
manipulation and detection over spatial scales currently inaccessible to conventional single-
beam gradient force optical traps. We note that the 400-µm depth range demonstrated here 
was limited by the axial coverage of the forcing beam, but in principle, OCT measurements of 
axial optical forces on a particle with millimeter-scale coverage is possible. 

The ability to capture fast dynamics and quantify the magnitude of radF  on multiple 
particles distributed across depths in parallel with a simple OCT setup and a low-NA beam 
may be beneficial for quantitative experiments in optical chromatography or particle sorting 
based on radiation pressure [24–27]. Real-time detection of particle motion over an extended 
axial range in optical manipulation is typically achieved with either a wide-field imaging 
system in a side-viewing configuration [14] or, more recently, digital holographic microscopy 
[15,17,61]. Here, we showed that OCT can offer another alternative mode of real-time 
particle displacement tracking for optical manipulation over an extended axial range. 
Compared to the existing suite of techniques, an OCT-based approach offers its own unique 
advantages. Firstly, OCT can facilitate measurements in a co-axial, epi-illumination 
configuration with the forcing beam and allow reconstruction of particle displacement via 
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simple established algorithms. This can be beneficial when achieving side-view-wide-field or 
trans-illumination imaging is experimentally inconvenient or impractical. Secondly, OCT is 
suitable for imaging in scattering media, which may be particularly desirable in some 
biological applications, such as measurements in turbid cell suspensions. In a recent study, 
optical force has been proposed as a potential tool for diagnosis and sorting of blood cells 
with morphological diseases, such as red blood cells infected with the malaria parasite, into 
different stages of disease progression [63]. Combining the presented experimental 
configuration with a flow system used in particle sorting experiments, our method for 
quantification of radF  may provide a new tool for quantitative optical sorting of cells in whole 
blood by stage of disease. 

Our experimental approach is not restricted to the measurement of optical forces. Once the 
( )radF z  profile for the forcing beam has been characterized, measured dynamics of beads 

(together with refractive indices of the beads and the medium) can be used to quantify the 
mechanical properties of the medium. In the case of beads suspended in viscous fluid, as 
presented here, the viscosity can be measured. If the beads were to be embedded in 
viscoelastic materials (such as hydrogels of biological relevance), the viscoelastic moduli of 
these materials could be quantified. This concept has been exploited by OT-based active 
microrheology (OT-AMR) [64–66] to characterize the microscale mechanical properties 
below the surface of the viscoelastic biological media, i.e., beyond the reach of atomic force 
microscopy. Typical transverse forces employed in OT-AMR are on the order of 1-10 pN (for 
typical oscillation amplitudes of 50-100 nm) [64–66]. Our measurements confirm that forces 
in this range can also be achieved by a low-NA beam with a power of less than 100 mW. 
While OT-AMR excels at precise measurements on a selected number of beads over a limited 
depth below the surface (due to the use of a high-NA optical trap) [66], the use of a low-NA 
forcing beam is unique in its extended depth range over which transversely localized radF  can 
be applied. By enabling parallel manipulation and measurements of multiple beads distributed 
over a depth range of several hundred micrometers, the combination of OCT imaging and 
optical manipulation based on low-NA radiation pressure has the potential to extend existing 
OT-based mechanical microscopy techniques to enable high-throughput volumetric 
measurements. 

6. Conclusion 
We have presented a new method for depth-resolved quantification of radiation-pressure 
forces based on the measurements of axial bead trajectories with OCT. After obtaining the 
axial velocity and acceleration of the beads by numerical differentiation of measured bead 
trajectories, radiation-pressure force acting in the axial direction as a function of depth on 
each bead was determined by solving the equation of motion that describes the dynamics of a 
moving sphere in a viscous fluid. Here, we used OCT for real-time monitoring of particle 
dynamics because it enables real-time axial position detection over a large depth range in a 
simple epi-illumination configuration. With appropriate modification to the experimental 
setup and sample configuration presented here, our measurements of axial radiation-pressure 
force may alternatively be achieved with traditional wide-field imaging from the side or 
digital holographic microscopy often employed for particle tracking in optical manipulation. 
Experimental measurements were compared to theoretical predictions of radiation-pressure 
force based on GLMT. We investigated the effects of beam power, wavelength, bead size, 
and relative refractive index, and found that our measurements exhibit general trends that are 
consistent with theory. However, due to the presence of aberrations and deviations from an 
ideal Gaussian beam profile, our measured depth-dependent radiation-pressure forces have 
lower magnitude around the focal plane, but a larger depth coverage than an ideal Gaussian 
beam. This highlights the importance of experimentally characterizing the radiation-pressure 
force profile from an actual (non-ideal) beam, as this can be challenging to accurately predict 
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from theory. Lastly, our use of OCT to measure the dynamics of particles under manipulation 
by long-range axial optical forces may find applications in the study of optical manipulation 
methods with an extended depth coverage. Our method also provides a quantitative 
foundation for future applications that combine volumetric micromanipulation and OCT 
detection of bead dynamics in viscoelastic media. 
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