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ABSTRACT

Objective We study the use of speech recognition and information extraction to generate drafts of Australian nursing-
handover documents.

Methods Speech recognition correctness and clinicians’ preferences were evaluated using 15 recorder—microphone
combinations, six documents, three speakers, Dragon Medical 11, and five survey/interview participants. Information
extraction correctness evaluation used 260 documents, six-class classification for each word, two annotators, and the
CRF-++ conditional random field toolkit.

Results A noise-cancelling lapel-microphone with a digital voice recorder gave the best correctness (79%). This micro-
phone was also the most preferred option by all but one participant. Although the participants liked the small size of this
recorder, their preference was for tablets that can also be used for document proofing and sign-off, among other tasks.
Accented speech was harder to recognize than native language and a male speaker was detected better than a female
speaker. Information exiraction was excellent in filtering out irrelevant text (85% F1) and identifying text relevant to two
classes (87% and 70% F1). Similarly to the annotators’ disagreements, there was confusion between the remaining
three classes, which explains the modest 62% macro-averaged F1.

Discussion We present evidence for the feasibility of speech recognition and information extraction to support clinicians’
in entering text and unlock its content for computerized decision-making and surveillance in healthcare.

Conclusions The benefits of this automation include storing all information; making the drafts available and accessible
almost instantly to everyone with authorized access; and avoiding information loss, delays, and misinterpretations
inherent to using a ward clerk or transcription services.

Key words: computer systems evaluation, information extraction, nursing records, patient handoff, speech recognition
software

OBJECTIVE The failures are tangible in clinical handover or handoff when
Fluent channels, communication, contact, and links to pertinent  a clinician is transferring professional responsibility and account-
people, that is, flow of information,' is important in any ability, for example at shift change.*® In nursing handover the
information-intensive organization but critical in healthcare outgoing nurse verbally presents critical patient information to
services. However, failures in the flow are common and lead to ~ the oncoming nurse(s). This often occurs at the point of care or
adverse events that could have been prevented. For example, patient bedside. Then follows another separate process where
in Australian healthcare, these failures are a major contributing nurses document similar information delivered at verbal hand-
factor in over two-thirds of sentinel events in hospitals and over into the patient’s record.” Regardless of the verbal part
associated with over one-tenth of preventable adverse being accurate and comprehensive, anything from two-thirds to
events.> This includes delays in diagnosis or treatment; all of this information is lost after 3-5 shift changes if handover
administration of wrong treatments or medications; and missed notes are not documented or they are taken by hand.®° In con-
or duplicated tests. trast, effective handover documentation improves care continuity
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and reduces errors.*'®'" Consequently, related guidelines and
standards for clinicians and managers exist both internationally
and nationally.'>™3

In this paper, we study the use of speech recognition and
information extraction methodologies to generate drafts of
nursing handover suitable for the nursing notes within the
patient record automatically (glossary of underlined key terms
in online supplementary appendix). A speech recognition sys-
tem transcribes verbal information into written text. By identify-
ing relevant snippets of this text for each slot of a handover
form, an information extraction system fills out the form. This
pre-filled form is given to a clinician to proofread and sign-off.
The paper presents empirical findings using a real-life clinical
dataset with a focus on nurses’ shift changes.

BACKGROUND

Result correctness

Speech recognition achieves 90-99% of the words being cor-
rectly detected with only 30—-60 min of tailoring to a given clini-
cian. This correctness is supported by studies using 12 US-
English male physicians’ speakers on two medical progress
notes, one assessment summary, and one discharge sum-
mary;'* two US-English physicians’ speakers on 47 emergency
department charts;'® and speakers of seven Canadian-English
pathologists and one foreign-accented researcher on 206 sur-
gical pathology reports.'® Speech recognition gives 6.7 errone-
ous words per clinical report; this rate is 0.4 for human
transcribers.'® When comparing speech recognition systems,
IBM ViaVoice 98 General Medicine provides the best average
correctness (91-93%), but this rate is only slightly worse for
L&H Voice Xpress for Medicine 1.2 General Medicine (85—87%)
and Dragon Medical 3.0 (85-86%).'* A study using eight
Danish speakers and about 3600 anesthesia comments dem-
onstrates that the correctness is over 77%, even in the pres-
ence of background noise and interruptions.'’

Information extraction as a method for filling out clinical
forms has been addressed in over 170 studies between 1995
and 2008, with the best correctness exceeding the 90% F1.'®
The most common tasks include code extraction (eg, for
assigned diagnosis codes or performed pathology examina-
tions); de-identification and other report processing to support
record research (eg, hiding or replacing patient names, dates
of birth, and other privacy-sensitive words); record enrichment
or structuring, especially to support computerized decision-
making and surveillance in healthcare (eg, filling out forms
related to incidences of cold, fever, and seasonal influenza in a
given geographic region); and clinical terminology management
(eg, creating a minimum dataset for emergency care, nursing,
or other clinical specialty). This work mostly focuses on dis-
charge, echocardiogram, pathology, and radiology reports.

Time released from documentation for other tasks

Each healthcare event must be documented in clinical records
by law and this takes a lot of clinicians’ time away from other
duties. To illustrate the large number of events to document, in
the OECD (Organisation for Economic Co-operation and

Development) countries, seven physician consultations take
place on average per capita per year and the annual hospital
discharge rate is over 16000 per 100000 population.'®
Clinicians type approximately 40% of electronic clinical records
as text; the remaining 60% is either manually- or automatically-
entered structured information.?® As an example of the over-
whelming amount of manually documented information, the
average number of structured items that clinicians enter in
intensive care alone is over 1500 items per patient-day, and the
amount of textual notes for a patient can be over 60 pages.?'??

Free-form text as an entry type is essential to release clini-
cians’ time for other tasks. With electronic clinical records,
allowing free-text entry at the point of care, clinicians use typi-
cally a few minutes per patient on documentation, but fully
structured or centralized solutions can increase this to nearly
60% of their working time.>*> Further time saving can be
gained by using speech recognition to support clinicians in
entering text. At two US emergency departments, speech rec-
ognition and manual transcription have the report turnover
times of 4min and 40 min, respectively, with approximately
4 min proofing time in both cases."® Similarly in three US mili-
tary medical teaching facilities, speech recognition with proof-
ing by hand results in 4.7 times faster turnover than manual
transcription.?® This efficiency improvement is 2.1 at a Finnish
radiology department and 3.0 in over 40 US radiology practi-
ces.?”% In a longitudinal study on 5011 US surgical pathology
reports, the turnaround was 1.3 times faster after speech rec-
ognition was used for over 35 months.?®

Importance of text structuring

Structuring the record content previously documented as free-
form text makes finding and using relevant information easier,
while also making information available for computerized deci-
sion-making and surveillance in healthcare.®® However,
accomplishing this structuring by hand takes more clinicians’
time than entering free-form text, and using structured infor-
mation without the option of visiting the original unstructured
text can lead to a significant information loss as well as differ-
ences and errors in the coding.>~2>%"32 This results from lim-
iting the freedom and expressive power of free-form text,
which contains valuable, interpretative information on patients’
status and clinicians’ decision-making, and provides stronger
support to individualized care than structured electronic clinical
records alone.?’**3° Nurses are keen to use speech recogni-
tion and information extraction systems if they enhance patient
safety and reduce adverse patient outcomes.>®

In this paper, we study the combined use of speech recog-
nition and information extraction to generate drafts of struc-
tured handover documents. The potential benefits of this
automation are threefold.

First, it stores all information. The approach covers the
whole workflow from the recording of verbal handover through
the speech-recognized transcription and automatically filled-
out form to the proofed and signed-off record. In this way, clini-
cians never lose the context nor the changes, and the change-
history can be used to improve the result correctness.
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- 1: An example scenario. Permitted re-print.*’

Bed eight, Michael Tian. Forty-eight years under Dr Greenborough. He came in with
headache and vertigo. He's got a history of headache, tinnitus, Bell's Palsy to the left
side of his face. That's where his headache has been for the last three years. He's also
got photophobia. His GCS is 15 pupils equal and reactive. He's just came back from a
brain MRI at Park Central. He's ambulant and self-caring but he's a little bit unsteady
at times. OBS are stable. He is for carotid doppler, he was supposed to have this
morning at 950 but that pushed it back to 1050, 1030, sorry, because they were late.
Then the team were here and they said it's cutting it too close to his MRI so he needs
another carotid doppler appointment. Other than that he's fine.

Second, it makes the record drafts available and accessible
almost instantly to everyone with an authorized access to a
particular patient’s documents. The transcription for a minute
of verbal handover (approximately 160 words) is available 20 s
after finishing the handover if processing is performed in real
time with the speed of 120 words per minute, while the waiting
time for handwriting/typing is at least 3.5min longer.3’~*°
Additional issues with paper-based records include accessibil-
ity to only a couple of people in one location at a time together
with their poorer readability and unavailability for automated
re-use. Automated structuring through information extraction is
systematic and almost instantaneous. The downside of only
recording the verbal information is the inherent inability to
automatically search information from these records if tran-
scriptions are not available.

Third, an alternative approach of having a ward clerk to
take the notes is even more prone to errors than the handover
clinicians documenting the information themselves. In this
approach, the clinician to whom the patient is handed over ver-
bally summarizes the handover information to the clerk who
then writes the handover document, by hand or typing. If we
extrapolate from the information-loss rate for not taking
notes,®® during one shift more than 13% of the information
gets lost.

MATERIALS AND METHODS

We evaluated speech recognition correctness and clinicians’
preferences for microphones and recorders in simulated clini-
cal settings, where one nurse is presenting a patient at a shift
change.*' The evaluations used six handover scenarios across
the specialties of aged care (n=1, 366 words), dementia
(n=1, 106 words), neurological (n=1, 144 words), and medi-
cal (n=3, 189+136+120 = 445 words) as well as the base-
line of the Preamble to the Australian Constitution (figure 1).
Derived from existing clinical handover data, these fictitious
and de-identified scenarios reflected a range of realistic hand-
over situations.*?

We used the Dragon Medical Speech Recognition System,
V.11 for Australian English with the vocabularies of general
medicine, medicine, and nursing. We recorded three speakers
(ie, two Australian-English native speakers (male physician and
female nursing professor) and one Australian Spanish-accented

female nurse) in a studio. We played these recordings using
professional-level speakers and recorded this sound across all
15 feasible recorder—microphone combinations of two lapel
microphones, two headsets, an MP3 player, two digital voice
recorders, a smartphone, and two tablets (figure 2). We chose
to tailor the speech recognition system minimally, requiring
less than 5 min of prepared text reading by each speaker. As a
measure of correctness, we compared the original text read by
the three speakers with the Dragon outputs by analyzing cor-
rectly recognized, substituted, deleted, and inserted words,
based on the edit distance between the compared texts. For
this computation, we used the SCLITE scoring tool of the
Speech Recognition Scoring Toolkit, V.2.4.0.10 with capitaliza-
tion as a non-distinguishing feature and punctuation removed.
To illustrate, when generating you are for your, we observe a
substitution you—your and an insertion are and when generat-
ing your for you are, this substitution is your—you whilst the
word are got deleted.

We studied preferences via an 18-item pre-survey, 11-item
post-survey, and one-to-one post-interview at a virtual clinical
ward. Four registered nurses (two male and two female) and
one female nursing scientist participated in the study. They
had, on average, 28years’ clinical experience. The surveys
addressed initial perceptions of speech recognition and per-
ceived usability of the microphones and recorders (eg, power,
recording, file upload, and other typical functions).

In information extraction, we used the total of 260 de-
identified handover reports related to nursing shift-changes at
medical and surgical wards in hospitals based in Sydney,
Australia. The reports were based on human transcriptions
(without eh, um, and other ‘backchannels’ but containing labels
[unclear] and [inaudible] for incomprehensible parts) of verbal
handovers that were collected by audio taping during either the
morning or afternoon shift.

The form used to structure these text reports was based on
the ICCCO model with five categories (table 1): identification
(Iccco), clinical history/presentation (iCcco), clinical status
(icCco), care plan (iccCo), outcomes of care and reminders
(iccc0),*>* supplemented with the sixth category (not applica-
ble, NA) for irrelevant text. We chose this model because it has
previously been shown to capture and present the information
transferred during 81 handover cases related to nursing shift-
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Figure 2: The compared microphones and recorders. 1 AUD = 0.91 USD (March |23, 2014). In the soundproof professional
studio, we used a professional-level recorder (EDIROL UA-25 24 bit/96 kHz USB|Audio Capturer) and microphone (Audio-
Technica AT892cW-TH MicroSet Omnidirectional Condenser Headset). We played|these recordings using professional-level
speakers (EDIROL MA-15D Digital Stereo Micro Monitor Speakers) in a quiet meeting room.
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changes within medical-surgical units in 10 major teaching
hospitals in Sydney, Australia in 2012.*** This model change
resulted in improved nurse satisfaction, reduced falls, and clini-
cal management errors. In this study, the five categories were
used as headings of the handover form to be filled out with rel-
evant information.

The final annotation (ie, the fourth round) (table 2) by one
expert annotator (ie, PS) used as an information extraction gold
standard was formed after three rounds of prior annotations by
two expert annotators working independently of each other.
The annotators (ie, PS and MJ) were supervised by an informa-
tion extraction expert (HS) and had a weekly or fortnightly
meeting to discuss this annotation process, its guideline, and
specific problems. The first, second, third, and fourth rounds
used a randomly selected subset of 10 reports out of the 260
reports, 50 reports out of the remaining 250 reports, 50 reports
out of the remaining 200 reports, and the remaining 150
reports, respectively. Between each round, the supervisor
measured the inter-annotator agreement, as defined by the
Knowtator 1.9 Beta 2 plugin for Protégé 3.3.1, analyzed dis-
agreements, and provided stylistic examples of common dis-
agreements to the annotators.** After this feedback, the
annotators revised the guideline and performed the next anno-
tation round. This was continued until there was minimal dis-

agreement between the five categories (tables 3 and 4). The
remaining disagreements related to annotating many short,

scattered snippets of text or fewer long, continuous snippets
(ie, stylistic difference). We considered the more thorough but
laborious alternative of forming the gold standard based on
both annotators’ independent assessments of the 150 reports
followed by their discussion to solve the disagreements, but
after achieving the third round results with the stylistic differ-
ence rather than category disagreements, we were confident to
continue with only one annotator.

For automated form-filling, we used the CRF++
conditional random field toolkit*® This method solved the
information extraction task by assigning precisely one of the
six categories to each word in the report based on patterns
learnt by observing words and the respective human-anno-
tated topics in the gold standard, as well as the enriched fea-
ture representation of the words and their context (see table 5
for feature definitions and examples). These features were
used to enrich the original words with additional information
that helps to solve the form-filling task. For example, knowing
that can is a modal verb and /s is in the present tense in
Patient is conscious and can speak already, and can is a com-
mon noun and have is in the past tense in The patient had a
can of lemonade but is not feeling better, helped to disambig-
uate between the categories of clinical status and clinical his-
tory/presentation. We experimented with numerous features
and chose the best 13 out of the 20 feature types to form our
best system compilation.
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Table 2: Final annotation used as a gold

standard in information e)

Snippets in total

Iccco 602
iCcco 330
icCco 407
iccCo 1238
icccO 94
Number of snippets in a report
Min 3
Max 51
Average 17.81
SD 7.78
Number of words
Iccco min 1, max 9, average 2.12,
SD 0.86
iCcco min 1, max 25, average 4.14,
SD 3.57
icCco min 1, max 40, average 4.73,
SD 4.87
iccCo min 1, max 48, average 6.22,
SD 5.12
icccO min 2, max 102, average 15.21,
SD 14.63
Number of reports addressing
0 categories 0
1 category 1
2 categories 3
3 categories 20
4 categories 75
5 categories 51

Number of words (unique lemmas)

In total in 150 reports | 39 808 (2637)
Min 862 (229)

Max 14 (13)

Average 256.38 (106.57)
SD 172.65 (45.08)

In evaluation, we used cross-validation with training set
sizes of 30, 60, 90, 120, and 149 reports and the performance
evaluation measures of precision, recall, and F1.*6 We eval-

uated performance both separately in every category and over

all categories, as implemented in the connleval.pl script (http://
www.cnts.ua.ac.be/conll2000/chunking/output.html).  When
evaluating the latter performance, we used macro-averaging
because all the five categories are likely to be present in every
report and we want to perform well in them all. This was done
with the five ICCCO categories only, because NA is the domi-
nating category in our data.

To assess learning performance in relation to the task diffi-
culty, we computed two automated baselines. Our random
baseline chose one of the six categories randomly for each
word. Our majority baseline labeled all words as relevant to the
most frequent category in our gold standard (ie, iccCo).

RESULTS

Speech recognition

The noise-cancelling lapel microphone (15 AUD) in combination
with the 200 AUD digital voice recorder gave the best correct-
ness (max 78.7%). In comparison, the correctness percentages
for the studio recorder and microphone were 78.5, 64.3, and
52.7 for the native male (MN), native female (FN), and accented
female (FA) speaker, respectively. These percentages were
more modest than the best rates in clinical speech recognition
(ie, 90-99%),"*"® but explained by our speaker-tailoring being
6-12 times shorter.

Lapel microphones were also preferred over headsets by
four out of five participants, and the participants also liked the
small size of the digital voice recorders. However, their prefer-
ence was for tablets that allow them to proof and sign off the
resulting handover form, among other reading and writing
tasks. Digital voice recorders gave the best correctness
(42.8-78.7%), followed by tablets (17.9-74.9%), the MP3
player (13.1-58.8%), and smartphone (13.2-49.5%).
Accessory microphones, in particular the noise-cancelling one,
improved the recorders’ correctness.

The preamble text was always easier for speech recognition
than clinical language, and dementia was the easiest clinical
specialty (70.0-89.5% vs 58.2—-84.0%). The order of the rest
of the specialties varied between the speakers.

The best, second best, and worst speech recognition
vocabulary, using the best-performing device and the six hand-
over scenarios, were nursing, medicine, and general medicine
(figure 3). This held for all three speakers. The difference in the
percentage of correctly recognized words between the best
and the worst vocabulary was smaller for male than female
speakers (MN: 1.4, FN: 7.6, FA: 5.2).

With the best vocabulary, the average percentage of cor-
rectly recognized words across the six patient cases was 70.5
at its best (figure 3). Speech recognition for a male speaker
gave better results than for a female speaker, and for a native
speaker than for an accented speaker. The best vocabulary
had the average (median) percentage of correctly recognized
words of 65.6 (64.4), with the sample variance of 19.4 across
all speakers and patient cases. On average, substitutions were
over twice more common than deletions and over nine times
more common than insertions. If considering the differences
between the patient cases with this vocabulary, the average
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Table 3: Inter-annotator analysis across the three prior annotation rounds and five categories

Category Round Inter annotator No. of No. of
agreement [%] matches non-matches
Iccco 10 records in Nov 2012 44.44 30 24
50 records in Jan 2013 33.01 138 68
50 records in Feb 2013 75.63 29 90
iCcco 10 records in Nov 2012 46.00 27 23
50 records in Jan 2013 58.82 67 75
50 records in Feb 2013 50.77 64 66
icCco 10 records in Nov 2012 28.95 27 11
50 records in Jan 2013 40.74 80 50
50 records in Feb 2013 46.01 88 75
iccCo 10 records in Nov 2012 13.38 136 21
50 records in Jan 2013 37.07 533 314
50 records in Feb 2013 35.69 501 278
icccO 10 records in Nov 2012 48.15 14 13
50 records in Jan 2013 53.12 30 34
50 records in Feb 2013 50.00 29 29

Table 4: Agreements (ie, diagonal elements) and disagreements (off-diagonal elements) between the

two annotators across the three prior annotation rounds (ie, 1st (2nd) [3rd]) and five categories

Annotator: category | PS: lccco PS:iCcco | PS:icCco | PS:iccCo PS: icccO | Agreement %
MJ: lccco 20 (64)[90] | 3(2) [0] 0 (1) [0] 1(1) [0] 83 (94) [100]
MJ: iCcco 3(2) [0] 20 (72) [64] 0 (1) [2] 87 (96) [97]

MJ: icCco 0 (1) [0] 8(48)[721 |3(6)I[3] 73 (87) [96]

MJ: iccCo 1 (1) [0] 0 (1) [2] 3(6) [3] 12 (304) [272] | 5(2) [1] 57 (97) [98]

MJ: icccO 5(2) [1] 8(32)[28] | 62 (94) [97]
Agreement % 83 (94) [100] | 87 (96) [97] | 73 (87)[96] | 57 (97) [98] 62 (94) [97]

Empty cells refer to cases with no disagreements.

percentage of correctly recognized words across the three
speakers varied between 57.8 and 68.9, with an average and
variance of 64.5 and 14.0, respectively.

Information extraction

The best system compilation was excellent in identifying text rel-
evant to Iccco and iCcco (precision, recall, and F1 percentages
0f 90.6 vs 76.9 (figure 4A), 83.7 vs 65.0 (figure 4B), and 87.0 vs
70.5 (figure 4C) for the former vs latter category, respectively)
and also in distinguishing text relevant to the handover form
from irrelevant text (80.4% precision, 89.6% recall, 84.7% F1)
(figure 4). This correctness for Iccco and NA was close to the

state-of-the-art in information extraction (ie, 90% F1),'® but with
other categories, the results were more modest. Similarly to
human annotators, our information extraction system produced
confusions in text relevant to the three remaining categories (e,
iccCo, icCco, and icccO) which explain the smaller macro-aver-
aged performance over the five ICCCO categories (ie, 66.5% pre-
cision, 57.2% recall, and 61.5% F1). In comparison, the macro-
averaged performance for the random (majority) baseline was as
low as 10.8% (20.2%) F1 over the ICCCO categories and 26.0%
(0.0%) F1 in NA.

As expected, having more data for training contributed to
the system performance (figure 4). However, obtaining this
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Figure 3: Speech recognition correctness af the best performing device: the top bar chart details this performance on the
six patient cases for the three speakers and three vocabularies over the six patient cases. The bottom bar chart addresses
the differences between the six patient cases and three speakers using the best performing vocabulary (ie, nursing). With
this nursing vocabulary, the average percentages of correctly recognized, substituted, deleted, and inserted words across
the six patient cases were 70.5 (64.4) [61.9], 20.2 (22.0) [28.5], 9.3 (13.6) [9.5], and 2.7 (3.1) [1.8] for MN (FN) [FA]. MN,
native male; FN, native female; FA, accented female.
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performance gain by annotating more data might not be that
straightforward; differences in annotators’ opinions need to be
explained, but because including the features for the previous
and/or next words did not help the automated system (table 5),
observing this text in context is unlikely to resolve the human
disagreements. In other words, more fundamental alterations
of the annotation guidelines are needed.

The best system compilation used 13 feature types and on
average, a system using 12 feature types had 1.8% better cat-
egory-specific F1 (table 6). The system with all 13 feature
types had 62.1% macro-averaged F1 over ICCCO (0.9% better
without parse tree) and 83.5% F1 for NA (0.8% better without
location percentage) in this cross-validation experiment using
120 reports for training. However, because different feature
types were advantageous/disadvantageous in different catego-
ries, the system using 13 features was the best overall. For
example, the aforementioned system without parse tree (with-
out location percentage) had 0.8% worse F1 in NA (1.1%
worse macro-averaged F1 over ICCCO) than the best system
compilation. For Iccco, the disadvantageous feature types, from

the most to least disadvantageous, were top 5 candidates,
medication score, and basic governors. For iCcco (icCco)
[iccCo] {NA}, they were parse tree, top mapping, NER, medica-
tion score, basic governors, and basic dependents (location
percentage, medication score, parse tree, top mapping, basic
governors, and basic dependents) [SNOMED-CT-AU IDs and
medication score] {location percentage, top mapping, basic
governors, top 5 candidates, and SNOMED-CT-AU IDs}. For
icccO, none of the feature types was disadvantageous.
Suprisingly, as this analysis illustrates, basic grammatical
analysis (ie, lemmatization, part of speech tagging, and phrase
context) contributed most to information extraction perform-
ance, and more advanced grammatical analysis (eg, parsing,
dependent and governor identification, named-entity recogni-
tion, or sentiment/temporality analyses) or the use of clinical
terminologies was not advantageous and even could be disad-
vantageous. Different feature types benefit information extrac-
tion from different types of records, and consequently an
extension of this study could use the patient type (eg, cardio-
vascular vs neurological vs renal vs respiratory patients)*’



Suominen H, et al. J Am Med Inform Assoc 2015;22:e48—e66. doi:10.1136/amiajnl-2014-002868, Research and Applications

Figure 4: Precision (4a), recall (4b), and F1 (4c) percentages and learning curves for different cross-validation (CV) settings
(ie, training set sizes of 30, 60, 90, 120, and 149 (ie, leave-one-out [LOO] CV) reports with mutually exclusive folds that in
combination cover all data). NA refers to the category for irrelevant text. The horizontal direction of the histograms reflects
the contribution of having more data for training and the vertical direction the effects of the coupled measured of precision
and recall in|F1 (see the glossary in online supplementary appendix).
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Table 6: Contribution of each feature to the best syste
reports for training

compilation using cross-validation with 120

Removed feature\category | Macro-averaged | Iccco | iCcco icCco |iccCo |icccO NA
over ICCCO

Difference in precision [%]
Word —1.09 —0.57 —1.77 —3.16 -1.39 —4.49 —0.07
Lemma —-0.93 0.00 0.31 -2.58 | -0.93 —-436 | -0.38
NER —0.91 —1.31 6.69 |—-226 | —0.82 -714 | -0.50
POS -1.07 —-1.98 =312 [ -7.11 -1.22 -9.09 |[-1.15
Parse tree —0.43 —2.60 4.85 3.63 -1.73 —7.14 —0.13
Basic dependents 0.35 —0.76 0.72 0.51 —0.78 0.00 -0.19
Basic governors —1.98 —0.92 1.51 0.33 —1.89 —14.64 0.34
Phrase context —2.46 —0.34 0.05 —0.55 —3.60 —-9.40 —0.65
Top 5 candidates -0.48 0.00 -2.07 073 | —1.14 -9.09 |-0.26
Top mapping 0.06 -1.15 5.22 -0.15 —-0.24 0.00 0.63
Location percentage 0.35 -0.79 —20.47 7.36 0.32 —4.36 —0.24
Medication score 0.11 —0.57 4.63 1.00 0.20 —4.36 —0.08
SNOMED-CT-AU IDs —0.34 —0.75 0.73 -3.90 —0.42 —12.69 0.18

Difference in recall [%)]
Word —1.11 0.00 —-494 | -066 |-1.42 0.00 | —0.01
Lemma —-0.85 0.00 —-4.94 | -3.81 —-0.93 -212 | -0.37
NER —1.52 —0.94 -010 | -253 | -0.73 -212 | -0.12
POS —2.54 —0.38 —4.11 —6.31 —2.44 —2.10 0.43
Parse tree 2.18 0.51 4,72 3.95 1.36 —5.82 —1.50
Basic dependents 0.02 —-0.27 0.28 045 | —0.68 0.00 0.00
Basic governors —2.60 0.93 —0.04 0.60 —4.55 —1.99 0.31
Phrase context —2.21 —0.53 —2.33 0.00 —3.38 0.00 —0.57
Top 5 candidates -1.74 0.69 —1.81 —4.51 —1.96 —6.06 0.68
Top mapping 0.08 0.95 1.64 1.40 0.22 0.00 0.30
Location percentage —-2.35 -0.31 —16.10 3.20 —2.01 —2.12 1.97
Medication score -0.11 0.69 0.49 1.07 —0.22 —2.12 —0.18
SNOMED-CT-AU IDs —0.31 —-0.50 —5.54 0.14 0.85 -7.68 | -0.03

Difference in F1 [%)]
Word -1.10 -0.27 -386 |-143 |-1.42 -1.02 | -0.05
Lemma —0.88 0.00 -314 |[-370 |-0.94 —-2.85 | -0.38
NER -1.23 —1.11 238 | —2.61 -0.79 -347 | -0.33
POS —1.87 —1.14 -3.80 —6.93 —-1.75 —-3.92 —0.44
Parse tree 0.94 —0.98 4.85 406 | -0.48 -6.88 | —0.78

(Continued)
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Table 6: Continued

Removed feature\category | Macro-averaged | lccco | iCcco icCco |iccCo |icccO | NA
over ICCCO
Basic dependents 0.17 —0.50 0.46 0.49 -0.75 0.00 —0.11
Basic governors —2.31 0.05 0.55 0.55 -3.05 —5.33 0.32
Phrase context —2.33 —0.44 —1.48 —0.16 —3.54 —2.29 —0.62
Top 5 candidates —1.16 0.37 —1.93 -3.41 —1.50 —7.48 0.16
Top mapping 0.07 —0.05 3.02 1.01 —0.05 0.00 0.47
Location percentage —-1.13 —0.54 —18.02 4.58 —0.68 —2.85 0.76
Medication score 0.00 0.09 2.04 1.1 0.02 —2.85 —0.13
SNOMED-CT-AU IDs —0.32 —0.61 —3.40 —1.07 0.10 —9.71 0.08

Negative values indicate that removing a given feature decreases the performance—the larger the absolute value the more this feature contrib-
utes to the performance of the best compilation. Positive values indicate that a given feature does not contribute to the performance—the larger
the value the more harmful the feature. NA refers to the category for irrelevant text. Minimal and maximal values are in bold.

POS, part of speech.

record type (eg, discharge vs echocardiogram vs pathology
reports) in cross-validation to study which feature types are the
most advantageous for different record/patient types. In addi-
tion, this extension could use nursing-specific terminologies
only or consider other clinical language processing tools,
though some comparative evaluations give evidence for the
superiority of the MetaMap tool we chose and, based on our
PubMed search (http://www.ncbi.nim.nih.gov/pubmed), this is
the most common choice in clinical language processing (ie,
12, 1, and 74 hits for KnowledgeMap, Mgrep, and MetaMap,
respectively).*=" Typically the use of clinical terminologies is
advantageous in similar language processing tasks. For exam-
ple, in tasks related to searching and summarizing biomedical
papers, using MetaMap improved the retrieval correctness by
14% and decreased the lexicon by more than 83%.°%>°

DISCUSSION

Inspired by the collection of data as a by-product of care and
the use of this information to design even safer care delivery
systems,® we have addressed data collection as an intrinsic
part of care—not an administrative ‘extra’. While information
flow during handover is driven by clinical excellence and safety,
documentation of data is often secondary. This drives both
information loss (eg, time delays and summarization) and inef-
ficiencies (ie, double handling). In some cases, an administrator
manually enters a summary of nursing handover into the hospi-
tal information system, after the handover occurs. If technology
is to support efficiency in care, then capture of data (as well as
analysis) is a key point of interest. In this sense, speech recog-
nition is simply capturing data at the source. By capturing data
‘closer to the source’ we also greatly expand the scope of anal-
ysis: a transcribed handover is far richer than a typed nursing
note summary. Systems that do not consider the capture of
data risk exacerbating existing data inefficiencies.

Delivery of care is central to nursing practice: a nurse dictat-
ing the previous shift handover to a clerk is not delivering
care—no matter how much that dictation improves care deliv-
ery for future shifts. Primary communication between nurses is
often team-based and verbal—written notes are secondary.
While speech recognition is in its infancy, it has the potential to
support the preferred models of nursing communication and
augment verbal team based communication. If speech recogni-
tion can be realized, there is great scope for nurses to have their
clinical discussions automatically incorporated into hospital
information systems: essentially having the data systems work-
ing for the clinician, rather than the converse. We believe there
is substantial scope for developing technological support for
communication that does not presuppose access to a keyboard.

Structuring the content of these free-form text records makes
finding and using relevant information easier while also making
information available for computerized decision-making and sur-
veillance in healthcare. Information extraction enables generating
these structured record drafts automatically, systematically, and
almost instantaneously for clinicians to sign off. When applying
information extraction to speech-recognized text, errors are,
however, likely to multiply, but in in our previous study,*” we
have given empirical evidence for correcting such errors by using
the phonetic similarity in the context of nursing handover.

CONCLUSION

This paper presented evidence for the feasibility of speech rec-
ognition and information extraction to support clinicians in
entering textual information and unlock its content for compu-
terized decision-making and surveillance in healthcare. A
noise-cancelling lapel-microphone, digital voice recorder, and
nursing vocabulary gave the best correctness in speech recog-
nition. Information extraction was excellent in filtering out irrel-
evant text and identifying text relevant to two categories.
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Similarly to the disagreements between human annotators,
there was confusion surrounding the remaining three catego-
ries in information extraction. The benefits of this automation
included storing all information; making the drafts available
and accessible almost instantly to everyone with an authorized
access to a particular patient’s documents; and avoiding infor-
mation loss, delays, and misinterpretations inherent to using a
ward clerk, transcription services, or other third-party for
record keeping.
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