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ABSTRACT
....................................................................................................................................................

Objectives To improve the accuracy of mining structured and unstructured components of the electronic medical record
(EMR) by adding temporal features to automatically identify patients with rheumatoid arthritis (RA) with methotrexate-
induced liver transaminase abnormalities.
Materials and methods Codified information and a string-matching algorithm were applied to a RA cohort of 5903
patients from Partners HealthCare to select 1130 patients with potential liver toxicity. Supervised machine learning was
applied as our key method. For features, Apache clinical Text Analysis and Knowledge Extraction System (cTAKES) was
used to extract standard vocabulary from relevant sections of the unstructured clinical narrative. Temporal features
were further extracted to assess the temporal relevance of event mentions with regard to the date of transaminase
abnormality. All features were encapsulated in a 3-month-long episode for classification. Results were summarized at
patient level in a training set (N¼480 patients) and evaluated against a test set (N¼120 patients).
Results The system achieved positive predictive value (PPV) 0.756, sensitivity 0.919, F1 score 0.829 on the test set,
which was significantly better than the best baseline system (PPV 0.590, sensitivity 0.703, F1 score 0.642). Our innova-
tions, which included framing the phenotype problem as an episode-level classification task, and adding temporal infor-
mation, all proved highly effective.
Conclusions Automated methotrexate-induced liver toxicity phenotype discovery for patients with RA based on struc-
tured and unstructured information in the EMR shows accurate results. Our work demonstrates that adding temporal
features significantly improved classification results.
....................................................................................................................................................
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BACKGROUND AND SIGNIFICANCE
Rheumatoid arthritis (RA) is one of the most common and seri-
ous forms of autoimmune arthritis costing the US economy
nearly $128 billion per year in medical care and indirect ex-
penses, including lost wages and productivity. Although there
are several disease-modifying anti-rheumatic drugs (DMARDs)
currently available, methotrexate (MTX) is currently the most
widely used and has been the first-line therapy for RA since
the 1980s.1 The drug is typically well tolerated in the doses
used to treat RA; however, hepatic toxicity is a side effect of
significant concern.1–3 Studies have reported cumulative eleva-
tions of liver transaminases associated with MTX use.2–4

Several guidelines recommend frequent checking of liver

transaminases to monitor for evidence of liver injury,5,6 wors-
ening the economic burden RA has on society.

Defining toxicity usually requires manual chart review be-
cause human expertise and reasoning ability are needed to
recognize the nuances of relevant information scattered as free
text throughout the electronic medical records (EMRs), as well
as provide a temporal perspective for drug exposure preceding
the adverse event. Yet, the manual reviewing process is labor
intensive and inefficient for large-scale analysis.

Mining the EMR, both its structured and unstructured com-
ponents, has increasingly become a substitute for traditional
chart review. Success stories include the development of phe-
notyping algorithms within projects such as Electronic Medical
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Records and Genomics (eMERGE),7–10 Pharmacogenomic
Research Network (PGRN),11–13 Informatics for Integrating
Biology and the Bedside (i2b2),14–19 and Strategic Health
Advanced Research Project: Area 4 (SHARP).20 Mining of struc-
tured information is executed through traditional database
queries to include codified data for ICD-9 codes, lab results,
and medication orders. For unstructured information, natural
language processing (NLP) has been used to abstract the
meaning from the surface textual representations. As an exam-
ple, Liao et al14 validated an algorithm to define RA cases in
the Partners HealthCare EMR against a gold standard dataset.
The algorithm combined variables from NLP and codified EMR
data, achieved a high accuracy (AUC 93.7%, positive predictive
value (PPV) 94%, and sensitivity 63%, when specificity was set
at 97%), and was portable across three academic hospital
EMRs.15 Lin et al11,21,22 further explored multiple feature repre-
sentations of EMR notes with feature selection methods to in-
vestigate algorithms for automatically discovering RA disease
activity.

While the extraction of the codified data is fairly straightfor-
ward, information extraction from the clinical narrative requires
sophisticated technologies grounded in linguistic, cognitive,
and computational sciences to go beyond simple string match-
ing and abstract the meaning in a normalized form. Harnessing
the recent progress in NLP technologies, especially temporal
relation discovery in the clinical domain,23–30 we aimed to de-
velop an algorithm using codified EMR data and Apache clinical
Text Analysis and Knowledge Extraction System (cTAKES)31,32

to identify patients with MTX-related liver toxicity within an RA
cohort from Partners HealthCare and study whether the addi-
tion of temporal features extracted using NLP techniques im-
prove the accuracy of the algorithm.

The challenge was to build an automatic classifier to elimi-
nate patients with elevated transaminases who do not have
relevant temporally positioned MTX mentions, or their liver ab-
normality was caused by factors other than MTX. This entailed
higher level processing of the clinical narrative content, includ-
ing detailed information about the medication, other potential
toxicity factors, and temporal-causal indicators. This was the
technical challenge and the main focus of the current study.

MATERIALS AND METHODS
Rheumatoid arthritis cohort
This study used the RA EMR cohort, which included 5903 pa-
tients with RA followed at Partners HealthCare since 1992.14

The data warehouse, Research Patient Data Repository, in-
cluded detailed data with timestamps for diagnoses, medica-
tions, problem lists, laboratory tests, procedures, and clinical
notes. Patients were followed for variable periods of time from
1992 to 2013, and may have received some of their care out-
side the Partners HealthCare network. To identify potential
MTX-induced liver toxicity, we used rules based on codified
and narrative EMR data:

1. Exposure: the patient had to be exposed to MTX before the
transaminase date based on a medication code for MTX

and string matching against the clinical narrative for text
indicating MTX. The resulted set included 4588 patients
(figure 1).

2. Outcome: among MTX exposed, we defined liver toxicity as
any elevation of alanine transaminase (ALT) or aspartate
transferase (AST) greater than two times the upper limit of
normal (>2� ULN) based on studies that showed an asso-
ciation between elevation >2� ULN and change in hepatic
architecture when liver biopsies were obtained annually in
patients with RA on MTX.5,33 The number of RA cases was
further reduced to 1130.

Chart reviews
Chart annotation guidelines were developed by two domain ex-
perts to define CASE/NON-CASE groups (see online supple-
ment). Two board certified rheumatologists (MPR and EWK)
conducted chart reviews of EMR notes and laboratory data
from randomly selected patients for the training set (N¼480)
and test set (N¼120) from the 1130 potential cases. Clinical
notes were reviewed for 3 months prior to each elevated
transaminase timestamp for inclusion and exclusion criteria
(figure 2). If there were sequential elevated transaminases, the
review window was extended 3 months prior to each transami-
nase date. We limited the reviews to a clinically relevant

Figure 1: Methotrexate (MTX)-induced liver toxicity co-
hort identification. >2� ULN, greater than two times
the upper limit of normal; ALT, alanine transaminase;
AST, aspartate transferase; EMR, electronic medical
record; RA, rheumatoid arthritis.
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window based on rheumatology practice guidelines for moni-
toring transaminases every 2–3 months. Inclusion criteria
included exposure to MTX within 3 months of transaminase
date, and reviewers attributed elevated transaminase to MTX
exposure. Exclusion criteria were elevated transaminase being
attributed to other hepatotoxic drugs such as leflunomide
(Arava), and elevated transaminase being attributed to comor-
bidity, prevalent comorbidity occurring in the past such as hep-
atitis, or an active comorbidity occurring during the 3-month
episode such as congestive heart failure, cholecystitis, sepsis,
trauma, or surgery (see online supplement section 1.2 for com-
plete list). If a reviewer was unable to confirm MTX exposure,
they proceeded to the next transaminase episode and repeated
the review until all instances of transaminase elevation had
been reviewed. If any hepatitis C or hepatitis B diagnosis was
found (prevalent comorbidity), the patient was classified as a
NON-CASE. If an active comorbidity was present, the reviewer
proceeded to the next episode and continued the review
until all episodes were reviewed. If any single episode met
the inclusion criteria without any exclusion criteria, the
patient was coded as a CASE (box 1). If all episodes met exclu-
sion criteria, the subject was coded as a NON-CASE. For algo-
rithm development, we extracted notes from the Partner’s
Healthcare EMR within a time window of 3 months of each ele-
vated transaminase date, defined as an ‘episode’ to mirror
chart review methods. If there were multiple transaminase test
dates, we used multiple windows and thus included multiple
episodes.

Algorithm development
We aimed to develop an automatic CASE/NON-CASE classifica-
tion algorithm using a combination of NLP and classification
rules. The goal was to first build and test a series of machine
learning baseline systems using several competing non-
temporal feature sets (tested with a 10-fold cross-validation
approach) in the training set. The preferred model was ex-
tended with combinations of temporal features to evaluate the
contribution of each feature in the training set. The best feature
rich model was then applied to a test set from Partners and an
independent test set from the Vanderbilt.

We extracted Unified Medical Language System-based
terms (UMLS)34 from highly relevant sections of the clinical
notes based on Named Entity (NE) types, diseases/disorders,
signs/symptoms, anatomical sites, procedures, and medica-
tions (eg, MTX, leflunomide) as defined by the UMLS.34 We

Box 1: Rules for labeling CASE or NON-
CASE patients

• If all episodes of a patient were NON-CASES,– then
patient was classified as a NON-CASE;

• If at least one of the episodes was CASE
positive,– then the patient was labeled as a CASE

Figure 2: Inclusion and exclusion criteria for chart reviews to define methotrexate (MTX)-induced liver toxicity in patients
with rheumatoid arthritis (RA).
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used cTAKES to extract NE mentions with qualifying attributes
such as negation and drug signatures from unstructured free-
text clinical narrative. Each mention was mapped to a UMLS
concept unique identifier (CUI), thus dealing with language vari-
ations. For example, the mentions RA and rheumatoid arthritis
would be typed as disease/disorder and mapped to the same
CUI (C0003873). The cTAKES drug name entity recognition
module was used for extracting drug signatures (dosage, fre-
quency, route, duration, status change, form, strength, and
start date).

Two clinical experts developed a list of comorbidities that
are associated with transaminase elevations as a customized
dictionary based on domain knowledge, published data, and
chart review. Concepts included acute events (eg, serious in-
fection, congestive heart failure), trauma (eg, motor vehicle ac-
cident) and surgery (eg, cholecystectomy). This customized
dictionary was used as input to the cTAKES dictionary look-up
module to extract the listed terms and related attributes (see
online supplement).

To incorporate temporality into our algorithm, we developed
a novel module within cTAKES called DocTimeRel (Document
Time Relation) which discovered the temporal relation between
an event and the document creation time (DCT). The
DocTimeRel values were before, after, overlap, and before/
overlap (designed for events that started before DCT and con-
tinue to the present). DocTimeRel provided a coarse temporal
framework for each event and enabled us to build temporally
aware learning models. Events tagged as overlap or before/
overlap were treated as temporally relevant for liver toxicity
events. For example, in ‘Patient on MTX since 2009’, MTX has
a DocTimeRel value of before/overlap; in ‘Patient was on MTX
in 2009’, MTX has a value of before; in ‘Patient will start
MTX next week’, MTX has a value of after; in ‘Patient is on
MTX’, MTX has a value of overlap. The DocTimeRel module was
developed and tested on the Temporal History of Your Medical
Events (THYME) corpus35–37 which contained 78 clinical and pa-
thology notes on colorectal cancer for 26 patients. The THYME
corpus was richly annotated for events and their attributes as
well as temporal relations between events. It contained 9730
DocTimeRel relations. The dataset was split 60/20/20 for train-
ing, development, and testing. A Support Vector Machine model
was trained on the training data to classify the DocTimeRel at-
tribute of each mention into one of the four categories. The
most productive features were the part-of-speech (POS) pattern
of nearby verbs aimed to capture tense, POS sequence between
target event and its closest temporal expression to capture as-
pect, and domain-specific section headings. The DocTimeRel
module performance was 0.814 F1 score. The DocTimeRel
model was released as part of Apache cTAKES.

In addition, we restricted the information extraction to only
highly relevant sections from the clinical notes. We utilized
cTAKES’ sectionizer to parse the document into sections. We
ignored information from the following sections as they tend
to introduce noise: past medical history, past surgical history,
surgical history, social history, family history, allergies, and ad-
verse reactions.

We cast the MTX liver toxicity identification as a binary clas-
sification problem into CASE and NON-CASE groups with fea-
tures as described below.

Features and learning algorithm
We represented a document by the following groups of features
(see figure 3 for examples):

1. Comprehensive CUIs: we included mentions that map to
CUIs from SNOMED-CT and RxNORM (filtered by the US
Food and Drug Administration approved list of medications
through the Orange book) belonging to UMLS semantic
types as our baseline feature set.

2. CUIs from customized dictionary: we pruned the CUI
space through expert-guided feature selection done by
domain experts. Similar terms were collapsed into one rep-
resentation mapped to UMLS CUIs (see online supplement,
section 2). Only positive mentions were retained, negated
mentions were discovered, but filtered and not represented
in the vectors.

3. Section parsing: we extracted customized dictionary terms
only from relevant sections, excluding sections defined
above. Section of relevant medication: indicated whether
the medication occurred in the medication section of the
clinical note which is likely to contain the richest data.

4. MTX signature: the occurrence of these four medication
signature attributes—route, status change, strength, and
dosage—of MTX mentions in relevant sections. If such at-
tributes were mentioned with the drug, it was highly likely
that it was in the context of a prescribed/administered drug
rather than a discussion about a certain drug. Of note, the
timestamp of the note was not assigned as the date of the
medication.

5. DocTimeRel: we applied DocTimeRel to all MTX and leflu-
nomide medication and comorbidity mentions from the cus-
tomized dictionary to determine temporal relations.

6. Nearby words: three preceding and following words an-
chored around a mention from the customized dictionary
(within the same sentence). The motivation for this feature
was to capture temporally relevant signals. Of course, the
nearby words might be an indicator of other types of infor-
mation, not necessarily linked to temporality.

7. Nearby verbs’ POS tag: POS tags of same sentence verbs
anchored around a mention from the customized dictionary
(within the same sentence). POS tags could be indicative of
the temporal positioning of an event. The tagset was based
on Penn Treebank38: VB—verb, base form; VBD—verb,
past tense; VBG—verb, gerund or present participle;
VBN—verb, past participle; VBP—verb, non-third person
singular present; VBZ—verb, third person singular present.

We used a learning strategy anchored around each trans-
aminase episode (figure 4). For all documents that fell into an
episode, their document-level features were collapsed into one
episode-level feature vector. Classification algorithms (de-
scribed below) were applied at the episode-level vectors for

RESEARCH
AND

APPLICATIONS

Lin C, et al. J Am Med Inform Assoc 2015;22:e151–e161. doi:10.1136/amiajnl-2014-002642, Research and Applications

e154

http://jamia.oxfordjournals.org/lookup/suppl/10.1136/amiajnl-2014-002642/-/DC1
http://jamia.oxfordjournals.org/lookup/suppl/10.1136/amiajnl-2014-002642/-/DC1
http://jamia.oxfordjournals.org/lookup/suppl/10.1136/amiajnl-2014-002642/-/DC1


predicting MTX-induced liver toxicity. The final decision for pa-
tient-level classification was based on the same rule used in
chart reviews (box 1).

Two episode-level rules were implemented to filter out
NON-CASE episodes (box 2).

For classification, L2-regularized logistic regression as imple-
mented by LIBLINEAR39 was used for all models. We used logistic
regression for classification purposes and did not analyze feature
weights explicitly. Because of LIBLINEAR’s fast convergence we
could efficiently train and classify thousands of episodes and then
summarize the result into one final patient-level label.

Evaluation
Performance metrics included PPV (or precision), sensitivity (or
recall), and F1 score. To compare model performance, six

machine-learning baselines were used. Baselines 1, 2, and 3
were patient-level classifications (figure 5), in which all fea-
tures were collapsed into a patient-level vector therefore ignor-
ing episode groupings. Bag-of-words (BOW) was used as the
feature representation for Baseline 1, and all CUIs found (com-
prehensive CUIs) for Baseline 2, and customized CUIs for
Baseline 3. Baselines 4, 5, and 6 were episode-level classifica-
tions (figure 4), in which all features were collapsed into an ep-
isode-level vector for classification. BOW features were used
for Baseline 4, CUIs (comprehensive CUIs) for Baseline 5, and
customized CUIs for Baseline 6.

Tenfold cross validation was performed on the training set.
Models were additionally evaluated on the test sets for portabil-
ity. Our final algorithm was further ported to a different EMR sys-
tem, the Vanderbilt University RA set, for cross-site evaluation.

Figure 3: A sample of features on dummy clinical text from a methotrexate (MTX)-induced liver-toxicity NON-CASE patient
with rheumatoid arthritis (RA) (C0243026 for Systemic infection; C0032285 for Pneumonia; C0025677 for Methotrexate;
C0678140 for Zestril; C0337308 for Amputation of lower limb). CUI, concept unique identifier; VBD, verb, past tense; VBN,
verb, past participle; VBZ, verb, third person singular present.
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RESULTS
From the pool of 1130 patients with RA with MTX exposure and
elevated ALT/AST outcome, chart reviews of 480 patients con-
firmed 132 MTX liver toxicity CASES (27.5%) in the training set
and 38 of 120 CASES for the test set (31.7%) (table 1).
Cohen’s j measurement for inter-annotator agreement on the
test set was 0.828.

Table 2 shows the 10-fold cross-validation performance
of the six baseline systems. Table 3 shows the 10-fold cross-
validation results of feature addition experiments. The best
performing episode-level baseline was the simple BOW
(Baseline 4). However, in that baseline not all words equated to
events. For instance, words like ‘patient’ and ‘liver’ cannot
be temporally anchored. At the same time, temporality

Figure 4: CASE/NON-CASE classification: episode-level classification (‘o’ signifies a clinical note). LFT, liver function test.

Box 2: Episode-level NON-CASE filtering rules

• If an episode-vector contained zero values for methotrexate (MTX), or there were zero drug signature attributes associated
with MTX,
– then this episode of liver transaminase abnormality was not due to MTX, thus this episode was a NON-CASE (Rule 1)

• If leflunomide occurred in the medication section of the patient’s clinical notes for a given episode,
– then this episode was a NON-CASE (Rule 2)
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(through DocTimeRel) is essential for this phenotype.
Therefore, we decided not to build upon the BOW baseline. A
much better strategy is to build upon CUIs indicating potentially
clinically relevant events. Taking the entire CUI space is highly
likely to lead to overfitting. Therefore, we pruned the CUI space
through expert-guided feature selection (rather than automatic
feature selection), using the customized dictionary, and we
based our further system development on Baseline 6.

To evaluate the best-performing baseline (table 2, Baseline
4) and the feature-rich model (table 3, Setting 7) based on
highest F1 score, we further tested them on the test set
(table 4).The best performing baseline (Baseline 4) achieved an
F1 score of 0.642. The best performing feature-rich model
from table 3 (Setting 7) achieved an F1 score of 0.829,
which was comparable to its F1 score of 0.847 on the 10-fold
cross validation in the training set. A rule-based baseline
including only codified information from the structured EMR
(see online supplement) was added and tested on the test set
(table 4).

In addition, to further validate the PPV, we ran the best per-
forming feature-rich model (table 3, Setting 7) on the remaining
patients with RA and possible liver toxicity not selected for the

training and test sets. From the patients labeled as CASE by
the model, 40 charts were randomly pulled and evaluated by
one of our domain experts (EWK). The resulting PPV was 0.75
(algorithm produced 30 correct labels out of 40 total labels). To
test the portability of our algorithm in a different EMR system, a
rheumatologist at Vanderbilt (NB) performed chart reviews on
patients with RA with any MTX use, elevated transaminases
>2� ULN, and available notes from Vanderbilt University for
103 patients and identified 41 CASES (39.8%) and 62 NON-
CASES. The algorithm produced a PPV of 0.66 (95% CI 0.517
to 0.785), a sensitivity of 0.853 (95% CI 0.708 to 0.944), and
F1 score of 0.745 (95% CI 0.598 to 0.857).

DISCUSSION
We validated an EMR algorithm for automatic classification of
RA cases with MTX-related liver toxicity that includes novel
temporal relation discovery techniques applied to the clinical
domain. We demonstrate the improvement in performance of
episode-level classification (Baselines 4 and 5 from table 2,
and Setting 7 from table 3) compared with patient-level classi-
fication (Baselines 1 and 2 from table 2, and Setting 8 from
table 3). To avoid over-fitting, we chose to build on the

Figure 5: CASE/NON-CASE classification: patient-level classification (‘o’ signifies a clinical note). LFT, liver function test.
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customized dictionary with a rich set of features (table 2,
Baseline 6). Our best system (table 3, Setting 7) that included
temporal relations outperformed any of the machine-learning
baselines in 10-fold validation in the training set. In addition, it
maintained its performance when tested on the test set from
Partners. The PPV was lower in a test set from Vanderbilt, pos-
sibly due to sparse temporal cues. However, sensitivity was
maintained, which is arguably more important for a rare pheno-
type.40,41 To our knowledge this study is the first to address a
highly temporally sensitive phenotype: liver toxicity secondary
to recent RA-related MTX treatment using NLP. Our approach
provides compelling evidence for using informatics approaches
and state-of-the-art temporality NLP that might be relevant for
developing EMR mining algorithms for other classes of phar-
maceutical agents.

Section parsing alone increased the system performance
from F1 score 0.613 (table 2, Baseline 6) to 0.782 (table 3,
Setting 1). Through section parsing, the information extraction
focused on only highly informative and relevant sections, thus
reducing noise in the data. For example, the medication section
of the clinical notes contains the most accurate source of medi-
cation information compared with past medical history that
could include information on past use of medications.

Overall, the inclusion of medication attributes as features
did not contribute to improved overall performance (table 3,
Setting 2). However, it increased the sensitivity from 0.806 to
0.829 (at the expense of the PPV). This could be due to text de-
scribing discontinuing MTX which would be coded as a feature
(status change) resulting in more false positives and reducing
the PPV. It is possible that by adding MTX signature attributes,

the MTX usage signal was strengthened. More decision power
would then be shifted towards the MTX usage. As a balance,
the decision weights assigned to other features, such as
comorbidities, would be reduced accordingly. As a result, many
CASE instances with weak but correct MTX usage signal would
now be picked up, increasing the true positives; many NON-
CASE instances with weak comorbidity signals would be identi-
fied as CASE as well, adding to the false positives and reducing
PPV. The overall F1 score thus stagnates.

There are three groups of features aimed at capturing the
temporally relevant information of a target term—DocTimeRel,
the nearby words (admittedly, capture more than temporality),
and the nearby verbs’ POS tag (table 3, Settings 3–7). Each of
them brought a performance increase in F1 scores. The
DocTimeRel model made use of nearby words and nearby verb
tense, and linguistic cues such as prepositions. There may be
a functional overlap among these three groups of features. The
difference is that the DocTimeRel model also takes the POS
sequence between the target event and its closest temporal ex-
pression to capture the temporal aspect for the final prediction.
The Apache cTAKES DocTimeRel model was trained on a dif-
ferent data set, the THYME corpus, which comprised colon and
brain cancer pathology, radiology, and oncology notes. By ex-
plicitly modeling the other two temporally relevant feature sets
and by adding episode-level rules (MTX absent, leflunomide
mention) to filter out NON-CASE episodes, we enhanced perfor-
mance of DocTimeRel in the RA dataset. DocTimeRel anchored
each term to the DCT, providing a coarse timeframe. Nearby
words captured some important lexical features like ‘weekly’,
‘tomorrow’, ‘stopped’, while nearby verbs’ POS could help
identify useful tense patterns like past tense for ‘stopped’.
Combining the three temporality feature sets gave the best per-
formance, which demonstrates that they captured comprehen-
sive temporal information associated with the liver-toxicity
phenotype.

We analyzed the results on the Vanderbilt dataset and found
that the counts of the overlap value for DocTimeRel in
Vanderbilt’s data are much higher than those in Partners data
despite the relatively similar dataset sizes (2516 vs 1432 for
overlap; 786 vs 1104 for before; 9 vs 82 for before/overlap;

Table 1: Training and test set characteristics

Set CASE NON-
CASE

Total Inter-annotator
agreement (j)

Training 132 348 480 Single annotated

Test 38 82 120 0.828

Table 2: Tenfold cross-validation results of machine learning baseline models in the training set

No. of features PPV Recall F1 score

Baseline 1 (patient-level BOW) 48 078 0.711 0.727 0.719

Baseline 2 (patient-level comprehensive CUI) 14 265 0.738 0.727 0.733

Baseline 3 (patient-level customized CUI) 107 0.616 0.682 0.647

Baseline 4 (episode-level BOW) 48 078 0.813 0.758 0.784

Baseline 5 (episode-level comprehensive CUI) 14 265 0.797 0.742 0.769

Baseline 6 (episode-level customized CUI) 107 0.742 0.523 0.613

BOW, bag-of-words; CUI, concept unique identifier; PPV, positive predictive value.
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40 vs 300 for after). If there is little or no context discovered in-
formation (ie, not enough temporality cues) around a key term,
then the model assigns overlap as the DocTimeRel. However,
the model requires a strong signal to assign the values of be-
fore, after, before/overlap. This suggests that the Vanderbilt
data are less diverse in terms of temporal cues, making
DocTimeRel less informative.

In summary, we achieved our best performance results by
adding the temporal features. These temporal features aligned
the temporal perspective of the relevant events; thus, drug ex-
posure and comorbidity mentions could be differentiated by
their temporal relevance to the transaminase date. Comparing
the settings with or without temporal features (table 3, Settings
2 and 7), PPV increased by 6.2 points, sensitivity by 7 points,
and F1 by 6.6 points. Such improvements demonstrate the
usefulness of temporal features for this time-sensitive task.

CONCLUSION
In this paper we present a methodology for mining the wealth
of clinical data in EMRs to automatically identify a temporally
sensitive phenotype—MTX-related liver toxicity among patients
with RA using a novel cTAKES module, DocTimeRel. We

innovatively cast this task as an episode-level classification
problem where knowledge is represented through a CUI-coded
customized dictionary, temporal signals, drug attributes, and
section parsing. In addition to enabling classification of adverse
drug events among large cohorts of patients with RA, our work
contributes to the general trend of methodology development
for phenotyping using the EMR data, including its free text.

CONTRIBUTORS
All authors contributed to the design, experiments, analysis,
and writing the manuscript.

FUNDING
The project described is supported by Grant Number
R01LM010090 (THYME) and U54LM008748 (i2b2) from the
National Library of Medicine and NIH grants U01 GM092691
(PGRN), AR049880, AR052403, AR047782, and
1R01GM103859-01A1.

COMPETING INTERESTS
GKS is on the Advisory Board of Wired Informatics, LLC which
provides services and products for clinical NLP applications.

Table 4: Results on the test set

Models PPV (95% CI) Recall (95% CI) F1 score (95% CI)

Best machine learning baseline
from table 2—Baseline 4

0.590 (0.433 to 0.737) 0.703 (0.530 to 0.841) 0.642 (0.476 to 0.785)

Rule-based baseline (codified data only) 0.750 (0.551 to 0.893) 0.568 (0.345 to 0.729) 0.646 (0.460 to 0.803)

Setting 7, table 3 0.756 (0.605 to 0.871) 0.919 (0.781 to 0.983) 0.829 (0.682 to 0.924)

PPV, positive predictive value.

Table 3: Tenfold cross-validation results of customized dictionary with added features in the training
set (feature contribution)

Features No. of features PPV Recall F1 score

Setting 1: Baseline 6 þ section parsing to discover mentions in relevant
sections þ section of relevant medications

109 0.759 0.806 0.782

Setting 2: Setting 1 þ MTX signature 169 0.738 0.829 0.781

Setting 3: Setting 2 þ DocTimeRel 409 0.740 0.868 0.798

Setting 4: Setting 2 þ nearby words 4806 0.781 0.884 0.829

Setting 5: Setting 2 þ nearby verbs’ part-of-speech tags 875 0.762 0.891 0.821

Setting 6: Setting 2 þ nearby words þ nearby verbs part-of-speech tags 5512 0.780 0.907 0.839

Setting 7: Setting 2 þ nearby words þ nearby verbs’
part-of-speech tags þ DocTimeRel

5752 0.800 0.899 0.847

Setting 8: same feature settings as Setting 7 but patient-level classification 5752 0.814 0.727 0.768

For examples with the features, see figure 3
MTX, methotrexate; PPV, positive predictive value.
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