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Recent studies on the morphogenesis of the fins of Danio rerio (zebrafish) during 
development and regeneration suggest that a number of inductive signals involved in the 
process are similar to some of those that affect bone and cartilage differentiation in 
mammals and humans. Akimenko et al. (2002) has shown that bone morphogenetic 
protein-2b (BMP2b) is involved in the induction of dermal bone differentiation during fin 
regeneration. Many other groups have also shown that molecules from the transforming 
growth factor-beta superfamily (TGFβ), including BMP2, are effective in promoting 
chondrogenesis and osteogenesis in vivo in higher vertebrates, including humans. In the 
present study, we review the state of the art of this topic by a comparative analysis of 
skeletal tissue development, regeneration and renewal processes in tetrapods, and fin 
regeneration in fishes. A general conclusion of this study states that lepidotrichia is a 
special skeletal tissue different to cartilage, bone, enamel, or dentine in fishes, according 
to its extracellular matrix (ECM) composition. However, the empirical analysis of 
inducing signals of skeletal tissues in fishes and tetrapods suggests that lepidotrichia is 
different to any responding features with main skeletal tissues. A number of new 
inductive molecules are arising from fin development and regeneration studies that 
might establish an empirical basis for further molecular approaches to mammal skeletal 
tissues differentiation. Despite the tissue dissimilarity, this empirical evidence might 
finally lead to clinical applications to skeletal disorders in humans. 
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INTRODUCTION 

One of the main goals of evo-devo synthesis is the search for genetic and molecular embryological 
synapomorphies to support systematics at a molecular level. For this purpose, some authors have 
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attempted to describe the phylogenetic relationship among the main types of skeletal tissues[1,2]. There 
are four main types of skeletal tissues: bone, cartilage, enamel, and dentine[3]. In order to extend this 
analysis to all skeletal tissues, we will focus our analysis on the actinopterygian fins skeleton, using 
zebrafish as a model system. Actinopterygian ray-fins are composed of three different types of skeletal 
structures: basal endochondral bone, lepidotrichia (the distal ray dermal bone skeleton [Fig. 1.A]), and 
actinotrichia. Previous papers have considered that lepidotrichia is similar to enamel, but not to 
dentine[4]. Further studies suggest that dental tissues and dermal skeletal tissues are distant in 
evolutionary terms[2]. Other studies propose that lepidotrichia is similar to cartilage, based on its collagen 
fibrils[5] and collagen-proteoglycan interactions[6]. Recent molecular studies[7,8] finally suggest that 
lepidotrichia is similar to both cartilage and bone. We discuss these possibilities in search of general 
arguments for a comparative molecular histology of skeletal tissues in fishes. 

We shall review the composition and architecture of the extracellular matrix (ECM) of the 
lepidotrichia of zebrafish fins[7] and compare it with that of cartilage, bone[8], enamel, and dentine in 
fishes[9,10]. This study will be extended to how different skeletal tissues respond under a variety of 
experimental conditions[11,12]. 

Amphibians, chicks, and several mammals are model systems used in the search for molecular 
mechanisms that control skeletal tissues formation[13,14,15,16]. Nowadays, clinical treatments of 
skeletal disorders are based on experiments carried out in these species, especially in mammals. Cells of 
the chondrogenic and osteogenic lineages can be isolated and following in vitro manipulation of the 
mesenchymal stem cells (MSCs), these cells can be used for autologous skeletal tissue repair, using an ex 
vivo technique in human patients[17] or in the experimental animal models[18,19,20,21,22]. The results 
are similar to those obtained after experimental gene therapies for cartilage and bone disorders in 
mammals[23,24,25]. The zebrafish has previously been proposed as a model system in preclinical studies 
of skeletal tissue diseases[26,27]. We shall review empirical molecular and cellular mechanisms that 
induce the formation of lepidotrichia vs. other skeletal tissues in vertebrates. All the arguments presented 
in this paper support the notion that, although lepidotrichia is a special type of skeletal tissue, fin ray 
regeneration in zebrafish could also be useful for preclinical studies of skeletal tissue disorders.  

ALTHOUGH RAYS IN ACTINOPTERYGIAN FISHES DISAPPEARED THROUGH 
EVOLUTION IN VERTEBRATES, CERTAIN GENERAL MORPHOLOGICAL 
FEATURES OF LEPIDOTRICHIA ARE SOMEHOW SIMILAR TO SOME HIGHER 
VERTEBRATE SKELETAL TISSUES 

Fin types, fin general morphology (Fig. 1A), and number of fin rays[29] are characteristics used in 
actinopterygian systematics. Rhipidistian are crossopterygian fishes with enlarged basal bones at the 
expense of a reduction in distal dermal rays[30]. These fossil devonian fishes are at the base of 
amphibians and the rest of vertebrates with tetrapod limbs. Among fossil fishes, terrestrial colonization by 
vertebrates was preceded by the transformation of pectoral and pelvic fins into tetrapod limbs. This 
process occurred with the loss of dermal fin rays, overgrowth of basal bones, and formation of digits (Fig. 
1B)[3]. Dermal fin rays of actinopterygian fishes are then nonhomologous to tetrapod limbs. 

Sections of fin rays reveal a characteristic lepidotrichia tissue that resembles a parenthesis 
surrounding the connective tissue containing blood vessels and nerves (Fig. 1C from Carassius auratus), 
and a covering multistratified epidermis. Lepidotrichia can be either cellular or acellular. Lepidotrichia 
cellular bone shows many cells immersed in a calcified and laminar ECM. In general, this ECM is 
synthesized by peripheral scleroblasts that build the matrix and may become trapped in it. A thin layer of 
an osteoid-like matrix can also be observed near the scleroblast layer[31]. 

In general, the other skeletal tissues (bones, cartilage, enamel, and dentine) are also constituted by 
particular cell types and characteristic composition of ECM molecules. As an example, we show the 
histological appearance of membrane and endochondral bone and fibrous cartilage. Details on other 
skeletal types can be found in Hall[3]. Intramembranous ossified bones (i.e., bones of the skull) show a  
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FIGURE 1. (A) Schematic representation of a pectoral fin skeleton of a teleost (Gobius). Observe 
how the dermal rays, mostly formed by lepidotrichia (L) (only numbered from 1 to 4), are organized 
distal to the cleithrum (arrow) and hypercoracoid bones (asterisk). Below this general scheme, 
observe a detail of the scapular girdle of Trigla (differentiating by endochondral ossification and 
similar to the one shown in Gobius) (adapted from Grassé[28]). In rhipidistian fishes, the dermal 
rays start disappearing and the basal bones overgrow as a general vertebrate evolutionary trend until 
the rays are completely absent in the limb as in actual birds or mammals. (B) The posterior part of 
Ovis aries (sheep) skeleton shows how the basal bones overgrow, articulate, and bifurcate forming 
the digits (bottom), reaching large proportions as compared to actinopterygian fishes. (C) The 
dermal bone of the rays is also segmented and bifurcated. In cross-section, obtained from a caudal 
fin of a C. auratus specimen, the dermal bone (lepidotrichia) is a parenthesis-like structure (asterisk) 
— in this picture, only one element of the parenthesis is shown — that surrounds a loose connective 
tissue with fibroblasts and blood vessels immersed in the tissue. In the case of C. auratus, this is a 
cellular bone as cells can be observed inside the lepidotrichia (arrow). The lepidotrichia is divided 
into two parts, one internal and one external, separated by a specially glycosilated ECM (double 
arrows). (D) Detail of a bone growing by intramembranous ossification in humans. Observe a central 
condensation (asterisk) and various strata of osteocytes (arrow) providing a general laminar 
ordering. (E) Detail of a bone growing by endochondral ossification in a rat (Ratus ratus). Observe 
the bone matrix (in red) with osteocytes. Long bones grow at the epiphyseal plate by the hypertrophy 
of a template of cartilage (arrows) and its substitution by migrating osteoblasts. (F) Fibrous cartilage. 
Observe chondrocytes (arrows) and fibrillar ECM surrounding them. Magnifications are shown by 
bars. 

similar structural pattern: cells (osteocytes) immersed in a calcified and laminar ECM deposited by 
peripheral osteoblasts in a subepidermal location (Fig. 1D). By contrast, the general morphology of 
endochondral bones is more complex and involves a stereotyped order of cells at different maturation and 
differentiation stages at the growing sites (i.e., the epiphyseal plate of the long bones) (Fig. 1E). 
Chondrocytes proliferate, become prehypertrophic, then hypertrophic, and provide a cartilage template for 
migrating progenitor cells that differentiate into osteoblasts that finally synthesize a calcified ECM, the 
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bone matrix, with immersed osteocytes. Between trabecular bone, bone marrow (BM) is formed that 
contains hematopoietic and mesengenic cell lineages[32]. Fibrous cartilage is composed of an ECM with 
thick bundles of collagen fibrils that surround chondrocytes. Mineralization and ground substance 
masking collagen is absent except for regions neighboring chondrocytes (Fig. 1F). Similar processes have 
been described to occur in developing osteichthyan fishes, such as zebrafish[3]. 

The cellular types of the other main skeletal tissues, enamel[33] and dentine, are the ameloblasts and 
odontoblasts, respectively. Enamel and dentine are also highly mineralized tissues[3]. The composition 
and formation of fish dentine and enamel have been recently described and compared with the 
corresponding tissues in tetrapods[2,10,34]. Histologically, lepidotrichia is then similar to the main 
skeletal tissues and is described as a dermal bone[35] 

MSCS CAN BE INDUCED TO DIFFERENTIATE INTO ANY SKELETAL TISSUE 
BOTH IN VITRO AND IN VIVO 

Mesenchymal cells obtained from the BM maintain the capacity of differentiating either in chondroblasts 
or in osteoblasts in culture[36]. These cells may be reintroduced into vertebrates with bone disorders and 
repair mechanisms activated in vivo. All main skeletal tissues formation can be ectopically induced by 
this method[37,38]. 

In general, the development of skeletal tissues occurs by stereotyped developmental patterns. 
Mesenchymal cell migration, condensation, alignment, secretion of a specific composition of ECM 
molecules, and cell differentiation may occur. Appositional growth and mineralization are also typical of 
these tissues. Differentiation of cells competent to inducing signals also occurs in a sterotyped manner. In 
this study, competent cells are osteoblasts, differentiating into osteocytes (bone); chondroblasts, 
differentiating into chondrocytes (cartilage); preameloblasts, differentiating into ameloblasts (enamel); 
preodontoblasts, differentiating into odontoblasts (dentine); and scleroblasts precursor cells (SPCs) that 
differentiate into scleroblasts (lepidotrichia). Except for SPCs, all these precursor cells may arise from 
MSCs ex vivo induction[20,37,39,40,41]. In general, a microenvironment that controls stem cell activity, 
the Niche, has been described[42]. 

Zebrafish cartilage, bone, and even tooth development, which occurs through a continuous eruption 
and replacement of teeth at the pharyngeal arches, has been described[3,43]. However, the clear existence 
of MSCs in fishes has not been demonstrated yet[44]. In relation to this topic, Nechiporuk and 
Keating[45] suggest the absence of stem cells in zebrafish fins during regeneration (see below) and 
support the notion that all cells are equally competent to dedifferentiate following fin ablation.  

FIN REGENERATION AFTER AMPUTATION RESTORES MORPHOLOGY AND 
FUNCTION; THIS PROCESS IS SIMILAR TO TETRAPOD LIMB REGENERATION 

The tetrapod limb is a classical system to study regeneration. Hundreds of experiments have been 
performed using this system. However, the fin is also capable of regeneration and represents a simpler 
regenerating system than the tetrapod limb. Only tissues supported by lepidotrichia and actinotrichia can 
regenerate. This process includes epidermal cell migration, mesenchymal cell dedifferentiation and 
migration, and blastema formation and outgrowth[46] similar to tetrapod limb regeneration[47]. Both 
limb and fin regeneration also require tissue interactions[48,49,50,51,52]. However, while in the 
regenerating fin, histological analysis[53] has shown that a number of blastemal cells that adjoin the basal 
epidermis differentiate into scleroblasts that synthesize the lepidotrichia[35,53], therefore suggesting the 
participation of epidermal-blastema interactions for bone regeneration, cartilaginous condensation occurs 
away from the epidermis during tetrapod limb regeneration[47]. Recent studies further suggest that fetal 
mammals may also partially regenerate their limbs using mechanisms similar to lower vertebrate 
limbs[54]. 
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Besides endochondral bone and lepidotrichia, other skeletal tissues may also regenerate. For example, 
deer antler regeneration has been proposed as a model system for intramembranous bone 
regeneration[13,55]. A complete comparative tissue and molecular analysis of the regeneration of the 
different types of skeletal tissues will require further investigations.  

BASIS FOR A COMPARATIVE MOLECULAR ANALYSIS OF SKELETAL TISSUES 

Theoretically, tissue ontogeny, renewal, and regeneration of skeletal tissues in various vertebrate species 
might be compared in an independent way. However, the available data in the literature only allow partial 
comparative analyses, especially for molecular comparative studies (Table 1).  

TABLE 1 
Signals Inducing Skeletal Tissues and Ray Dermal Bone  

Differentiation in Vertebrates 

Induced Tissues BMP2 SHH RA IHH 

Bone +[23]d2 
+[24]d2

 
+[56]c3 

+[81]d3 
+[82]ab2 

+[13]ac3 

+[87]ac2 
  [24]f1 
  [32]f3 

   [97]f2 
+[98]e1 

Cartilage +[72]c1 
+[73]ac2 
+[74]ac2 

+[83]d1 
+[84]d2

 
+[85]c3 

–[13]ac3 

–[57]ef1 
–[88]c1 
+[89]ac1

 
+[90]ac2 

  [55]fg3 

–[98]e1 

–[99]ec1 
+[100]ac2 
  [101]f13 
+[102]ac2

 

Dentine +[38]ab2 
+[76]ac2 
  [77]f1 
  [78]f1 

  [9]d1 ±[91]cg2 
–[92]cg1 
   [93]cg1 

  [103]f1 

Enamel   [77]f1 
  [78]f1 

  [79]f1 

  [9]d1 

+[86]e1 
–[92]cg1 
  [93]cg1 

   [94]cg1 

  n.d. 

Lepidotrichia +[12]d5 
  [80]f4,5 

+[12]d5 
  [80]f4,5 

+[6]c5 
–[95]c4 

–[96]c4 

  [8]f4,5 

Note: a: MSC in vitro; b: MSC in vivo/ex vivo; c: purified 
molecules administration; d: gene transfer; e: transgenic/mutant 
mice; f: in situ hybridization; g: explants culture; 1: any skeletal 
tissue ontogeny; 2: any skeletal tissue renewal from MSCs; 3: any 
skeletal tissue regeneration; 4: fish lepidotrichia ontogeny; 5: fish 
lepidotrichia regeneration; +/–: promotion/repression of skeletal 
formation; bold: involved in pattern formation or not essential for 
differentiation; n.d.: not determined. Shh: sonic hedgehog; RA: 
retinoic acid; Ihh: Indian hedgehog. 

Moreover, when interpreting experimental results, authors might discriminate between pattern 
formation (previous to tissue differentiation), and cell differentiation/ECM synthesis and mineralization 
(proper tissue differentiation). In some cases, possible pattern-forming processes will not be easily 
separated from cell differentiation events (i.e., fracture healing[56]; in vitro studies[57]). Some of these 
topics have been considered in recent reviews[58,59,60].  
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At the molecular level, orthology among inducing signals and possible signaling modules that induce 
osteogenesis during vertebrate development have already been proposed[61,62]. Recent studies suggest 
independent evolution (phenogenetic drift) of some ECM components in enamel and dentine among 
vertebrate species[10].  

Our comparative molecular study will be focused then on these two aspects: 

• ECM components 
• Signals that induce progenitor cells to differentiate into the main skeletal tissues 

FIN RAY LEPIDOTRICHIA ECM IS DIFFERENT TO ANY OTHER SKELETAL TISSUE 
IN FISHES 

The comparison of the expression of various collagen genes allows us to show that the lepidotrichia differ 
from other skeletal tissues. collagen alpha 1 (type X) (col10a1) chain gene mRNA, as well as col1a1[63], 
col1a2, and col2a1 mRNAs, have been isolated from a subtraction library or by DDRT-PCR from 
regenerating fins of zebrafish[7]. It has also been shown that col10a1 is expressed in cartilage, 
intramembranous and endochondral bone of developing zebrafish larvae, and fin regenerates[8]. col2a1, a 
marker for cartilage in mammalian species, is expressed in the hypochord, mesenchyme of the 
neurocranium, pharyngeal arches, and the cartilage of developing fins in zebrafish[64,65,66], but not in 
enameloid and dentine[34]. Zebrafish mutants for col1a1 show bone defects, suggesting that this gene is 
required during bone and fin formation, but they do not show any cartilage phenotype[63]. In addition, 
col1a1 is expressed in cells surrounding the cartilage, but not in the cartilages themselves[63]. col1a1 is 
also expressed in enameloid and dentine in fish teeth[10,34]. 

In summary, developing and regenerating lepidotrichia express or require col10a1[7,8], col1a2[7], 
col1a1[7,63], and col2a1[7,64]. This combination of genes is not found in any other skeletal tissues of 
fish. Cartilage formation does not require col1a1[63], and col2a1 is not expressed in bone[65,66] or 
teeth[34]. All these results are consistent with the hypothesis that fin lepidotrichia could be a special type 
of skeletal tissue in fish[3].  

BMP2 INDUCES DIFFERENTIATION OF CARTILAGE- AND BONE-FORMING 
CELLS IN MAMMALS AND OF LEPIDOTRICHIA-FORMING CELLS IN FISH FINS  

In 1889, Senn[67] observed that decalcified bone induces healing of bone defects. Urist[68] showed that 
decalcified bone matrix (DBM) induces ectopic bone formation. Since then, a number of molecules have 
been found to mediate this effect[69]. The first protein activity was discovered by Sampath and Reddi in 
1981[70]. In a review, Reddi describes the general effect of BMPs on osteogenesis induction both in vivo 
and in vitro[69]. The first extensive study of BMPs in the search for therapies against human bone 
disorders was published by Burkus et al.[71]. In this work, more than 600 patients were studied to prove 
statistically the positive effect of BMP2 in long bone fractures repair, which includes formation of both 
cartilage and bone. BMP2 shows a positive effect on chondrogenesis and dentine differentiation induction 
following many different experimental procedures (Table 1)[38,72,73,74,75,76,77].  

Finally, Quint et al.[12] showed the involvement of BMP2 in lepidotrichia differentiation. Indeed, the 
ectopic expression of bmp2b in the fin regenerate induced ectopic bone formation, while overexpression 
of Chordin, a BMP antagonist, impaired bone formation[104] (Table 1).  
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ADDITIONAL EXPERIMENTS WITH OTHER INDUCTIVE SIGNALS ALSO SUPPORT 
THE NOTION THAT LEPIDOTRICHIA IS A SPECIAL TYPE OF SKELETAL TISSUE 

A variety of techniques has been used to study the effects of other inducing signals as reported in Table 1: 
MSC in vitro (a)[105], MSC in vivo/ex vivo (b)[105,106], purified molecular administration (c)[15,70,88], 
gene transfer (d)[12,23,24,25,83], and transgenic/mutant mice (e)[9,56]. Their inductive activities have 
been studied during skeletal tissue ontogeny (1, 4 in Table 1), renewal (in vitro or ex vivo studies) (2 in 
Table 1), or regeneration (3, 5 in Table 1) in several vertebrate model systems or humans.  

Our proposal of fin regeneration as a model system for skeletal disorders in mammals is based on the 
data shown in the table and further explanations below.  

As an example, the signal Sonic hedgehog is able to ectopically induce any skeletal tissue, bone, 
enamel/enameloid, dentine, cartilage, or lepidotrichia (see Table 1). However, enamel and dentine may 
differentiate in the absence of Shh function in transgenic mice[9]. Absence of shh signaling leads to 
outgrowth arrest during fin regeneration[12] (Table 1), a similar phenotype to the one observed after 
collagen synthesis inhibition[107]. This is compatible with shh affecting lepidotrichia ECM formation 
during regeneration. This would further suggest, as we have discussed according to its collagen content, 
that lepidotrichia is not dentine as previously proposed[4] and not enamel either.  

During both endochondral and intramembranous ossification, several differentiation events occur. 
These events can be disclosed using retinoic acid (RA). Retinoic acid is a potent repressor of cartilage 
formation[13,56,88], whereas it induces both terminal chondrocyte[89,90] and osteoblast 
differentiation[13,87]. It has also been shown that retinoic acid has stage-specific positive and negative 
effects on tooth morphogenesis[91]. There is not yet a clear conclusion from lepidotrichia studies, but 
retinoic acid participates in both ray pattern formation and differentiation (Table 1)[6,95,96].  

It has also been shown that Indian hedgehog (Ihh) couples chondrogenesis and osteogenesis by 
repressing hypertrophic chondrocyte formation[98,99] and promoting osteoblast lineage commitment[98]. 
Moreover, it has a positive effect on late phases of chondrocyte differentiation[100,102]. Ihh is also 
expressed during tooth formation[103]. Studies on zebrafish ontogeny and fin regeneration[8] suggest that 
ihh is expressed in developing and regenerating fins during scleroblast differentiation. However, 
conclusions must wait for functional analysis (Table 1). 

Fibroblast growth factors (FGFs) are able to induce all types of skeletal tissues[108,109,110,111,112, 
113,114,115,116,117]. Several arguments further suggest that FGF could be necessary for lepidotrichia 
formation[118]. The inhibition of FGF signaling pathway stops fin outgrowth[119] and modulation of the 
FGF signaling regulates the rate of fin outgrowth[120,121]. Wnt genes are also involved in the regulation 
of chondro-osteogenesis differentiation in mammals[122] and wnt3a, wnt5, and β-catenin genes are 
expressed during fin regeneration[48]. TGFβs are other signals inducing chondro-osteogenesis[123] that 
could be studied in regenerating fins. Although further studies must be carried out, the arguments we have 
discussed suggest that lepidotrichia behave similar to the main skeletal tissues under experimental studies 
using inducing factors.  

FUTURE PERSPECTIVES IN FIN REGENERATION STUDIES 

From an evolutionary point of view, dermal fin rays are not homologous to the tetrapod limb. 
Furthermore, morphological and molecular evidence suggests that lepidotrichia is a special type of 
skeletal tissue different to any main skeletal tissue. Despite this recognized peculiarity of the 
lepidotrichia, the above-mentioned results suggest a close similarity between the effects of inducing 
signals on the main skeletal tissues in vertebrates and on ray dermal bone formation. Further experimental 
data using known chondro-osteogenic inducing signals in mammals could provide further evidence to 
support this idea. This empirical support occurs above any consideration of homology between tissues. 
For instance, limb development in arthropods and vertebrates are nonhomologous processes, according to 
comparative anatomy, but use similar controlling genetic mechanisms[124]. 
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From a medical view, several clinical groups have already obtained sufficient data to initiate bone 
disorder therapies[17,105,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142, 
143]. In order to improve the effect of the inducing signals that are used, a variety of delivery systems are 
being tested[144,145,146,147]. These materials facilitate the regenerating activity of the cells and 
increase the efficacy of the treatment. Modifications in the amino acidic sequence of released signals may 
also be necessary to facilitate stable interactions of the factors with MSCs in culture and ex vivo 
studies[19,20] (Fig. 2). According to all empirical data reviewed above, we propose the use of fin ray 
regeneration/development studies as a model system for preclinical studies on skeletal tissue disorders. 

 
FIGURE 2. Culture of bone marrow cells for in vivo implantation. Bone marrow cells from rats are cultured in three-dimensional collagen during 
a short period of time in the presence of 0.5% FBS. After this starvation period, a cell population can be selected. These cells cultured in the 
presence of 10% FBS proliferate significantly increasing the cell population. Dexamethasone, β-glycerolphosphate, and ascorbic acid are added 
to induce osteogenic differentiation. All this process can be modulated by TGFβ1 and different BMPs. Cells extracted from the final culture may 
be ectopically grafted in a DBM chamber. After several weeks, implanted cells produce cartilage and bone inside the chamber. Alternatively, 
cells from in vitro culture can be orthotopically grafted using hydroxyapatite (HA) as biomaterial. After several weeks, a new tissue occupies the 
center of the HA. In this new tissue, both cartilage and bone can be easily identified. Arrows (bone tissue), X (cartilage tissue), dots (DBM wall), 
asterisk (trabeculae of HA).  
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CONCLUSIONS 

For a complete understanding of actinopterygian lepidotrichia nature, it is necessary to complete several 
studies. However, the experimental data accumulated until now support the notion that ray dermal bone, 
or lepidotrichia, is actually a special type of skeletal tissue when analyzed at the molecular level. Despite 
this dissimilarity to other skeletal tissues, these empirical evidence also suggest that studies on 
lepidotrichia (i.e., regenerating fins) could be of interest in preclinical studies of skeletal tissues disorder 
therapies. At least three inducing signals or modulators, SHH, BMP-2, and retinoic acid, have been 
proved to have an outstanding effect on lepidotrichia, and the rest of skeletal tissues in vertebrates. 
Further studies with other inducing signals could provide light to support our hypothesis of preclinical 
interest.  
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