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Background and purpose — In arthroplasty registry studies, the 
analysis of time to revision is complicated by the competing risk 
of death. There are no clear guidelines for the choice between the 
2 main adjusted analysis methods, cause-specifi c Cox and Fine–
Gray regression, for orthopedic data. We investigated whether 
there are benefi ts, such as insight into different aspects of pro-
gression to revision, to using either 1 or both regression methods 
in arthroplasty registry studies in general, and specifi cally when 
the length of follow-up is short relative to the expected survival of 
the implants. 

Patients and methods — Cause-specifi c Cox regression and 
Fine–Gray regression were performed on total hip (138,234 hips, 
124,560 patients) and knee (139,070 knees, 125,213 patients) 
replacement data from the Dutch Arthroplasty Register (median 
follow-up 3.1 years, maximum 8 years), with sex, age, ASA score, 
diagnosis, and type of fi xation as explanatory variables. The simi-
larity of the resulting hazard ratios and confi dence intervals was 
assessed visually and by computing the relative differences of the 
resulting subdistribution and cause-specifi c hazard ratios.

Results — The outcomes of the cause-specifi c Cox and Fine–
Gray regressions were numerically very close. The largest relative 
difference between the hazard ratios was 3.5%.

Interpretation — The most likely explanation for the similar-
ity is that there are relatively few events (revisions and deaths), 
due to the short follow-up compared with the expected failure-
free survival of the hip and knee prostheses. Despite the similarity, 
we recommend always performing both cause-specifi c Cox and 
Fine–Gray regression. In this way, both etiology and prediction 
can be investigated.

■

Competing risks methodology is beginning to take its right-
ful place in the arsenal of statistical methods for arthroplasty 
registry data (Gillam et al. 2011, Lacny et al. 2015, Wong-
worawat et al. 2015). The generally advanced age of arthro-
plasty patients necessitates competing risks techniques, which 
naturally incorporate the probability that a patient may die 
before experiencing revision, or before another outcome of 
interest occurs. For unadjusted analyses, the Aalen–Johansen 
estimator is typically used, which is a more general version 
of the Kaplan–Meier, capable of incorporating competing 
events (Aalen and Johansen 1978, Putter et al. 2007). It pro-
vides an estimate of the cumulative incidence function, which 
is defi ned as the probability of failing from a specifi c cause 
before time t. For adjusted analyses, 2 methods are typically 
considered: cause-specifi c Cox regression and Fine–Gray 
regression (Holt 1978, Fine and Gray 1999, Putter et al. 2007). 
The choice between these 2 methods is the focus of this paper. 
The assumptions underlying both methods are not in general 
compatible. Current practice is to select 1 of the 2 methods, 
e.g., Puchner et al. 2015, Wang et al. 2009, contrary to the 
recommendations of Latouche et al. (2013), if competing risks 
are adjusted for at all. The implications for the interpretation 
of analyses of large arthroplasty data-sets of these method-
ologies are still lacking in the orthopedic literature (Porcher 
2015). 

Competing risks
Traditional methods for estimating the time to revision of a 
joint implant include the Kaplan–Meier estimator and Cox 
proportional hazard models. These methods treat patients who 

11869 van der Pas D.indd   14511869 van der Pas D.indd   145 2/21/2018   5:37:00 PM2/21/2018   5:37:00 PM



146 Acta Orthopaedica 2018; 89 (2): 145–151

die before experiencing revision as censored observations, 
implying that their implants could still be revised, even though 
they have died. Methods that do not account for the compet-
ing risk of death will overestimate the probability of revision 
(Putter et al. 2007, Keurentjes et al. 2012, Lacny et al. 2015), 
which may infl uence medical decision-making. The impact 
of ignoring the competing risk of death on the results of the 
analyses depends on the incidence of the competing event. In 
the case of revision surgery, the incidence of death is typi-
cally very high, as the patient population is on average elderly 
(average age is 69 years for THR and TKR in The Nether-
lands). This is illustrated in Figures 1 and 2. The competing 
risk of death is especially strong for patients older than 70: the 
cumulative incidence of revision 8 years after THR is 3.4%, 
while that of death is 18%. The numbers for TKR are 3.3% 
and 19% respectively. 

For adjusted analyses, typically either cause-specifi c Cox 
regression or Fine–Gray regression are performed. We briefl y 
review the 2 methods. We refer to Gillam et al. (2011) for 
a comprehensive review and comparison of competing risks 
methods for arthroplasty registry data.

into the relationship between a risk factor and each separate 
outcome. In our orthopedic setting, with revision and death as 
outcomes, such insights are of the form: “Is the revision risk 
for a patient group (e.g., older patients) only decreased because 
these patients are more likely to die before being eligible for 
revision, or is there a separate age-related effect?” A drawback 
is that the results from cause-specifi c Cox regression do not 
directly answer the question as to whether the revision risk is 
decreased at all for patients with a certain characteristic (e.g., 
older patients), at least, not without combining the analyses 
for both the hazard of revision and the hazard of death. The 
effect of a covariate on the cause-specifi c hazard of revision 
can be quite unpredictable when expressed in terms of the 
cause-specifi c cumulative incidence function. For example, 
a covariate may be associated with an increased hazard of 
revision, but the probability of revision may be unaffected or 
even decrease. One of the ways in which this can happen is 
if the covariate is associated with an even larger increase in 
the hazard of death. The reason for this is that the cumulative 
incidence of any event (for example, revision) depends on the 
cause-specifi c hazards of all events. It follows that the way in 

Figure 1. Unadjusted cumulative incidences of revision (bottom) and death (top) after THR 
in patients 70 years or younger or older than 70. Estimated by the Aalen–Johansen (1978) 
estimator. 

Figure 2. Unadjusted cumulative incidences of revision (bottom) and death (top) after TKR 
in patients 70 years or younger or older than 70. Estimated by the Aalen–Johansen (1978) 
estimator. 

Overview of statistical outcome-
measure methods
Cause-specifi c Cox regression
The Cox proportional hazards (PH) 
model is a default choice for modelling 
the effect of covariates on the hazard rate 
when there is no competing event. Cause-
specifi c Cox regression is a natural exten-
sion of standard Cox PH modelling for 
the competing risks setting, where a PH 
model is applied to each cause-specifi c 
hazard. The cause-specifi c hazard is the 
instantaneous rate of failure due to one 
of the causes. All cause-specifi c hazards, 
in our case the cause-specifi c hazards of 
revision and death, are estimated sepa-
rately, by censoring all individuals who 
failed due to a cause other than the one 
considered. Thus, when the cause-spe-
cifi c hazard of revision is estimated, all 
patients who die before undergoing revi-
sion are considered censored. In the Cox 
model, the instantaneous risk of revision 
is compared among patients who are 
event free and in follow-up (that is, who 
have not yet experienced revision or the 
competing event of death at a particular 
time point). This model is appropriate if 
the interest is in understanding etiologi-
cal or biological questions (Putter et al. 
2007). 

An advantage of cause-specifi c Cox 
regression is that it gives detailed insights 
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which the cause-specifi c cumulative incidence is associated 
with covariates might be different from the way in which the 
cause-specifi c hazard is associated with covariates. For exam-
ple, old age could be associated with an increased hazard of 
revision, but with an even larger hazard of death, such that the 
probability of revision for older patients may turn out to be 
lower than that of younger patients. 

Fine–Gray regression model
Fine–Gray regression resolves the most important drawback 
to cause-specifi c Cox regression, as the coeffi cients resulting 
from Fine–Gray regression do have a direct relationship with 
the cumulative incidence (Fine and Gray 1999). Although 
the value itself is hard to interpret (Andersen et al. 2012), if 
a covariate has a positive coeffi cient in the Fine–Gray model, 
then the cumulative incidence will be increased. Fine–Gray 
regression achieves this by assuming a proportional hazards 
model for a different hazard, namely the subdistribution 
hazard. The subdistribution hazard is the instantaneous risk 
of failing from a cause given that the individual has not failed 
from that cause. The difference with the cause-specifi c hazard 
is that the risk set for the subdistribution hazard includes indi-
viduals who have failed from other causes already (such as 
death, which is “competing” with the risk of revision). The 
hazard of revision is compared based on the subset of patients 
who have not yet experienced revision at a particular time 
point. A patient who dies remains in the risk set, contrary to 
the risk set for cause-specifi c Cox regression, where such a 
patient would be censored. While Fine–Gray regression allows 
direct assessment of the relationship between a covariate and 
the cumulative incidence of the cause of interest, the insight 
into the effect of a covariate on a cause-specifi c hazard instead 
of a probability is lost. A model that regresses on the cumu-
lative incidence function is a proper tool for prognosis and 
medical decision-making, since it deals with the actual risk of 
events occurring over time (Gail and Pfeiffer 2005, Ambrogi 
et al. 2008). In our orthopedic setting, questions answered by 
Fine–Gray regression are of the form: “Is a certain group of 
patients (e.g., older patients) more or less likely to experience 
revision than other (e.g., younger) patients?” and these can 
be answered by only estimating the subdistribution hazard of 
revision, without need for combination with the subdistribu-
tion hazard of death.

Relationship between cause-specifi c Cox and Fine–Gray 
regression
Both regression methods can be used to obtain an estimate 
of the cumulative incidence function, through different hazard 
ratios. There is a little-known relationship between the sub-
distribution hazard and cause-specifi c hazard to which we 
draw attention in this paper. Taking revision as the end-point 
of interest, the following equality holds (Beyersmann and 
Schumacher 2007, Beyersmann and Scheike 2013): 

subdistribution hazard of revision = (overall survival) /
(probability of not dying) × cause-specifi c hazard of revision

Here, the overall survival is the probability of neither 
experiencing revision nor dying. If the probability of 
experiencing revision is low, then both quantities in the ratio 
will be close to each other, and thus the ratio will be close 
to 1. This in turn implies that the cause-specifi c hazard and 
subdistribution are almost the same. A similar expression holds 
for the subdistribution hazards and cause-specifi c hazards for 
death; when there are few deaths, the subdistribution and cause-
specifi c hazards will be almost the same. There is another 
situation in which the cause-specifi c and subdistribution hazard 
ratios for a covariate are similar, namely when a covariate only 
affects one of the cause-specifi c hazards (Grambauer et al. 
2010). As we shall see in the analysis of data from the Dutch 
Arthroplasty register, equality will turn out to be relevant for 
the analysis of data from orthopedic registries with a relatively 
short follow-up. 

Purpose of study
The purpose of the present paper is to use real orthopedic data 
to discuss the advantages and disadvantages of each method 
for arthroplasty registry studies with revision as the end-
point, to characterize the questions that can be answered by 
each method, and to draw attention to the little-known fact 
that Fine–Gray and cause-specifi c Cox regression may yield 
numerically very similar results when there are few revisions 
or death, or when a covariate affects only one of the cause-
specifi c hazards.

Patients and methods
Comparison of the Dutch Arthroplasty Register data
This is a national cohort study, using data on THRs and TKRs 
from the Dutch Arthroplasty Register (LROI), established 
in 2007. Completeness for hip arthroplasties was over 97%, 
and for knee arthroplasties over 96%, in 2012 and 2013 (Van 
Steenbergen et al. 2015). Inclusion criteria for this analysis 
were: 
• THR/TKR performed between January 1, 2008 and Decem-

ber 31, 2015;
• Complete covariate information available;
• Known diagnosis (i.e., “other” was excluded).

138,234 hips in 124,560 patients, and 139,070 knees in 
125,213 patients were included. On both data sets, cause-
specifi c Cox regression and Fine–Gray regression were per-
formed, with either revision or death as outcomes. The PH 
assumptions were checked by inspecting the Aalen–Johan-
sen estimates of the cumulative incidences (for Fine–Gray) 
and the Nelson–Aalen estimates of the cumulative hazards. 
Besides a visual assessment of the similarity of the outcomes, 
for each variable the relative difference of the hazard ratios 
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was computed as: 

(subdistribution hazard ratio – cause-specifi c hazard ratio)/
cause-specifi c hazard ratio × 100%

The analyses are adjusted for sex, age, ASA classifi ca-
tion, diagnosis, and type of fi xation. Age is categorized to 
“70 or younger” and “older than 70”. ASA scores 3 and 4 
were grouped together. Patients with hybrid fi xations were 
excluded, leaving only patients with cemented or uncemented 
fi xation. The THR patients had 1 of 5 diagnoses: osteoarthritis, 
dysplasia or post-Perthes, rheumatoid or infl ammatory arthri-
tis, osteonecrosis, or late posttraumatic. The TKR patients had 
1 of 4 diagnoses: osteoarthritis, rheumatoid or infl ammatory 
arthritis, osteonecrosis, or posttraumatic arthritis (Tables 1 and 
2). Median follow-up for both THR and TKR was 3.1 years, 
maximum was 8 years. Analyses were performed using R ver-
sion 3.3.2 (R Core Team 2016). 

Ethics, funding, and potential confl icts of interest
No research ethics committee approval was sought for second-
ary analysis of registry data in line with the guidelines of the 
Central Committee on Research Involving Human Subjects. 
No funding was received for this study. No competing inter-
ests were declared.

Results

Tables 3 and 4 (see Supplementary data) state the estimated 
coeffi cients and standard errors for each competing outcome 
obtained by cause-specifi c Cox and Fine–Gray regression, for 
THR and TKR respectively. No violation of the PH assump-
tions was detected.

The cause-specifi c hazard ratios resulting from cause-spe-
cifi c Cox, and the subdistribution hazard ratios resulting from 
Fine–Gray by exponentiating the coeffi cients in Tables 3 and 
4 (see Supplementary data) are visualized, together with the 
95% confi dence intervals, in Figures 3, 4, 5, and 6, to allow for 
visual assessment of the similarity of the outcomes. 

The maximum relative difference of the hazard ratios was 
3.5%. Covariates have the same effect on the cumulative 
incidence (estimated by the Fine–Gray model) and on the 
hazard (estimated by the cause-specifi c Cox) for THR and 
TKR data. Given 2 THR patients with the same characteristics 
except for fi xation, results in Table 3 and Figures 3 and 4 show 
that cemented fi xation has a statistically signifi cant protective 
effect on the cumulative incidence (and on the rate) of revision 
compared with uncemented. Age has a statistically signifi cant 
protective effect on revision. The effect of ASA score and 
diagnosis is more prominent for the end-point death than for 
revision.

Discussion
Similarity of results on hip and knee replacement data
Clinically, the risk factors found in Tables 3 and 4 (see Supple-
mentary data) are in line with previous research, with unce-
mented fi xation, younger age, male sex, higher ASA score, 
and posttraumatic procedures associated with a higher THR 
revision risk, and younger age and posttraumatic procedures 
associated with a higher TKR revision risk (Prokopetz et al. 
2012, Jasper et al. 2016). We focus here on the methodological 
aspects of our results. The outcomes of the cause-specifi c Cox 
regression and Fine–Gray regression are numerically very 
similar (Figures 3, 4, 5, and 6). As explained in the methods 

Table 1. Patient characteristics for the total hip replacement 
patients from the Dutch Arthroplasty Register included in the analy-
sis, that is, for the patients with complete covariate information and 
no “other” diagnosis. Values are frequency (%) unless otherwise 
specifi ed

Characteristic

THRs 138,234 (in 124,560 patients)
Uncemented fi xation   94,225 (68)
Cemented fi xation   44,009 (32)
Mean age, years 68.9
70 years or younger   67,310 (49)
Older than 70 years   70,924 (51)
Female   92,571 (67) 
Male   45,663 (33) 
ASA 1   35,144 (25)
ASA 2   86,450 (63)
ASA 3/4   16,640 (12)
Osteoarthritis 126,404 (91)
Osteonecrosis     4,031 (3)
Post-Perthes/dysplasia     3,262 (2)
Rheumatoid/infl ammatory arthritis     1,422 (1)
Late posttraumatic     3,115 (2)

Table 2. Patient characteristics for the total knee replacement 
patients from the Dutch Arthroplasty Register included in the analy-
sis, that is, for the patients with complete covariate information and 
no “other” diagnosis. Values are frequency (%) unless otherwise 
specifi ed

Characteristic 

TKRs 139,070 (in 125,215 patients)
Uncemented fi xation     7,594 (5)
Cemented fi xation 131,476 (95)
Mean age, years 69.0
70 years or younger   73,337 (53)
Older than 70 years   65,733 (47)
Female   91,921 (66) 
Male   47,149 (34) 
ASA 1   26,784 (19)
ASA 2   93,454 (67)
ASA 3/4   18,832 (14)
Osteoarthritis 134,043 (96)
Osteonecrosis        603 (< 1)
Rheumatoid/infl ammatory arthritis     2,298 (2)
Posttraumatic arthritis     2,126 (2) 
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Figure 3. Cause-specifi c hazard ratios and subdistribution 
hazard ratios for total hip replacement with revision as end-
point (dots), with 95% confi dence intervals (lines). 

Figure 4. Cause-specifi c hazard ratios and subdistribution 
hazard ratios for total hip replacement with death as end-
point (dots), with 95% confi dence intervals (lines).

Fixation (uncemented)
   Cemented
Age (70 or younger)
   Older than 70 years
Gender (female)
   Male
ASA score (ASA 1)
   ASA 2
   ASA 3/4
Diagnosis
   Osteonecrosis
   Rheumatoid/infl. arthritis
   Posttraumatic

0.5 1 1.5 2 2.5 3 3.5 4

Death – Total Knee Replacement 

Cause−specific HR (Cox)
Subdistribution HR (Fine−Gray)

Revision – Total Hip Replacement 

Fixation (uncemented)
   Cemented
Age (70 or younger)
   Older than 70 years
Gender (female)
   Male
ASA score (ASA 1)
   ASA 2
   ASA 3/4
Diagnosis
   Osteonecrosis
   Post-Perthes/dysplasia
   Rheumatoid/infl. arthritis
   Late posttraumatic

21.510.5

Cause−specific HR (Cox)
Subdistribution HR (Fine−Gray)

Fixation (uncemented)
   Cemented
Age (70 or younger)
   Older than 70 years
Gender (female)
   Male
ASA score (ASA 1)
   ASA 2
   ASA 3/4
Diagnosis
   Osteonecrosis
   Post-Perthes/dysplasia
   Rheumatoid/infl. arthritis
   Late posttraumatic

0.5 1 1.5 2 2.5 3 3.5 4

Death – Total Hip Replacement 

Cause−specific HR (Cox)
Subdistribution HR (Fine−Gray)

Fixation (uncemented)
   Cemented
Age (70 or younger)
   Older than 70 years
Gender (female)
   Male
ASA score (ASA 1)
   ASA 2
   ASA 3/4
Diagnosis
   Osteonecrosis
   Rheumatoid/infl. arthritis
   Posttraumatic

10.5 1.5

Revision – Total Knee Replacement 

Cause−specific HR (Cox)
Subdistribution HR (Fine−Gray)

Figure 5. Cause-specifi c hazard ratios and subdistribution 
hazard ratios for total knee replacement with revision as 
end-point (dots), with 95% confi dence intervals (lines).

Figure 6. Cause-specifi c hazard ratios and subdistribution 
hazard ratios for total hip replacement with death as end-
point (dots), with 95% confi dence intervals (lines).
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section, such numerical similarity is expected when censor-
ing is heavy. In the Dutch Arthroplasty Register data, censor-
ing is very heavy indeed: there are 3,251 revisions and 5,813 
deaths among the 138,234 transplanted hips, and 4,169 revi-
sions and 5,610 deaths among the 139,070 transplanted knees. 
The low frequency of events is explained by the short amount 
of follow-up relative to the average survival of a hip or knee 
implant. 

Implications for clinical interpretation
The similarity of the outcomes of both regression methods 
indicates that the answers to etiological and predictive ques-
tions are the same for the early follow-up phase. For example, 
TKR patients older than 70 years have a lower probability 
of revision than patients younger than 70 years (as we can 
conclude from the Fine–Gray regression with revision as out-
come) and this is not just because they are more likely to die 
before experiencing revision (as we can conclude from the 
cause-specifi c Cox hazard ratio for revision). The same rea-
soning holds for the other covariates and outcomes. 

Added value of reporting cause-specifi c Cox and 
Fine–Gray regression outcomes
The recommendation of Grambauer et al. (2010) and Latouche 
et al. (2013) is to report the outcome of both cause-specifi c 
Cox and Fine–Gray regression side by side, for all causes. 
When the results of the 2 analyses are not numerically close, 
different insights can be learned from each analysis. Cause-
specifi c Cox allows for separate assessment of the relationship 
between each covariate and each hazard of interest (in this 
case, of revision and death) and may thus provide more insight 
into the mechanisms leading to failure. Fine–Gray regres-
sion yields in a sense a summary, indicating the association 
between a covariate and the cumulative incidence of revision. 
This direct relationship cannot be directly determined from 
cause-specifi c Cox coeffi cients, because the effect of a covari-
ate on a hazard can be very different from the effect on the 
corresponding cumulative incidence. For example, if a coef-
fi cient resulting from a cause-specifi c Cox analysis is positive 
for revision but even larger for death, then the net effect on 
the cumulative incidence may actually be negative. Fine–Gray 
regression would indicate without further computations that 
the effect is negative, but does not reveal that this is because 
the high hazard of death prevents the occurrence of revision. 

The benefi ts of both methods can be taken advantage of by 
presenting the outcomes of both analyses. While the benefi ts 
cannot be demonstrated on the data from the Dutch Arthro-
plasty Register, researchers analyzing data from older regis-
tries with longer follow-up may obtain additional insights by 
performing both cause-specifi c Cox and Fine–Gray regres-
sion. The cause-specifi c hazards model is more appropriate 
when etiological questions are of interest since it quantifi es 
the event rate among individuals at risk of experiencing the 
event of interest (revision in this context). Fine–Gray is a 

regression model for the cumulative incidence function and it 
should be used when prediction is the focus. 

Limitations
There are several limitations to this study. The data are obser-
vational, and thus no causal conclusions can be drawn from 
the analyses performed. The amount of follow-up is short rela-
tive to the average survival of each implant. Due to the scarcity 
of events, Fine–Gray and cause-specifi c Cox are numerically 
similar in all comparisons. While that is the point to which we 
would like to draw attention, we would like to emphasize that, 
as a rule, Fine–Gray and cause-specifi c Cox regression will 
yield different results. Finally, if the effect of 1 of the covari-
ates is time-dependent, a more careful analysis is required. We 
refer to Gillam et al. (2011) for discussion on this point.

Link to ignored bilaterality
As an aside, we remark on a connection between the observed 
similarity between cause-specifi c Cox regression and Fine–
Gray regression, and the issue of incorporating bilateral 
patients in orthopedic studies. The impact of ignored bilateral-
ity is commonly considered negligible (Ranstam et al. 2011). 
We would like to point out that the circumstances under which 
ignoring the presence of bilateral patients does not substan-
tially affect the analyses are the same under which the out-
comes of Fine–Gray regression and cause-specifi c Cox regres-
sion are numerically close: when there are few events, ignor-
ing bilaterality is unlikely to affect the results (Robertsson and 
Ranstam 2003). Details concerning analysis in the presence of 
bilateral patients are discussed in Lie et al. (2004) and Van der 
Pas et al. (2017).

Recommendations for statistical analysis of arthro-
plasty registry data
For researchers faced with the choice between cause-specifi c 
Cox regression and Fine–Gray regression, we concur with the 
recommendations of Grambauer et al. (2010) and Latouche et 
al. (2013) to report the outcome of both Fine–Gray and cause-
specifi c Cox regression, but add the recommendation to only 
do so when the results are not numerically similar. Numerical 
closeness of the Fine–Gray and cause-specifi c Cox regressions 
is expected in many arthroplasty registry studies, because the 
survival of hip and knee prostheses is generally high. If the 
results of the 2 analyses are indeed similar, then presenting 1 
of them suffi ces, with a brief remark indicating that both anal-
yses were performed. In case of longer follow-up, less simi-
larity between the 2 regression methods is expected. Again, 
we emphasize that the interpretation of the results based on 
the 2 models is different and that the research question should 
guide the choice between the 2 models. We therefore caution 
that the recent statement made by Ranstam and Robertsson 
(2017), based on simulated data, that cause-specifi c Cox is the 
best method for estimating relative revision risk, should not 
be interpreted as a guideline that cause-specifi c Cox is always 
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the best option. Cause-specifi c Cox regression is most suitable 
for etiological questions, while Fine–Gray regression is more 
appropriate for prediction. 

Supplementary data
Tables 3 and 4 are available as supplementary data in the 
online version of this article, http://dx.doi.org/10.1080/ 
17453674.2018.1427314

SP and MF conceived and designed the study. SP and MF conducted the 
analysis, and all authors interpreted the results. SP drafted the fi rst version of 
the manuscript. All authors helped in revising the manuscript and gave their 
fi nal approval of the submitted version. All authors had full access to the data 
and take responsibility for the integrity of the data and the accuracy of the 
data analysis. 

Acta thanks Ove Furnes and other anonymous reviewers for help with peer 
review of this study.

Aalen O O, Johansen S. An empirical transition matrix for non-homogeneous 
Markov chains based on censored observations. Scand J Stat 1978; 5: 141-
50. 

Ambrogi F, Biganzoli E, Boracchi P. Estimates of clinically useful measures 
in competing risks survival analysis. Stat Med 2008; 27: 6407-25.

Andersen P K, Geskus R B, de Witte T, Putter H. Competing risks in
epidemiology: possibilities and pitfalls. Int J Epidemiol 2012; 41: 861-70.

Beyersmann J, Scheike T H. Classical regression models for competing risks. 
In: Klein JP, van Houwelingen HC, Ibrahim JG, Scheike TH, editors. Hand-
book of survival analysis. Boca Raton, FL: CRC Press; 2013. pp. 157-177. 

Beyersmann J, Schumacher M. Letter to the Editor: Misspecifi ed regression 
model for the subdistribution hazard of a competing risk. Stat Med 2007; 
26: 1649–51. 

Fine J P, Gray R J. A proportional hazards model for the subdistribution of a 
competing risk. JASA 1999; 94: 496-509. 

Gail M H, Pfeiffer R M. On criteria for evaluating models of absolute risk. 
Biostatistics 2005; 6: 227-39.

Gillam M H, Salter A, Ryan P, Graves S E. Different competing risks models 
applied to data from the Australian Orthopaedic Association National Joint 
Replacement Registry. Acta Orthop 2011; 82: 513-20.

Grambauer N, Schumacher M, Beyersmann J. Proportional subdistribution 
hazards modeling offers a summary analysis, even if misspecifi ed. Stat 
Med 2010; 29: 875-84. 

Holt J. Competing risks analyses with special reference to matched pair 
experiments. Biometrika 1978; 65: 159-65. 

Jasper L L, Jones C A, Mollins J, Pohar S L, Beaupre L A. Risk factors for 
revision of total knee arthroplasty: a scoping review. BMC Musculoskelet 
Disord 2016; 17: 182.

Keurentjes J, Fiocco M, Schreurs B, Pijls B, Nouta K, Nelissen R. Revision 
surgery is overestimated in hip replacement. Bone Joint Res 2012; 26: 
2389-430. 

Lacny S, Wilson T, Clement F, Roberts D J, Faris P D, Ghali A, Marshall D A. 
Kaplan–Meier survival analysis overestimates the risk of revision arthro-
plasty: a meta-analysis. Clin Orthop Relat Res 2015; 473: 3431-42.

Latouche A L, Allignol A, Beyersmann J, Labopin M, Fine J P. A competing 
risks analysis should report results on all cause-specifi c hazards and cumu-
lative incidence functions. J Clin Epidemiol 2013; 66: 648-53.

Lie S A, Engesæter L B, Havelin L I , Gjessing H K, Vollset S E. Dependency 
issues in survival analyses of 55 782 primary hip replacements from 47 355 
patients. Stat Med 2004; 23: 3227-40.

Porcher R. CORR Insights®: Kaplan–Meier survival analysis overestimates 
the risk of revision arthroplasty: a meta-analysis. Clin Orthop Relat Res 
2015; 473: 3443-5. 

Prokopetz J J Z, Losina E, Bliss R L, Wright J, Baron J A, Katz J N. Risk 
factors for revision of primary total hip arthroplasty: a systematic review. 
BMC Musculoskelet Disord 2012; 13: 251. 

Puchner S E, Kutscha-Lissberg P, Kaider A, Panotopoulos J, Puchner R, 
Böhler C, Hobusch G, Windhager R, Funovics P T. Outcome after recon-
struction of the proximal tibia: complications and competing risk analysis. 
PLoS One 2015; 10: e0135736.

Putter H, Fiocco M, Geskus RB . Tutorial in biostatistics: competing risks and 
multi-state models. Stat Med 2007; 26: 2389-430.

R Core Team. R: A language and environment for statistical computing. 
Vienna: R Foundation for Statistical Computing; 2016. Available from: 
https://www.R-project.org/.

Ranstam J, Robertsson O. The Cox model is better than the Fine and Gray 
model when estimating relative revision risk from arthroplasty register 
data. Acta Orthop 2017; 88 (6): 578-580.

Ranstam J, Kärrholm J, Pulkkinen P, Keijo M, Espehaug B, Pedersen A B, 
Mehnert F, Furnes O. Statistical analysis of arthroplasty data. II. Guide-
lines. Acta Orthop 2011; 82: 258-67. 

Robertsson O, Ranstam J. No bias of ignored bilaterality when analysing the 
revision risk of knee prostheses: analysis of a population based sample 
of 44590 patients with 55298 knee prostheses from the national Swedish 
Knee Arthroplasty Register. BMC Musculoskelet Disord 2003; 4: 1.

Van der Pas S L, Nelissen R G H H, Fiocco M. Patients with staged bilateral 
total joint arthroplasty in registries: immortal time bias and methodological 
options. J Bone Joint Surg Am 2017; 99: e82(1-8).

Van Steenbergen L N, Denissen G A W, Spooren A, van Rooden S M, van 
Oosterhout F J, Morrenhof J W, Nelissen R G H H. More than 95% com-
pleteness of reported procedures in the population-based Dutch Arthro-
plasty Register: external validation of 311,890 procedures. Acta Orthop 
2015; 86: 498-505.

Wang Y, Simpson J A, Wluka A E, Teichtahl A J, English D R, Giles G G, 
Graves S, Cicuttini F M. Relationship between body adiposity measures 
and risk of primary knee and hip replacement for osteoarthritis: a prospec-
tive cohort study. Arthritis Res Ther 2009; 11: R31.

Wongworawat M D, Dobbs M B, Gebhardt M C, Gioe T J, Leopold S S, 
Manner P A, Rimnac C M, Porcher R. Editorial: estimating survivorship 
in the face of competing risks. Clin Orthop Relat Res 2015; 473: 1173-6.

11869 van der Pas D.indd   15111869 van der Pas D.indd   151 2/21/2018   5:37:04 PM2/21/2018   5:37:04 PM



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Europe ISO Coated FOGRA27)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 400
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 400
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug true
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks true
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




