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Abstract

Our health care system is plagued by missed opportunities, waste, and harm. Data generated in the 

course of care are often underutilized, scientific insight goes untranslated, and evidence is 

overlooked. To address these problems, we envisioned a system where aggregate patient data can 

be used at the bedside to provide practice-based evidence. To create that system, we directly 

connect practicing physicians to clinical researchers and data scientists through an informatics 
consult. Our team processes and classifies questions posed by clinicians, identifies the appropriate 

patient data to use, runs the appropriate analyses, and returns an answer, ideally in a 48-hour time 

window. Here, we discuss the methods that are used for data extraction, processing, and analysis in 

our consult. We continue to refine our informatics consult service, moving closer to a learning 

health care system.
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INTRODUCTION

Most medical decisions are made without the support of rigorous evidence [1,2] in large part 

due to the cost and complexity of performing randomized trials [3,4]. Even when guidelines 

exist, clinicians often do not have the time to read and understand them [1,5]. Furthermore, 

guidelines often do not apply to complex patients commonly seen in the clinic [1]. In 

practice, clinicians must use their judgment to make decisions, informed by their own 

experiences and the collective experience of their colleagues. This often leads to suboptimal 

care and creates waste and harm [6–8]. Increasingly, it is recognized that the clinical trial 

enterprise fails to produce relevant evidence for good clinical care [9].

Retrospective observational studies using the electronic health record (EHR) can generate 

evidence relevant to real patient populations [2]. We have operationalized that opportunity as 

an informatics consult that clinicians solicit the same way they would solicit other specialist 

consults. Obtaining a consult is a familiar process to clinicians and eliminates the friction 

between researchers and practitioners, ensuring that practice-based evidence is always 

readily available. Instead of sending one-way “reports,” we offer the consult as a dialogue 
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between the clinician and consult team and among team data scientists so that we are not 

fooled by oddities in the data and obvious biases. The ultimate goal is to make use of all the 

evidence on hand to make the best possible decision for patient care.

For example, one clinician requested a consult to assess if the risk of diabetic eye disease is 

different in diabetic patients treated with rosiglitazone compared with diabetic patients not 

treated with rosiglitazone. In this case, completing the consult involved an iterative 

refinement of the analysis to determine an appropriate index time; in the end, we used onset 

of diabetes as the index time, and after basic matching on age, gender, and length of record, 

we determined that patients treated with rosiglitazone do not have a statistically significant 

difference in rate of diabetic eye disease compared with patients not treated with 

rosiglitazone.

As another example, we received a request from a hospitalist interested in the use of imaging 

after spinal fusion surgery. The hospitalist requested a consult to determine how many 

patients who underwent spinal fusion surgery also had a spinal x-ray performed during the 

inpatient stay when the surgery was performed and in the 2 weeks after surgery. We found 

that the majority of spinal fusion surgery patients had an x-ray taken during their inpatient 

stay, and fewer than 5% also had a second x-ray taken in the 2 weeks postsurgery.

The generation of good-quality evidence from observational data is not a trivial process, 

especially when operating on timescales corresponding to the course of care that unfold in 

days instead of publication schedules that span several months. All observational data are 

biased in terms of what population is observed (selection bias), what data are recorded on 

what patients (missing data), and what patients get what treatments (confounding). 

Depending on the question asked, different methods are required to extract the data, 

transform it into a useful form, and analyze it to produce evidence [10,11]. In many cases, 

the methods themselves are being actively researched, and questions remain about their 

implementation. Naturally, the operational details of the service, which are beyond the scope 

of this discussion, are equally important as the analysis methods used to generate evidence. 

We believe that despite these limitations, it is possible to offer a service that uses available 

data to produce the most up-to-date evidence possible and contextualize the findings for 

clinicians to incorporate in their decision making.

DATA EXTRACTION AND TRANSFORMATION

Data Sources and Infrastructure

Before beginning the analysis, an appropriate data set must be extracted from the EHR. In 

our consult, we use data from Stanford’s EHR as well as from national claims data sets, such 

as Truven MarketScan, depending on the question at hand. Our data sets include both 

structured (eg, International Classification of Diseases, ninth rev codes) and unstructured 

(text) data. Text data are pre-processed with our text-processing workflow, which has been 

validated in multiple studies [12,13]. All data elements (e.g. procedures, diagnoses, note 

text, labs) are mapped to unique clinical concepts using a knowledge graph [14,15]. We 

anticipate soon having access to linked imaging data, which we will preprocess analogously 

to text data.
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Before proceeding with the consult, we must determine whether we have data that are 

relevant to the question. We use the Stanford Advanced Temporal Language Aided Search 

(ATLAS) engine [16,17] to ensure that we have sufficient cohort sizes and data of the 

required modalities available to complete the consult. The ATLAS engine features a rich 

temporal query language that enables fast (subsecond response times) and powerful (simple 

commands define complex logical and temporal restrictions) searches over millions of 

patient records.

Phenotyping

To perform a search using ATLAS, we must determine the criteria that define the patients of 

interest (phenotyping) [18]. Improper phenotyping can create significant selection biases in 

the results of downstream analyses [19]. Phenotyping inherently requires domain knowledge 

because certain criteria may not be clearly or uniquely articulated in EHR data [11]. For 

instance, to find type 2 diabetic patients, one might search for any patients with an 

International Classification of Diseases, ninth rev diagnosis code of 250.00, or for patients 

with 3+ mentions of “t2dm” in their notes, or for patients who are on metformin and have a 

single mention of “diabetes.” Such “rules” to find diabetic patients are often referred to as 

phenotyping algorithms, and it is difficult to judge which is best without expert review 

[20,21]. We currently rely on the inquiring clinician to help us define an appropriate 

phenotyping rule for his or her consult.

Supervised machine learning is increasingly used for phenotyping. Instead of defining a rule, 

a small number of hand-labeled patients are used to train a model, which then classifies the 

remaining patients [22]. High-specificity rules may also be used to label the training patients 

[23]. These approaches lessen domain knowledge requirements and may reduce variability 

in the resulting cohorts. The volume of proxy signals in text and image data make these 

approaches attractive for labeling phenotypes that are not recorded as structured data in the 

EHR (eg, socio-economic variables) [14,24]. It may also be possible to include patients in 

the analysis cohort according to the model’s confidence in the phenotype assignment. We 

are investigating the use of these methods for our consult, but do not currently apply them.

Finally, because phenotype definitions are difficult to evaluate without expert-labeled data, 

stability analyses are a good way to detect potential biases. If there are multiple alternative 

phenotype rules or models, the same analysis should be performed using each of them and 

the final results compared.

Feature Construction

For analysis, each patient must be represented as a vector of features that describe their 

relevant clinical characteristics. The EHR contains many data modalities through time, 

including clinical notes, diagnoses, procedures, laboratory results, vitals, demographics, 

administrative data, and prescriptions. With learning algorithms that can handle huge 

numbers of variables, there is little reason not to exploit the richest possible set of features 

[25]. However, many choices can be made [26] (eg, representing diagnoses as counts or 

binary indicators, text as ontology-standardized term mentions or n-gram counts, or 

laboratory values or most extreme recent value as an indicator). Our knowledge graph also 
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allows us to aggregate features using domain knowledge to increase power, and multiple 

methods exist to do this [27,28]. In addition, each feature can be calculated at different 

points along the patient timeline, or the data could be filtered to include only recent 

measurements, among other possibilities [29,30]. It is also possible to engineer or learn 

composite features [31,32].

In our consult, we strike a balance using count representations of data from each modality 

without aggregation. As we integrate imaging data, we will consult with radiologists to 

decide on a standard set of image features to include. We continue to investigate whether 

richer representations lead to better analyses, and in what cases. As with phenotyping, 

stability analyses across multiple feature extraction schemes may reveal biases in causal 

analyses.

CLINICAL QUESTIONS AND THEIR ANALYSES

Before any analysis is begun, it is important to clearly define the kind of evidence that is 

sought [10]. Our consult service is staffed to support multiple types of analyses.

Descriptive and Exploratory Analyses

For complex patient populations, it is helpful to describe the population to see if 

interpretable patterns emerge. Traditionally, this has been done by computing summary 

statistics of some clinically important features across predefined subgroups of the 

population. Our consult can easily answer questions, such as “For individuals with cancer, 

what is the incidence rate of thyroiditis and adrenalitis?”

Unsupervised learning methods such as principle component analysis and hierarchical 

clustering may also be used for descriptive analyses, but it is unclear how to report their 

results to clinicians. These methods can help answer questions, such as “What are the 

different subtypes of pediatric autistic patients in our practice?” [33]. However, it is not clear 

how the results of an unsupervised analysis should be reported back in a way that 

appropriately trades off brevity for meaningfulness. The output of these methods is a 

representation of each patient in a low-dimensional space, but the dimensions of that space 

may not have an obvious clinical interpretation limiting their utility [34].

Inferential and Causal Analyses

Clinicians are often interested in the relationship between a treatment and an outcome. In an 

inferential analysis, it suffices to say that the outcome and treatment change together in a 

statistically significant way, but that does not imply that changing the treatment would 

change the outcome. To perform a causal analysis, we must attempt to reduce confounding 

while performing inference.

There are several challenges in using EHR data. First, EHR data are retrospective and 

observational, so highly prone to confounding; second, there are a variety of causal inference 

methods to choose from; third, it is difficult to evaluate if confounding has been addressed 

well enough; and fourth, causal effects vary between patients.
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We attempt to control confounding using various strategies and are investigating methods to 

assess and report residual confounding. Causal inference methods exist to alleviate 

confounding biases [35]. Most of these methods work by matching subjects at baseline and 

using only the matched subsample for further analysis. Supervised learning can be used in 

some aspects of causal analyses (eg, in estimating propensity scores or predicting potential 

outcomes in matched cohorts) [36–38].

Typically, causal inference methods are chosen based on ease of use, researcher preference, 

or performance on simulated data [39,40]. Researchers experiment with various methods 

until they are satisfied with the result. Our consult must have a reasonably standardized 

methodological pipeline to return results quickly. Therefore, we run several analyses using 

established best practices with the most popular methods and report the results from each of 

them. We currently use an unadjusted regression, an adjusted regression after matching on 

common confounders [41], and an adjusted regression after 1:1 matching on a propensity 

score estimated from a large number of features. These three methods span the range 

between doing very little and doing a lot to address confounders and common best practice 

[35,42,43]. Because it is generally not possible to know which causal inference method will 

best estimate the true causal effect, we are currently developing a framework that takes a real 

data set and generates look-alike simulated data with a user-specified treatment effect. 

Preliminary work shows that methods that successfully estimate the user-specified effect in 

these simulated data sets also successfully estimate the true effect in the real data [44].

Simulations of this kind might help pick the right causal inference method but do not help 

assess the presence of unobserved confounders (or assess if confounding has been addressed 

well enough). Negative control outcomes are a useful mechanism to assess susceptibility to 

such biases [45]. Briefly, the studies are rerun using an alternative outcome that is known to 

not be caused by the treatment or comparator. If the results show a significant effect, then it 

is likely that the results of the original study are also biased. For example, a prescription of 

metformin could never be causative of preprescription HbA1c levels. Therefore, if we are 

interested in metformin’s effect on postprescription HbA1c, we could use the preprescription 

value as a negative control. This procedure can be repeated with numerous negative controls 

to build a null distribution of effect sizes [19]. The challenge is finding appropriate negative 

controls [45]. We are considering crowdsourcing negative control outcomes from inquiring 

clinicians (ie, when they submit their question to the consult, they will also be asked to 

submit a reasonable negative control outcome relative to their true outcome and treatment). 

Over time, we will compile a database of negative control outcomes that will allow us to run 

multiple negative controls per study.

Often, the need to use our consult arises because of a particular patient. Currently, the 

inquiring physician outlines the cohort of “similar enough” patients for study. However, 

emerging methods use machine learning in conjunction with causal inference techniques to 

estimate a personalized treatment effect for each patient [46–48]. These techniques may 

remove the need of quantifying patient similarity for cohort construction. We are exploring 

these methods for future use.
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Predictive Analyses

Unlike inferential and causal analyses, predictive analyses do not seek structural knowledge 

about the world. Instead, they exploit correlations to predict outcomes or classify patient 

states at the individual level. Methodologically, predictive analyses are a straightforward 

application of supervised learning. Their results are evaluated based on their ability to 

correctly predict or classify previously unseen patients. Without further inference, model 

internals (eg, coefficients) do not provide mechanistic knowledge and should not be 

interpreted [49].

Clinically, predictive models can be used to make prognoses for new patients, as long as 

their treatment patterns do not deviate statistically from those observed in the training data. 

If prognostic models are used to inform decision making that affects outcomes, their 

predictions are no longer valid because new patients may be treated differently from those in 

the training data [50]. This creates a tension in the use of prognostic models. Without 

making assumptions or using causal inference techniques, prognostic models should not be 

used for decision making that affects the treatment choice [51]. When clinicians ask, “What 

will the outcome of this patient be?,” they are often actually interested in the causal question 

“What will the outcome be on this treatment versus on another?”

Predictive models are also useful for identifying latent disease. In this case, the outcome or 

condition has already occurred, so the use of predictive models is always statistically sound. 

Diagnostic models can be used to answer questions such as “Does my patient have familial 

hyperlipidemia?” However, care must be taken to define the time at which a patient is 

considered to have the condition. A model trained to discern long-term diabetics from 

healthy patients will perform poorly in diagnosing new diabetic patients and many of the 

important “predictors” of the disease will be treatments indicated by the disease [52].

Despite these caveats, we aim to provide predictive analyses through our consult. Method 

selection for predictive analyses is more straightforward than for causal analyses. We plan to 

employ a variety of machine learning methods (eg, regularized regression, tree ensembles, 

and neural nets) and use cross-validation to choose among them. We would create a 

predictive model for the cohort and report the model’s accuracy and calibration (or mean 

squared error) along with the prediction on the patient in question. Questions remain about 

which accuracy metrics to report to clinicians, especially in diagnostic cases where, for 

example, a false-negative would be more costly than a false-positive.

DISCUSSION AND CONCLUSION

Our informatics consult is capable of answering different kinds of clinical questions with 

state-of-the-art analysis methods, but many methodological issues in data extraction, 

transformation, and analysis are still being researched.

The first time such an idea to use aggregated patient data for decision making was put in 

play was in 1972 [53]. Much progress has been made in analysis methods, search 

technology, and data availability that make our current service possible. However, there are 

other issues unrelated to the choice of analysis methods that affect the final feasibility and 
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utility of offering such a service. These include the funding model for such a consult service, 

assessment of the risk-benefit of using an on-demand evidence generation service, and the 

possibility that the “answer” changes as more data come in.

Our informatics consult service attempts to create a synergy between a thorough study using 

sound methods and clinical judgment, enabling the rapid generation of applicable clinical 

evidence where there was none before. The informatics consult is a step towards a fully 

integrated learning health care system.
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TAKE-HOME POINTS

■ Our informatics consult connects clinicians with researchers capable of 

answering different kinds of clinical questions with state-of-the-art analysis 

methods, but many methodological issues in data extraction, transformation, 

and analysis are still being researched.

■ We use data from multiple modalities (eg, codes, laboratory results, texts) to 

create more accurate patient representations.

■ We use a search engine to quickly build rule-based cohorts and explore our 

data.

■ We strike a balance between efficiency and rigor when performing inferential 

analyses.

■ Exploratory and predictive analyses are difficult to standardize and may be of 

limited actionability.

■ We are working to implement and compare novel inference methods to the 

standard methods we currently use.

Schuler et al. Page 10

J Am Coll Radiol. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	DATA EXTRACTION AND TRANSFORMATION
	Data Sources and Infrastructure
	Phenotyping
	Feature Construction

	CLINICAL QUESTIONS AND THEIR ANALYSES
	Descriptive and Exploratory Analyses
	Inferential and Causal Analyses
	Predictive Analyses

	DISCUSSION AND CONCLUSION
	References

