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Summary

Background—The disease course of amyotrophic lateral sclerosis (ALS) is rapid and, because
its pathophysiology is unclear, few effective treatments are available. Genetic research aims to
understand the underlying mechanisms of ALS and identify potential therapeutic targets. The first
gene associated with ALS was SODJ, identified in 1993 and, by early 2014, more than 20 genes
had been identified as causative of, or highly associated with, ALS. These genetic discoveries have
identified key disease pathways that are therapeutically testable and could potentially lead to the
development of better treatments for people with ALS.

Recent developments—Since 2014, seven additional genes have been associated with ALS
(MATR3, CHCHD10, TBK1, TUBA4A, NEK1, C21orf2, and CCNF), all of which were identified
by genome-wide association studies, whole genome studies, or exome sequencing technologies.
Each of the seven novel genes code for proteins associated with one or more molecular pathways
known to be involved in ALS. These pathways include dysfunction in global protein homoeostasis
resulting from abnormal protein aggregation or a defect in the protein clearance pathway,
mitochondrial dysfunction, altered RNA metabolism, impaired cytoskeletal integrity, altered
axonal transport dynamics, and DNA damage accumulation due to defective DNA repair. Because
these novel genes share common disease pathways with other genes implicated in ALS,
therapeutics targeting these pathways could be useful for a broad group of patients stratified by
genotype. However, the effects of these novel genes have not yet been investigated in animal
models, which will be a key step to translating these findings into clinical practice.
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Where next?—The identification of these seven novel genes has been important in unravelling
the molecular mechanisms underlying ALS. However, our understanding of what causes ALS is
not complete, and further genetic research will provide additional detail about its causes. Increased
genetic knowledge will also identify potential therapeutic targets and could lead to the
development of individualised medicine for patients with ALS. These developments will have a
direct effect on clinical practice when genome sequencing becomes a routine and integral part of
disease diagnosis and management.

Introduction

Typically, the disease course of amyotrophic lateral sclerosis (ALS) is rapid, and most
patients die within 3-5 years of symptom onset as a result of respiratory failure.l Although
the disease is considered a rare type of motor neuron neurodegeneration, the number of
patients with ALS is rapidly increasing because of population ageing. Most patients are aged
between 50 and 75 years at diagnosis and, by 2040, an estimated 400 000 patients will be
diagnosed with ALS worldwide.2 Approximately 10% of patients with ALS have a family
history of disease, whereas the remainder of cases are classified as sporadic.! The
pathophysiology of ALS—familial or sporadic—is unclear, thus few effective treatments are
available. Riluzole and edaravone are the current treatments approved for the disease.
Riluzole prolongs survival by 2-3 months at best, with little effect on quality of life,3
whereas edaravone mildly improves patient mobility, but the effect on survival is unknown.*
The paucity of effective treatments warrants more genetic and molecular research on the
underlying mechanisms of ALS to analyse the disease process at the cellular level. By 2014,
22 genes were implicated in ALS, and mutations in these genes account for about two-thirds
of all familial cases and approximately 10% of cases of sporadic ALS.? Since 2014, seven
novel genes associated with ALS—MATR3, CHCHD10, TBK1, TUBA4A, NEK1, C21orf2,
and CCNF—have been identified. The rapid identification of multiple novel genes
associated with ALS reflects improvements in sequencing technologies and, more
importantly, provides an opportunity to better understand the disease (figure 1). Such
advances are key to the development of disease-modifying treatments.

In this Rapid Review, we summarise the novel genetic discoveries associated with ALS in
chronological order. We focus on the technologies and experimental design used to identify
these genes, and have cross-checked genetic variants against the Exome Aggregation
Consortium (EXAC) public database, which catalogues more than 7 million variants in the
protein coding region of the genome identified in more than 60 000 mostly healthy
individuals (ie, those without severe paediatric diseases). Genetic screening is becoming
more accessible and common in clinical practice, thus understanding how a variant might
cause disease within the context of the larger population could help in making reasonable
inference about pathogenicity, especially when family history of disease is unknown. We
also discuss the importance of these genes for the development of new therapies.

Novel ALS genes

Frequency data for these seven novel genes identified since 2014 are scarce because few
studies have done large-scale screening of independent patient cohorts. The frequency data
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available for these genes are likely to be inflated, and we hypothesise that the frequency of
mutations in these genes in the population will be lower when additional data is obtained.
We estimated that for ALS—assuming full penetrance, no founder mutation effect, and
disease prevalence of six cases per 100 000 individuals®—a variant observed more than five
times per 121 000 alleles in the EXAC database (corresponding to an allele frequency of
0-0033%) is unlikely to cause ALS because it is too common. However, absence of
mutations in a gene in the EXAC database does not necessarily infer pathogenicity because
rare genetic variants that are unique to one individual or a single family are remarkably
common in the human population (about 3—4 million single nucleotide polymorphisms per
individual).”

In 2014, four mutations (p.S85C, p.F115C, p.P154S, and p.T622A) in MATR3 were
identified by exome sequencing in four families of European descent with either ALS alone
or with a combination of ALS and dementia.® Since 2014, 11 additional variants have been
described, predominantly occurring in patients with sporadic ALS.912 In the EXAC
database, three variants (p.E664A, p.N787S, and ¢.48+1G>T) had a reported allele
frequency of 0.03-0-05%, p.F115C was reported once, but none of the other variants were
listed. Overall, the contribution of MATR3to the development of ALS or ALS and
frontotemporal dementia is relatively rare, with no significant correlation observed between
phenotype and genotype.

In patients with ALS with MATR3 mutations, upper and lower motor neurons are affected
and survival duration ranges from 2—12 years.1% The concomitant clinical presentation of
ALS and myopathic features in individuals with the p.S85C mutation is important because
these patients are initially diagnosed with vocal cord and pharyngeal dysfunction with
asymmetric distal myopathy, but the presentation of pyramidal tract signs and progressive
respiratory failure at end-stage disease usually warrants re-diagnosis.8 By contrast to TDP43
and FUS, whereby mutations cause relocalisation of the mutant protein from the nucleus to
cytoplasm, studies813 have shown that the subcellular localisation of mutant MATR3 is
generally unaffected. Furthermore, MATR3-positive inclusions were occasionally observed
in histopathological sections from patients with MATR3 mutations, and in one individual
with C9orf72 expansion.8

MATR3 is a 125 kDa nuclear protein with RNA and DNA binding domains that appears to
primarily regulate gene expression.14 Transgenic mice overexpressing human MATR3
protein develop hindlimb paralysis and muscle atrophy, indicating that neuromuscular
function is sensitive to MATR3 levels.1® The protein forms a complex with two other ALS-
associated RNA-binding proteins, TDP438 and FUS,16:17 in a RNA-dependent manner and
the p.S85C mutation enhances this interaction.® Thus, overlap might occur in the upstream
regulatory proteins or downstream effector targets among ALS-RNA binding proteins.
Elucidation of this potentially shared set of proteins might identify molecules suitable for
therapeutic intervention.
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CHCHD10was first linked to ALS in a study!8 of a large French family who had a complex
phenotype of ALS, ataxia, mitochondrial myopathy, parkinsonism, and sensorineural
hearing loss. Exome sequencing identified a p.S59L mutation within CHCHD10.18
Subsequently, 20 additional missense variants, clustered in exon 2—which encodes an
internal hydrophobic helical segment important for mitochondrial membrane binding°—
have been reported in a broad range of neurodegenerative disorders, including ALS and
frontotemporal dementia,1820-28 frontotemporal lobar degeneration,2? parkinsonism,26:27
Alzheimer’s disease,3° autosomal dominant mitochondrial myopathy,3! adult-onset spinal
muscular atrophy,32 and Charcot-Marie-Tooth type 2.33 The pathogenicity of p.S59L,18
p.R15L,20-22 and p.G66V20 has been validated in family studies, whereby the mutations
were shown to segregate with ALS. Additionally, the mutations were absent in the EXAC
database. However, mutations in CHCHD10 appear to be a relatively rare cause of ALS, but
might be more frequent among patients diagnosed with frontotemporal dementia.2”-34

CHCHD10 is a 14 kDa nuclear-encoded, mitochondrial protein localised to the
mitochondrial intermembrane space. The protein is important for the maintenance of
mitochondrial dynamics and cellular bioenergetics.3 Patient fibroblasts expressing mutant
CHCHD10 protein (p.S59L) have a fragmented mitochondrial network and disrupted
mitochondrial cristae.1® These effects are similar to abnormalities in mitochondrial
dynamics induced by mutations in TDP43.36 CHCHD10 also interacts with TDP43, which
promotes retention of TDP43 in the nucleus,3” but this localisation is disrupted in the
presence of CHCHD10 mutations, causing an accumulation of TDP43 in the cytoplasm and
synaptic damage.3” Further study is necessary to investigate the mechanistic association
between these proteins and their involvement in mitochondrial dysfunction and TDP43
proteinopathy. This insight could identify therapeutic targets susceptible to manipulation by
small molecules, to rescue the observed cellular defects involved in ALS.

TUBA4A was implicated as a novel gene for familial ALS on the basis of exome sequencing
data obtained from a large cohort of European and American patients with ALS and
controls.38 This finding was replicated in an independent Belgian cohort,?% but not in Asian
patients with ALS.3% All variants were absent or had very low frequency in the EXAC
database and had adequate segregation data, with the exception of p.K430N. The overall
frequency of TUBA4A mutations suggests it is a rare cause of ALS. Little information is
available about the clinical presentation, prognosis, or neuropathological evaluation of
patients with TUBA4A variants, and although patients often present with typical features of
ALS, some also present with features of frontotemporal dementia.26:38

The main cytoskeletal scaffold in cells is comprised of microtubules, composed of
polymerised a-tubulin and B-tubulin subunits. In primary motor neurons, expression of
missense mutation TUBA4A interferes with tubulin dimerisation, resulting in a weakened
microtubule network.38 Mutations have been found to cluster in the protein domain
responsible for the interaction with other tubulin subunits and the axonal transport proteins
dynein and kinesin.“? This finding highlights the crucial role of cytoskeletal and axonal
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transport defects in the pathogenesis of ALS. Therapeutic approaches enhancing cytoskeletal
integrity might be crucial for halting progression or reversing the disease course.

A whole exome sequencing study*! revealed that 7BKZ was implicated in ALS. Enrichment
of nonsynonymous variants in patients with ALS compared with healthy controls was found
across the entire coding region.#! This finding was validated by another whole exome
sequencing study,*2 which reported segregation of the pathogenic variants within affected
families. Mutations in 7BK are found in about 1% of patients with familial ALS and in
approximately 1% of patients with sporadic ALS.#2-53 The clinical phenotypes associated
with 7BKI mutations are heterogeneous, with variable age of onset, differing progression,
and irregular length of survival time.3943-46 Extrapyramidal symptoms, ataxia, and
psychiatric symptoms have also been reported in some patients with 78K mutations.46
Neuropathological examination of CNS tissue from patients with a 78K mutation showed
SQSTM1/p62 and TDP43-positve inclusions,*24546 which are indicative of abnormal
TDP43 protein aggregation and defective protein clearance pathways.*’ Since these
inclusions are also observed in other patients with ALS without 78K mutations,8 this
suggests that a common disease mechanism might exist, and a broad treatment approach to
restore defective proteostasis might also benefit patients with 78K mutations.49

TBK1 is a homodimeric multidomain protein with a kinase domain, a ubiquitin-like domain,
and two coiled-coil domains.?? The protein acts as an interaction platform for multiple
proteins and regulates the activities of downstream protein targets involved in key cellular
processes that have been implicated in ALS, including neurocinflammation, ubiquitin-
proteasome systems, and autophagy pathways involving other genes also associated with
ALS—ie, OPTN, SQSTM1/p62, VCP, and UBQLNZ2.5° Most pathogenic variants identified
in TBK1 are concentrated within the kinase and the coiled-coiled domains,2 suggesting that
these mutations might operate by altering these downstream regulatory pathways. We
identified some variants (p.K291E, p. 1305T, p.L306l, p.H322Y, p.T3221l, p.R444Q, and
p.A535T) in the EXAC database that had a frequency higher than our estimated threshold of
0-0033%, suggesting that they are unlikely to be pathogenic. Pathogenicity of the other
variants will require further investigation in families and in cells or animal models.

NEK1 and C21orf2

Heterozygous loss-of-function mutations in VEKZ have been implicated in sporadic ALS.*!
NEK1 interacts with two proteins known to be associated with ALS, ALS2 and VAPB,%>
which are involved in endosomal and endoplasmic reticulum lipid trafficking; this
interaction provides some functional evidence of NEK1 involvement in ALS pathogenesis.
Two independent case-control studies®1>2 provided corroborative evidence that NEKZ is
associated with ALS, and indicated that it might account for up to 2% of all ALS cases.
Clinical descriptions of patients with AMEKZ mutations are scarce, but patients appear to
present with typical ALS without dementia.>1:52

Concomitant with the identification of NEKZ, a large case-control study®3 using the
genome-wide association approach found that C27orf2was associated with increased ALS
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risk. NEK1 and C21orf2 interact with each other and are involved in microtubule assembly,
DNA damage response and repair, and mitochondrial function.>45> Additional genetic
replication studies in independent cohorts and functional and clinical studies for both NEKZ
and C21orf2 are required to fully understand the contribution of these variants in the
pathogenesis of ALS.

CCNFwas identified as a causative gene for ALS on the basis of exome sequence analysis®®
of a large family of European descent who had ALS, frontotemporal dementia, or both
diseases, with an autosomal dominant pattern of inheritance. The authors reported
additional, potentially pathogenic variants in CCNFin familial cases (all absent or less than
the 0:0033% threshold in the EXAC database), with an overall mutation frequency that
ranged between 0-6 and 3-3% in white populations.>’ Clinically, these patients presented
with either typical ALS, ALS with frontotemporal dementia, or frontotemporal dementia
alone.56

CCNF is the substrate-recognising component of the Skp1-cullin-F-box E3 ubiquitin-ligase
complex, which is responsible for tagging proteins with ubiquitin and marking them for
degradation via the ubiquitin-proteasome system.>” Neuronal cells overexpressing mutant
CCNF show an increase in ubiquitin-tagged proteins, which include TDP43. This increase
suggests that these variants affect the proteosomal degradation pathway by either aberrantly
tagging all proteins with ubiquitin or failing to transfer ubiquitin-tagged proteins to the
proteasome complex for removal.>® This finding indicates that mutations in CCNF might
lead to abnormal proteostasis, which might be exacerbated by TDP43 proteinopathy.
Therefore, therapies that enhance protein clearance or reduce ubiquitination might be viable
approaches to treatment.

Role of genetics in therapy development

With the exception of riluzole, which was shown to prolong survival for 2-3 months,3 and
edavarone, which was shown to decrease the rate of patient immobility,* currently no
treatments are available for ALS that can effectively stop or reverse the disease progression.
Diagnosis of ALS is only possible through assessment of clinical symptoms after a
substantial number of motor neurons have died. Thus, for a drug to be effective, early or
presymptomatic diagnosis would be necessary to prevent further motor neuron degeneration
and to preserve the function of remaining motor neurons. However, this presents a challenge
because no reliable molecular biomarkers have been identified for presymptomatic diagnosis
or for patient stratification in clinical trials. The genetic landscape of ALS is slowly evolving
in response to novel genetic discoveries, helping to identify pathogenic cellular pathways
(figure 2, table), and to provide both potential biomarkers and targets for drug discovery.

Pathogenicity in some cases is likely to be driven by the acquisition of a toxic function
through genetic mutation, which forms the basis for antisense oligonucleotide treatment.>®
By reducing the production of toxic species, the pathogenic process driven by these species
can be modified or stopped to prevent further cellular damage. In animal models of SOD1-
associated ALS,59 antisense oligonucleotide treatment significantly delayed disease onset,
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improved neuromuscular function, and prolonged survival. These effects were accompanied
by a corresponding decrease in SOD1 in cerebrospinal fluid, indicating that the
concentration of SOD1 in this compartment might be a pharmacodynamic biomarker for
future prognostic and efficacy assessments.50 The first clinical trial®® of antisense
oligonucleotide treatment in human beings had favourable safety outcomes, and a trial to
assess the safety, tolerability, and pharmacokinetics of a second generation SOD1 antisense
oligonucleotide is currently in progress (ClinicalTrials.gov, NCT02623699). Phase 2 and
phase 3 trials are needed to establish whether the efficacy observed in experimental models
can be achieved in human beings.

Similar biomarker development and antisense oligonucleotide studies targeting C9orf72are
in development.62-64 Although it remains unclear which toxic species drive pathogenicity,%°
a single dose of antisense oligonucleotide that specifically targets the expanded allele was
sufficient to alleviate behavioural symptoms in transgenic C9orf72 mice and reduce the
number of RNA foci and dipeptide repeat proteins.56.67 Patients with C90rf72 expansion
also showed increased toxic RNA accumulation in tissues and circulating dipeptide repeat
proteins in blood and cerebrospinal fluid,%’ suggesting that C90rf72 could be a candidate
biomarker of disease diagnosis, treatment efficacy evaluation, and prognosis.52

Genetic discoveries have been directly applied in clinical settings to alleviate disease—eg,
riboflavin therapy for Brown-Vialetto-Van Laere syndrome,®8:6% which is an inherited
variant of ALS. The syndrome is a rare progressive neurodegenerative disorder that typically
manifests as childhood ALS in combination with sensorineural deafness.”® Brown-Vialetto-
Van Laere syndrome is caused by mutations in two riboflavin transporter genes (SLC52A2
and SLC52A3)0 that result in a reduction of plasma flavin and acylcarnitine concentrations.
68 patients treated with high-dose oral riboflavin had marked motor improvements and an
overall alleviation of clinical symptoms.®8

TBK1 is a key regulatory molecule upstream of OPTN, SQSTM1/p62, and IRF3 in the
autophagy and neuroinflammatory pathways that are implicated in ALS.#250 Manipulation
of TBK1 might potentially compensate for defects caused by other ALS-associated proteins
in these pathways—eg, VCP and UBQLN2. NEK1 and C21orf2 are known to interact at the
protein level and, in addition to TUBA4A, PFN1, NEFH, and PRPH, they represent the
building blocks of the cellular scaffold. Administration of small molecules that enhance
cytoskeletal integrity could represent a viable therapy for stopping progression or reversing
the disease course in patients with these mutations.

Conclusions and future directions

ALS research has been largely driven by advances in our understanding of the genetics
underlying the disease. This, in turn, has been fuelled by technological developments in next
generation sequencing. Since 2014, seven novel genes—MATR3, CHCHD10, TBK1,
TUBA4A, NEK1, C210rfZ, and CCNF—associated with ALS have been identified using
these techniques. However, the precise disease mechanisms attributed to these genes are
unclear, and further elucidation from in-vivo and in-vitro functional studies is required. The
collective identification of these novel genes is important within the context of other
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established genes that are associated with ALS to enable investigation of the disease process
at the cellular level (figure 2).

The considerable advances in genetic identification seen in the past decade are likely to
continue as whole genome sequencing becomes more accessible. Such progress will
facilitate the analysis of larger cohorts leading to a better understanding of the molecular
defects that cause motor neuron degeneration. In particular, these techniques will help to
identify rare polymorphisms in the non-coding intergenic regions of the genome and
structural variants, such as repeat expansions, copy number variants, and indels that might
contribute to ALS. The availability of well phenotyped cohorts and efforts in large-scale
genomic sequencing are essential to improve our understanding of ALS pathophysiology,
and thus, to identify therapeutic targets.

Increased knowledge about the genetic profiles that protect or confer disease risk in patients
with ALS will change the way clinical trials are done and how therapy is prescribed to
patients. The most important change will be the stratification of patient and control cohorts
by genotype, which will increase the success rate of clinical trials. Because ALS is a
genetically heterogeneous and complex disease, a personalised medicine approach is
emerging, whereby treatment is tailored to the specific mutation that causes disease in an
individual patient. Thus, genetic screening for known variants or mutations will be integral
to diagnosis, treatment, and prevention of ALS. Many advances have been achieved in the
past 5 years, such as the application of gene silencing for SOD1 and C9orf72, the
development of viable biomarkers for the diagnosis of patients with ALS who have
mutations in those genes, and the evaluation of the efficacy of potential treatments. More
breakthroughs are expected in the future when more genes are identified through these large-
scale genetic studies.
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Search strategy and selection criteria

We searched PubMed for articles published in English between Dec 1, 2013, and Aug 31,
2017, using the search terms “ALS AND genetics” and “motor neuron disease AND
genetics”. We selected articles that reported the identification of the novel amyotrophic
lateral sclerosis genes MATR3, CHCHD 10, TBK1, TUBA4A, NEK1, C210rf2, and
CCNF. We also searched for articles describing the function and implications of
mutations in these selected genes in neurological and non-neurological diseases, and
associations with known amyotrophic lateral sclerosis genes identified before 2014. We
selected the most relevant articles on the basis of subjective appraisal of their quality and
mechanistic insight that could be relevant to amyotrophic lateral sclerosis.
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Figure 1. Genetic landscape of AL S between 1993 and 2016
Familial ALS cases constitute about 10% of all cases of ALS. Of this 10%, about 70% can

be explained by genetics. Two substantial increases in genetic contribution to ALS were
found in 2008 and 2011, corresponding to the identification of TARDBP (contributes to
about 4% of familial and 1% of sporadic cases) and C9orf72 (contributing to about 40% of
familial cases and 8% of sporadic cases). ALS=amyotrophic lateral sclerosis.
GWAS=genome-wide association study. WGS=whole-genome sequencing. WES=whole-
exome sequencing. NGS=next-generation sequencing. RP-PCR=repeat-primed polymerase
chain reaction. SNP=single nucleotide polymorphism. ASO=antisense oligonucleotide.
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Biological processes implicated in amyotrophic lateral sclerosis
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Figure 2. Interactions between genes associated with amyotrophic lateral sclerosis
The outer circle is a karyotype ideogram showing 24 chromosomes (22 autosomal

Page 14

chromosomes, X chromosome, and Y chromosome); the inner circle shows the location of

each gene. Links between genes represent interactions at the protein or gene level.
Interaction data was obtained from the Biological General Repository for Interaction

Datasets. Black lines indicate cytogenetic band patterns. Biological processes implicated in

either the gene or interactions are indicated by colour.
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