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The gut environment and gut microbiome dysbiosis have been demonstrated to significantly influence a range of disorders in
humans, including obesity, diabetes, rheumatoid arthritis, and multiple sclerosis (MS). MS is an autoimmune disease affecting the
central nervous system (CNS). The etiology of MS is not clear, and it should involve both genetic and extrinsic factors. The
extrinsic factors responsible for predisposition to MS remain elusive. Recent studies on MS and its animal model, experimental
autoimmune encephalomyelitis (EAE), have found that gastrointestinal microbiota may play an important role in the
pathogenesis of MS/EAE. Thus, gut microbiome adjustment may be a future direction of treatment in MS. In this review, we
discuss the characteristics of the gut microbiota, the connection between the brain and the gut, and the changes in gut microbiota
in MS/EAE, and we explore the possibility of applying microbiota therapies in patients with MS.

1. Introduction

Multiple sclerosis (MS) is an autoimmune central nervous
system (CNS) disease, and experimental autoimmune
encephalomyelitis (EAE) is an animal model of MS. The eti-
ology and pathogenesis of MS and EAE remain unknown.
Recently, studies have focused on the microbes that colonize
the skin and mucosal surfaces and mainly those that may be
found in the gastrointestinal (GI) tract [1–3]. It has been
shown that an imbalance in the gut microbiota, called
“dysbiosis,” is associated with various diseases, ranging from
intestinal diseases, like colorectal cancer, irritable bowel syn-
drome, and inflammatory bowel disease (IBD) [4], to other
systemic diseases such as obesity [5], malnutrition [6], dia-
betes, metabolic syndrome, and rheumatoid arthritis (RA)
[7, 8]. In the field of neurology, attention is also focused
on the role of the gut microbiota in CNS diseases, such as
Alzheimer’s disease and Parkinson’s disease (PD) [9, 10].

Many recent studies have also found that the gut microbiota
plays an important role in MS; this will help us find a new
way to treat MS or prevent MS relapse.

2. The Microbiome

Human normal microorganisms consist of bacteria, micro-
eukaryotes, fungi, yeast, archaea, helminths, protozoa, para-
sites, and viruses/phages, which are mainly distributed in
the internal cavity of the body, such as respiratory tract,
digestive tract, urogenital tract, and body surface, forming
four microecosystems, with more than 95% of them located
in the large intestine [11, 12]. All microbes including bacte-
ria, archaea, fungi, and viruses exist in an ecosystem/habitat
called microbiota, and the collective genomic, protein, or
metabolite content of all the microbes in a given ecosystem/
habitat called microbiome, for example, the microbial com-
munity, in the gut is called gut microbiota or gut flora [13].
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There are about 1014 different populations of microorgan-
isms in the human intestinal tract, which are at least 100
times larger than the number of human genes in the body,
and their total weight is approximately 2 kg [14, 15]. Such a
large number of intestinal microbes and hosts have evolved
over a long period of time and have become an inseparable
part of the host and play an important role in maintaining
the body healthy. Because of the different physiological state
of the human gastrointestinal tract, there are certain differ-
ences in the species and distribution of the bacteria, and even
in the intestinal and intestinal mucus layers, the microbes is
different. The exact species of microbe populations has not
yet been determined. However, in recent years, the Metage-
nomics of the Human Intestinal Tract and the Human
Microbiome Project have provided the most integrated view
of human-associated microbes, and Hugon et al. list 2172
species isolated in humans, which they classified into 12
different phyla, with 93.5% of them belonging to the Pro-
teobacteria, Firmicutes, Actinobacteria, and Bacteroidetes
phyla [16, 17], and a healthy gut contains large fractions
of the phyla Firmicutes and Bacteroidetes, including the gen-
era Prevotella, Bacteroides, and Ruminococcus, followed by
Verrucomicrobia and Actinobacteria but contains a low
number of Proteobacteria phyla members [18]. The coloniza-
tion of the human gut begins at birth and becomes relatively
stable in adulthood. Different ethnicities should have differ-
ent microbiomes, and the human gut microbiota does not
remain constant, as it is affected by numerous factors [19].

2.1. Formation of Gut Microbiota and Influencing Factors.
After birth, microbes rapidly colonize the sterile neonatal
GI tract, and the microbiota composition partially depends
on the delivery mode and whether breast-feeding is done
[20–22]. It has been hypothesized that the different compo-
nents of the gut microbiota after birth may have an impact
on disease in the future [23]; research has found that a caesar-
ean delivery and formula-feeding are associated with high
incidences of infection and allergy diseases [24, 25]. One to
2.5 years after birth, the composition, diversity, and function
of the infant microbiome gradually develops to resemble that
of adults [26, 27]; in adulthood, most of the bacteria in the
body will remain in a relatively stable state, but to the end
of the life, the diversity of flora composition will decline
and the ratio of Bacteroidetes/Firmicutes will increases; how-
ever, the human microbiota displays a remarkable degree of
variation within and between individuals [28].

Recent evidence has shown that the adult microbiome is
not as stable as previously believed, and there are many
important endogenous and exogenous factors for the com-
position of the intestinal microbial community: (1) Genetic
factors: There is an obvious adaptive relationship between
host gene composition and bacterial gene composition.
The bacteria can synthesize metabolites on the basis of
genetic composition. These metabolites interact with each
other, maintaining a stable balance between the gut micro-
biota and the surrounding environment. Even when twins
and mother-daughter pairs had lived apart for many years,
but they still have more similar microbiota compositions,
suggesting that the gut microbiota may be influenced by

genetics factors [29–31]. (2) Sex: The gut microbiota and
sex hormone have been reported to influence each other,
and research has found that males exhibited increased
abundance of Bacteroides and Prevotella compared with
females [32], and sex differences in the microbiome parallel
immune, metabolic changes, it is important in risk and
resilience of the disease throughout the lifespan [33, 34].
New studies in mice have found that adoptive transferred
male microbiota to recipient females can result in elevated
testosterone and metabolomic changes and delay the onset
and lessen the severity of disease, which demonstrated that
the female-biased risk for autoimmune disorders is signifi-
cantly impacted by sex differences in the gut microbiome
[35, 36]. (3) Diet: Dietary habits and food types can influ-
ence microbial composition [37–40]. (4) Drugs: Antibiotic
and other drugs can easily affect the components of the
microbiome [41, 42]. (5) Others: Other implicated factors
include lifestyle, illness, smoking, drug addiction, place of
residence, and the climate [43, 44].

2.2. Normal Function of the Gut Microbiota. An intimate
mutualistic relationship between the gut microbiota and the
host has been developed following thousands of years, and
the gut microbes have become either harmless or beneficial
to the host, maintaining the balance of the systemic and local
immune systems. The human gut microbiota can synthesize
and secrete essential vitamins to support immune regulation,
endothelial growth, and the development of the CNS. Lactic
acid bacteria can produce vitamin B12 that cannot be synthe-
sized by other animals, fungi, or plants; Bifidobacteria are the
main producers for folate, which is involved in DNA synthe-
sis and DNA repair; other vitamins, including vitamin K,
nicotinic acid, biotin, riboflavin, pantothenic acid, pyridox-
ine, and thiamine can also be synthesized by the human gut
microbiota [45–48].

The beneficial effects of the gutmicrobiota on hostmetab-
olism are often considered to bemediated by short-chain fatty
acids (SCFAs). These SCFAs can be absorbed in the GI tract
by epithelial cells and be involved in the regulation of cellular
processes like cytotaxis, proliferation, differentiation, and
apoptosis [49].

Normal flora can systemically and locally stimulate the
development of innate and adaptive immune systems and is
required for normal immune system maturation, including
gut-associated lymphoid tissue (GALT) development.

The enteric nervous system (ENS) is one of the main
divisions of the autonomic nervous system and regulates
the functions of the gastrointestinal tract, which has been
described as a “second brain” [50]. ENS controls the motility,
exocrine and endocrine secretions, and microcirculation of
the gastrointestinal tract; it is also involved in regulating
immune and inflammatory processes [51, 52].

2.3. Connection between Brain and Gut. At the end of the
19th century, the American scientist Gershon first described
the concept of gut-brain connection [50]. Over the past
decade, a large number of animal and preclinical studies have
proven that the gut microbiota is involved in regulating
physiological processes in humans, such as host metabolism
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and immunity, and can modulate brain signals, triggering
bidirectional signaling via the microbiome-gut-brain axis
through the endocrine, immune, nervous, and metabolic
systems [53, 54]. This axis includes a variety of molecular
pathways interacting with each other (Figure 1).

2.3.1. Neural Regulation Pathway. The gut microbiota can
secrete and regulate neurotransmitters of the central and
peripheral nervous systems; intestinal lymphocytes can be
stimulated by local environmental changes in the lumen
(including changes in the gut microbiota) and release

cytokines to activate the endocrine or paracrine systems
and consequently affect the CNS. At the same time, the
CNS can directly impact the gut via sympathetic nervous
system or parasympathetic nervous system, especially of
the vagus nerve; the regulations are mainly mediated by
the secretion of catecholamines or acetylcholine, which
influence ENS circuits [55, 56]. Gut microbes also produce
a range of important components that are implicated in
neuroactive and immune regulation, including secreting
γ-aminobutyric acid (GABA), histamine, serotonin, dopa-
mine, and others [57, 58].
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Figure 1: The role of the gutmicrobiota in health andMS. The gutmicrobiota can affect the body’s nervous system function in numerousways,
including the neural regulating pathway, the endocrine pathway-HPA axis, and the immunoregulating pathway (via lymphocyte, cytokines,
chemokines, and antigens presenting effect of SCFAs). The normal microbiome has many functions: (1) maintenance of the motility and
permeability of the gut; (2) synthesis and secretion of essential vitamins, such as vitamin B12, folate, vitamin K, nicotinic acid, biotin,
riboflavin, pyridoxine, panthotenic acid, and thiamine; (3) maintenance of intestinal epithelial functions, such as absorption and secretion;
and (4) local stimulation of the development of innate and adaptive immune systems via GALT secreting immune cells, cytokines, and IgAs.
When the gut microbiota is in dysbiosis, several diseases may develop, such as MS. The pathology of MS includes increased BBB
permeability, destruction of the myelin layer in the CNS, and inflammatory cell infiltration of perivascular tissues. The immunological
changes of MS in the periphery are characterized by an increase in pro-inflammatory effector such as CD4+ T cells, monocytes, macrophages,
inflammatory dendritic cells, and B cells and a decrease in CD8+ T cells and CD4+ CD25+ FoxP3+ Treg cells [84, 87–90]. Patients with MS
can exhibit gut microbial dysbiosis, with increases in Methanobrevibacter Akkermansia [128], Desulfovibrionaceae [132], Actinobacteria,
Bifidobacterium, Streptococcus [137], Firmicutes, Euryarchaeota [133], Ruminococcus [138], Pseudomonas, Mycoplana, Haemophilus,
Blautia, and Dorea [140] and decreases in Butyricimonas [128], Lachnospiraceae, Ruminococcaceae [132], Faecalibacterium, Prevotella,
Anaerostipes, Clostridia XIVa and IV Clusters [137], Fusobacteria [133], Bacteroidaceae [138], C. perfringens type A [139], Parabacteroides,
and Adlercreutzia [140]. BBB: blood-brain barrier; CNS: central nervous system; HPA axis: hypothalamic-pituitary-adrenal axis; SCFA: short
chain fatty acids; APC: antigen presenting cell; GLAT: gut-associated lymphoid tissue; FoxP3: forkhead box 3; Treg: regulatory T cells.
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2.3.2. Endocrine Regulation Pathway. The hypothalamic-
pituitary-adrenal (HPA) axis comprises the hypothalamus
and the pituitary and adrenal glands. When confronted with
stress or other stimulants, the HPA axis finally releases
glucocorticoids, mineralocorticoids, or catecholamines; all
of them can alter gut microbiota composition and increase
gut epithelium permeability and immune responses [59–61].
Increased corticosterone levels in stressed mice lead to
intestinal dysbiosis that is characterized by the Clostridium
genus increase and the Bacteroides genus decrease [62].
Because glucocorticoids have both proinflammatory and
anti-inflammatory effects on the peripheral and CNS
immune cells, and inflammatory and autoimmune diseases
are often associated with impaired HPA axis functionality,
such as in RA, IBD, and MS [61, 63, 64].

2.3.3. Immunoregulation Pathway. Gut microbes can modu-
late the immune response in a variety of ways, such as affect-
ing antigen presenting effect and regulating the production of
cytokines and the function of lymphocytes. The gut microbi-
ota plays an important role in the fermentation of indigest-
ible carbohydrates into the three most abundant SCFAs:
acetate, propionate, and butyrate. In the human gut, acetate
is produced by gut anaerobes, propionate is significantly
produced by Bacteroidetes, and butyrate production is
mainly by Firmicutes [65–67]. These molecules activate the
brain’s immune response, which can trigger inflammation
in the nervous system and cause a series of neurological
symptoms. Butyrate has anti-inflammatory and anticancer
functions, and it constitutes an important energy source for
colonocytes and has an effect in inhibiting histone deacety-
lase (epigenetics) [68], generating intestinal and circulating
regulatory T (Treg) cells [69], maintaining blood-brain
barrier (BBB) integrity [70], and modulating CNS-microglia
activity [71]. SCFAs have also been known to have strong
anti-inflammatory effects. They can influence the production
of cytokines and have relationship with the G-protein-
coupled receptor 43 (GPR43) to elicit an anti-inflammatory
effect [72]. The GI microbiome can regulate the development
of the host innate and adaptive immune systems via the gut–
CNS-axis. The microbes are necessary for host immunity
generation because in the GI tract, they can format GALTs.
The GALT represents the largest immune holder in the
human body, containing nearly 80% of the immune compart-
ments. The regulatory T cells and autoimmune pathogenic
T cells may maturate in the GALT and suppress autoimmune
response outside the gut [15, 73]. Studies with germ-free
(GF) mice have shown a thinner mucus layer and Peyer’s
patches and decrease numbers of secreting IgA plasma cells,
CD4+ T cells, and antimicrobial peptides [74–76]. In GF
mice, the lymph nodes and spleens are abnormally devel-
oped, with decreased numbers of B and T cells in the
germinal centers and parafollicular region [77].

2.3.4. Metabolic System Regulation Pathway. Gut microbes
modulate brain function by the release of metabolites
such as immune antigens (peptidoglycan, lipopolysaccharide
(LPS), and polysaccharide A (PSA)) with immunological
effects [78, 79]. Normal bacteria can stimulate the production

of cross-reactive antibodies (mainly IgA). These antibodies
are secreted into the intestine and can play an important
role in preventing bacterial infection. PSA derived from
Bacteroides fragilis is known as an immunomodulator with
inhibitory function in CD39+ FoxP3+ T cells and Treg
cells [80]. Lipid 654, produced by Bacteroidetes in the
human gut, can be a ligand for mouse TLR2 and human
and exist in the systemic circulation of healthy humans
[81] (Figure 1).

3. MS/EAE and Gut Microbes

3.1. MS and EAE. MS is an autoimmune disease in the CNS,
which is the main cause of disability in young people in
Western countries [82, 83]. Pathological changes associated
with MS include the loss of BBB integrity, inflammatory cell
infiltration of perivascular tissues, destruction the myelin
layer, and axonal damage [84]. The clinical features may be
diverse and include limb weakness, paresthesia, fatigue,
blurred vision, and cognitive deficits, among others [85].
EAE is the most widely used animal model of MS and resem-
bles its pathological, clinical, and immunological features
[86]. The immunological changes in MS/EAE are character-
ized by increasing proinflammatory cell infiltration, followed
by CD4+ T cells with the Th1 or Th17 phenotypes, mono-
cytes, macrophages, inflammatory dendritic cells, and B cells,
and decreasing in CD8+ T cells, CD4+ CD25+ Forkhead box 3
(FoxP3+) Treg cells, and impaired Treg function [84, 87–90].

The etiology of MS remains relatively unknown, and it
may include both genetic and environmental factors. Genetic
factors: MS often occurs in young women, and the ratio of
female tomale inMShas increased to an incidence of 3 : 1 over
the past decades, indicating a potential role of hormones in
the occurrence of MS. Androgens have the ability to reduce
the natural killer (NK) cells, toll-like receptor 4, and tumor
necrosis factor-alpha (TNF-α), while they upregulate anti-
inflammatory molecule production, such as interleukin-10
(IL-10). In contrast, estrogens may enhance the production
of the proinflammatory cytokines like IL-1, IL-6, and TNF-α
[34, 91]. Over 100 genetic risk factors have been identified
for MS, including HLA alleles (HLA-DRB1∗1501, DR4, and
DR3), transcription factors, adhesionmolecules, chemokines,
cytokines, and micro-RNA genes [92]. However, the MS is
not fully controlled by genetics, as monozygotic twins,
sharing 100% of genetic material, show an approximately
25–30% lifetime risk for MS when one of them has been
diagnosed, suggesting that the genetic background could be
interacting with other risk factors [93, 94]. Environmental
factors: Previously, it was reported that living at higher lati-
tudes would pose a higher disease risk because ofmore limited
sun exposure leading to possible vitamin D deficiency [95].
Other environment factors include smoking, antibiotic
exposure, vaccination, obesity, ethanol abuse, EB virus infec-
tion, exposure to air pollutants including PMs (particulate
matters), heavy metals, and airborne biological pollutants
such as lipopolysaccharide (LPS) and gut microbiota changes
[96–101]. Recently, it was found that many of the risk factors
listed, including reduced vitaminD intake, smoking, hyperca-
loric Western diet, vaccination, stress, and alcohol addiction,
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may be related to the gut microbiome dysbiosis [102]. A
reduced vitamin D intake can alter the immune responses,
producing FoxP3+ Treg cells and reducing T cells in the gut,
which could affect gut microbial populations directly [103].
Smoking can influence the gut microbiome in humans; after
smoking cessation,microbial diversity increases and the over-
all composition of the microbiome changes [104]. Therefore,
the dysbiosis of gut microbiota may be involved in the patho-
genesis of MS.

3.2. The Microbiome in EAE. The impact of the gut microbi-
ota on the development of MS has been rooted in several pre-
clinical studies in EAE. The gut microbiota plays an essential
role in the occurrence and development of the immune
system in EAE; it can regulate BBB permeability, limit astro-
cyte pathogenicity, activate microglia, and express myelin
genes [70, 71, 105, 106] (Table 1).

Germ-free (GF) mice show significant defects in both
systemic lymphoid and gut-associated tissues, and Peyer’s
patches are hypoplastic in such animals with greatly
decreased number of plasma cells, which produce resident
CD4+ T cells and IgA [107]. Although EAE can be induced
in GF mice, the severity of EAE was obviously reduced
[108, 109], due to the inability to form more pathogenic
T cells such as Th17 cells. However, when these mice
are colonized with segmented filamentous bacteria, they
show a recirculate inflammation in EAE and enhanced
disease severity, which increases Th17 cells in the CNS
[108]. The gut microbiota may be necessary in the normal
BBB development, since germ-free mice have disrupted
BBB tight junction and increased BBB permeability compared
to controls [70].

Because the gut microbiota has immune regulation
functions, attempts have been made to treat EAE by inducing
changes in the gut microbiota. Ochoa reported that treatment
with oral antibiotics in EAE can reduce intestinal symbiotic
gut and delay the development of EAE, while the intraperito-
neal injection of antibiotics in mice had no obvious impact on
the development of EAE, which suggests that gut microbiota
changes are associated with the development of EAE [42].
The protective effect of antibiotic treatment in EAE is related
with a regulation of the abnormal in T cell responses in the
CNS and the GI tract, diminishing proinflammatory cells, like
Th1 and Th17 cells and their cytokines IFN and IL-17A and
enhancing anti-inflammatory response, including increasing
secretion of FoxP3+ Treg cells, IL-10 and IL-13 [108–112].
Except for changes in T-cell subsets, B cells can recruit and
dendritic cells can activate Th1 and Th17 cells in EAE
[108, 109]. Some studies have suggested that some bacterial
strains have beneficial effects on EAE by protecting mice
from disease exacerbation [113–116]. One of the common
bacteria B. fragilis has the ability to produce polysaccharide
A (PSA), which can induce naive T-cell differentiation to
produce IL-10 FoxP3+ CD4 Treg cells and protect mice from
CNS demyelinating diseases [114, 117]. The oral administra-
tion of PSA could have both preventive effect and therapeu-
tic effect to protect against EAE [102]. Other bacteria such as
the Bifidobacteriummay also decrease EAE symptoms [113].
The oral administration of Lactobacillus spp. and other lactic

acid-producing bacteria have been demonstrated to reduce
the clinical score of EAE [111, 118, 119]. Mangalam recently
showed that Prevotella histicola can suppress disease in EAE,
as it induced CD4+ FoxP3+ regulatory T cells and tolerogenic
dendritic cells and suppressed macrophages [13, 120]. CD44
deficiency alters three phyla (Bacteroidetes, Firmicutes, and
Proteobacteria) of gut microbes, which in turn may play
a crucial role in suppressing inflammatory T-cell differen-
tiation accounting for the amelioration of EAE [121].
Autoreactive CD4+-induced intraepithelial lymphocytes,
which are influenced by stimuli from the gut environment,
can also suppress activity against T cell-mediated EAE
[73]. The oral administration of Salmonella typhimurium
could increase Treg frequency and decrease Th1 and
Th17 cells, which would lead to a decrease in EAE clinical
score [115, 122, 123]. Additionally, recent studies have
indicated that Bacteroides fragilis and Clostridia clusters
XIVa and IV, which derived from human feces, may have
the ability to induce Foxp3+ Treg and be able to suppress
inflammatory response in EAE [114, 124, 125].

3.3. Gut Microbiota in MS. As mentioned above, the gut
bacteria have a symbiotic relationship with the host, which
could help the host maintain a healthy stable state. At the
phylum level, the fecal microbiota is mainly constituted of
Bacteroidetes and Firmicutes and with smaller amounts of
Verrucomicrobia, Euryarchaeota, and Proteobacteria. In
the last few years, several studies have demonstrated that
patients with MS exhibit gut microbial dysbiosis with both
enrichment and depletion of certain bacterial populations
compared to healthy controls (Table 2). Recently, the studies
reported that fecal content isolated from the patients withMS
transferred to mice increased EAE incidence or severity,
which provide the evidence that MS-derived microbiota
contain factors that regulate adaptive autoimmune responses
and precipitate an MS-like autoimmune disease in a trans-
genic mouse model, suggesting the potential functional
effects associated with altered microbiotas observed in
MS and targeting microbiota as a therapeutic strategy in
MS [126, 127].

Jangi et al. showed increases in Methanobrevibacter
(Euryarchaeota phylum) and in Akkermansia (Verrucomi-
crobia phylum) and decreases in Butyricimonas in MS, which
correlates with the gene expression of interferon signaling,
dendritic cell maturation, and NF-kB signaling pathways in
circulating monocytes and T cells [128]. In treated patients
with MS with interferon-β (IFN-β) and glatiramer acetate
(GA), there was an increased number of Sutterella and Prevo-
tella and a decreased number of Sarcina compared to those in
untreated patients [128]. Akkermansia have immunoregula-
tory effects on changing mucin into SCFA, and they could
also play a reverse role in degrading the mucus layer in
proinflammation function [129, 130]. The Butyricimonas
species are butyrate-producing bacteria and have anti-
inflammatory action by inducing Treg cells in the gut, and a
decrease in Butyricimonas will decrease SCFA production
[131]. Tremlett conducted three experiments in pediatric MS
and found that Firmicutes, Archaea Euryarchaeota, and Pro-
teobacteria (Desulfovibrionaceae) increase in patients with
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MS, while Lachnospira (Lachnospiraceae), Verrucomicrobia
(Ruminococcaceae), and Fusobacteria decrease, and MS in
children with the absence (versus presence) of Fusobacteria
was associated with relapse risk [132–134]. Tremlett found
no difference in immune markers between MS and controls;
however, she discovered that Bacteroidetes were inversely
associated with Th17 only in MS and Fusobacteria corre-
lated with Tregs only in controls [134]. A study with 20
patients with MS and 40 healthy controls in Japan demon-
strated that altered intestinal microbiota in patients with
relapsing remitting MS (RRMS) involved increased Actino-
bacteria, Bifidobacterium, and Streptococcus and decreased
Bacteroides, Faecalibacterium, Prevotella, Anaerostipes, and
Clostridia XIVa and IV clusters. Clostridium clusters XIVa
and IV constitute a 10–40% of the bacteria in the healthy
gut [135–137]. The MS patients with expanded disability
status score EDSS ≤ 3 0 who received GA treatment were
shown to have larger numbers of Bacteroidaceae, Rumino-
coccus, Lactobacillaceae, and Clostridium compared to the
numbers seen in untreated patients [138]. After vitamin D
supplementation, Faecalibacterium increases in GA naive
MS relative to GA-treated MS and healthy controls [138].
Rumah et al. isolated epsilon toxin- (ETX-) producing
Clostridium perfringens type B from a young woman with
MS and found that 10% of their patients with MS had
ETX-specific antibodies compared to only 1% of controls.
ETX can disrupt the BBB and bind with myelin, which may
be a potential trigger of MS [139]. In contrast, Clostridium
perfringens type A which is commensal with humans was
nearly 50% in healthy controls and only 23% in MS patients
[139]. Chen et al. also reported dysbiosis in 31 patients
and 36 controls in a study with patients with RRMS and
increased abundance ofPseudomonas,Mycoplana,Haemoph-
ilus, Blautia, and Dorea genera and depleted Parabacteroides,
Adlercreutzia, andPrevotella in patients withMS [140]. Dorea
have been considered to be part of the healthy gut microbiota,
but its higher abundance in patients with MS and IBD has
suggested a proinflammatory role for this bacterium, and
Schirmer et al. showed that Doreacerat in species can induce
IFN-γ, metabolize sialic acids, and degrade mucin for its
proinflammatory functions [13, 141, 142]. Apart from the
gut, one study also reported the presence of bacteria in brain
biopsies. Biopsy samples of brain white matter showed a
higher abundance of Actinobacteria in RRMS and Proteobac-
teria in primary progressive MS (PPMS) and a decrease of
Actinobacteria in PPMS [143]. Recently, Farrokhi et al.
demonstrated unique lipopeptide bacteria that originate from
serine lipopeptide, lipid 654, which is produced by some Bac-
teroidetes commensal species, providing further evidence for
an association between the bacteria and MS. Kleinewietfeld
et al. demonstrated that lipid 654 is expressing at lower
levels in the MS patients’ serum than in healthy controls’.
So lipid 654 may be a useful biomarker to evaluate MS
activity [144, 145].

Overall, patients with MS usually have gut dysbiosis and
often reduced numbers of Faecalibacterium, Bacteroidaceae,
and Prevotella. After drug therapy, the gut microbiota of
patients with MS changes; thus, regulating gut bacteria could
a future direction for treatment in MS.

4. Treatments in MS

Currently, the primary goal of therapy in MS is symptom
improvement after a disease attack, preventing new attacks
and decreasing the rate of neurodegeneration in the CNS.
Existing therapies available for patients mainly rely on non-
specific treatments, such as corticosteroids, immunosuppres-
sants, and immunomodulating drugs, which often result in
drug resistance or severe side effects [146]. As mentioned
above, the gut microbiota plays an important role in the
development of MS. Alterations in the gut microbiota in
MS/EAE can also influence the clinical symptoms and
inflammatory factors, which could help us find a new strategy
or target to treat MS.

4.1. Dietary Modification. As mentioned earlier, dietary
habits can affect intestinal microbe composition. There is
an obvious difference in the gut microbiota composition
between obese and normal-weight individuals, and obese
individuals have reduced diversity in their microbiome espe-
cially at a lower level of Bacteroidetes [30]. Studies on the
effect of Westernized diet with high fat on mice have shown
changes in the gut flora, with an increasing in proinflamma-
tory plasma free fatty acids and increased severity in EAE
[147, 148]. The gut microbiota in the mice can be changed
easily within only one day when their diet switches from a
plant polysaccharide-rich, low-fat diet to a high-sugar/high-
fat Western diet, which also changes microbiome metabolic
pathways and alters the gene expression of the microbiome
[102]. A restricted calorie diet can improve the EAE symp-
toms, whereas a high-salt diet causes disease exacerbation in
EAE by promoting the expansion of macrophages and proin-
flammatory T cells, and Th17 differentiation, and also causing
restraint in remyelination [113, 118, 149–152]. Middle- and
long-chain fatty acids from dietary intake or microbial pro-
duction promote pathogenic T-cell differentiation in the gut
and then induce CNS inflammation. Conversely, SCFA can
lead to disease amelioration by protective regulatory T-cell
expansion [153]. A study also showed a similar trends on
MS in human, suggesting that high sodium intake would
worsen the disease [154]. Vitamin D levels are changed in
the gut microbiome in MS, which can promote the differenti-
ation of Treg, and the level of VitaminD is important inmain-
taining microbiome system balance [103, 155, 156]. Studies
have recently showed a direct connection between dietary
tryptophan and the symptoms of EAE; deficiency of the anti-
hyaluronidase reaction in astrocytes or lack of dietary trypto-
phan will fail to recover during the chronic stage of EAE [92].

4.2. Drugs. Antibiotic drugs can easily affect the components
of the microbiome. Numerous studies have found that oral
antibiotics can reduce in intestinal symbiotic gut and delay
the development of EAE [42, 110, 114, 157, 158]. Broad-
spectrum antibiotics can alter the population of T cells in
the GALT and in peripheral lymphoid tissues to reduce the
susceptibility to EAE, and the total number of Foxp3+ Tregs
was significantly increased with a corresponding increase in
IL-10 production [159]. A study that administered ciproflox-
acin in healthy volunteers over a 10-month period found that
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the fecal microbiota reached a stable state similar, yet dis-
tinct, from the pretreatment state [160]. Minocycline is a
kind of tetracycline antibiotic that often used for treating
acne, which was also used to reduce disease severity in EAE
both prophylactically and therapeutically [137]. Antibiotic
therapy may be beneficial in the treatment of MS.

Other drugs, such as fingolimod, teriflunomide, and
dimethyl fumarate, have immunomodulatory functions and
have been shown to inhibit C. perfringens growth; therefore,
the inhibition of C. perfringens may contribute to the clinical
efficacy of these disease-modifying drugs [161].

4.3. Probiotics Treatment. Studies have suggested that pro-
biotics can influence systemic immune responses, and the
mechanisms behind the efficacy of probiotics may include
maintaining the function of the gastrointestinal–epithelial
barrier, increasing antimicrobial peptide production, and
helping the activation of the host immune system in response
to pathogens. Thus, probiotics could be used as adjuvant
therapy to treat immune-mediated diseases [162, 163].

In recent years, an increasing number of animal experi-
ments have provided evidence that the administration of
probiotics can improve CNS symptoms. Long bifidobacterium
(b. Longum), Breve bifidobacterium, Bifidobacterium infantis,
Lactobacillus helveticus, Rhamnose lactobacillus, plant Lacto-
bacillus, and Lactobacillus casei have been shown to effectively
improve behavior, such as anxiety and depression, in animal
models [164].

Infection with Lactobacillus casei Shirota or oral Lac-
tobacillus farciminis, Bifidobacterium bifidum, Bacteroides
fragilis, and Bifidobacterium animalis in mice resulted in
Treg cell induction by promoting the secretion of IL-10,
which was followed by IFN-γ, TNF-α, and IL-17 reduc-
tion and inflammatory Th1/Th17 decrease, and were
shown to be EAE resistant or reduced the symptoms of
MS [111, 113, 114, 118, 149, 165, 166].

Takata et al. found that Candida kefyr (C. kefyr) could
alleviate the severity EAE symptoms. The bacteria can reduce
the quantity of intestinal lamina propria Thl7 cells and cause
IL-6 decline; at the same time, Tregs in the mesenteric lymph
nodes and CDl03+ regulatory dendritic cells increase. The
analysis of 16s-rRNA in rats showed the increased incidence
of Lactobacillus in the feces and decrease in polymorphic
Bacillus [167].

The periodontal Porphyromonas gingivalis may enhance
glial cell activation and proinflammatory responses and exac-
erbate EAE [168, 169]. In contrast, Candida kefyr found that
fermented foods can reduce the EAE [167].

Recently, studies have shown that using heat-killed bacte-
ria like probiotic Pediococcu sacidilactici strain R037, PSA
purified from B. fragilis [165], and heat shock protein 65
(Hsp65) produced from the Lactococcus lactis [170] also
reduced the severity of EAE [114, 115, 118, 167, 170]. These
findings suggest that bacteria-derived products may have
therapeutic potential in MS and EAE.

4.4. Fecal Microbial Transplantation (FMT). Currently, FMT
has been paid wide attention for restoring intestinal microe-
cological balance, which may be significantly efficacious and

have less adverse reactions. Now FMT’s adaptive diseases has
been extended from the initial intestinal disorders to the
metabolism, neurosis, autoimmunity, allergic diseases, and
cancer prevention [171–173]. The results of clinical trials
have shown that FMT can improve the walking ability in
MS and alleviate autistic behavior as well as improve the neu-
rological symptoms of PD [171, 174]. Borody et al. reported
three patients with MS with severe constipation treated with
FMT, which reduced the neurological symptoms and
normalized walking. Unfortunately, the study had a small
sample and was uncontrolled [175]. So far, FMT has been
limited to individual cases, and clinical applications require
more rigorous scientific evidence and human experimental
verification in large samples.

4.5. Others. Parasites, in particular helminths or worms, have
an effect on Th2 cell induction to produce anti-inflammatory
cytokines, including IL-4, IL-10, IL-13, and TGF-b [176].
Helminths have provided therapeutic effects in patients suf-
fering from MS and ulcerative colitis [176]. In addition,
patients with MS naturally infected with helminths had fewer
relapses than uninfected patients, and elimination of the par-
asites worsened their condition [177, 178]. Based on these
findings, helminths may be a new method of MS treatment.

As described above, the alterations in the microbial com-
position of the gut may drive disease, which is a process
called as dysbiosis. In recent years, more and more evidence
suggest that the dysbiosis of the gut microbiome may be the
cause of MS and other disorders, such as depression and
Parkinson’s disease [179–181]. However, the pathogenesis
of these disorders is more complex than the dysbiosis of gut
microbiome speculated [182], which may be one of the path-
ogenic factors for driving these disorders. Also it might be an
alteration of microbial architecture from healthy condition
with immune balance shifting toward an immune imbalance
with inflammatory phenotype [183].

5. Conclusion

This review focused on exploring the complex roles of the
alterations in the gut microbiome in MS and EAE. Dysbiosis
in the gut microbiome may be one of the causes of the
numerous diseases, including MS. Gut therapies including
dietary modification, drug treatment, probiotics, FTX, and
perhaps helminth treatment may be used in MS in the future.
However, there is still a long way to go, as more rigorous
scientific evidence with larger sample sizes are required for
clinical application.
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