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Abstract

Paxillin is a group III LIM domain protein that is best characterized as a cytoplasmic scaffold/

adaptor protein that functions primarily as a mediator of focal adhesion. However, emerging 

studies indicate that paxillin’s function s are far broader. Not only does paxillin appear to regulate 

cytoplasmic kinase signaling, but it also cycles between the cytoplasm and nucleus, and may be an 

important regulator of mRNA trafficking and subsequent translation. Herein, we provide some 

insights suggesting that paxillin, like its relative Hic-5, has nuclear binding partners and mediates 

critical processes within the nucleus, at least in part functioning as coregulator of nuclear receptors 

and nuclear kinases to mediate genomic signaling.
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1. Introduction

Paxillin, first identified as a vinculin-binding focal adhesion protein, demonstrates versatile 

functions at the plasma membrane and within the cytoplasm. Being a major substrate of Src 

tyrosine kinase, paxillin plays a critical role in regulating focal adhesion assembly and 

organization [1, 2]. Within focal adhesion complexes, paxillin serves as a bridge that 

connects integrins with Focal Adhesion Kinase(FAK), mediating integrin bidirectional 

signaling that then allows cells to sense and respond to extracellular stimuli. Besides its 

function in focal adhesions, paxillin also serves as a scaffold protein that regulates spatial 

and temporal organization of cytoskeleton and cytoplasmic signalosomes.

Given its importance in maintaining cellular structure and interactions, paxillin would be 

expected to be important for normal organ development and function. Emerging evidence 

indicates that paxillin participates in many developmental and physiological processes. 
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Paxillin, which is known to mediate fibronectin receptor signaling, is a critical modulator of 

the development of several mesodermal-derived organs. For example, the paxillin knockout 

mouse is embryonic lethal very early in embryogenesis due to poor early development of the 

heart and somites [3]. Furthermore, recent studies in zebrafish suggest that double mutants 

of two paxillin genes, pxna and pxnb, leads to defects in axial and skeletal muscle 

development as well as in the cardiovascular system. Specifically, paxillin together with its 

binding partner FAK are critical players in the maintenance of cardiac contractility, with 

failing of this orchestrated interplay resulting in heart failure [4]. In addition to its effects in 

the heart, paxillin is part of myosin regulatory light chain signaling in response to 

neurostimulation by force development in tracheal smooth muscle. Paxillin is also important 

for skin fibroblast morphology, with its levels declining during skin aging [5, 6]. Finally, 

paxillin has been implicated in various diseases, including Alzheimer’s disease [7] as well as 

many kinds of cancers [8–10].

While paxillin’s roles in the aforementioned processes have been primarily linked to its 

function in the membrane and cytoplasm, emerging evidence indicates that paxillin may also 

signal in the nucleus to mediate important processes. This review will focus on paxillin’s 

role as a liaison that connects extranuclear and nuclear signaling, as well as its actions in the 

nucleus to regulate genomic signaling in a variety of models.

2. Paxillin structure

2.1 LIM domains

As a multiple domain adaptor protein, paxillin has two major sets of motifs: four LIM 

domains in the carboxyl terminal half of the protein and 5 LD domains close to the amino 

terminus (Fig. 1). LIM domains are cysteine-rich protein regions that contain two contiguous 

zinc-fingers, separated by a two amino acids spacer.

Unlike metalloproteinases or helix–loop–helix transcription factors, which also contain zinc 

finger motifs, LIM domain-containing proteins are not classified by similar functions, but 

are instead separated by the subtype of domain structure. There are 14 types of LIM domain 

proteins falling into four groups. Some are LIM domain only (LMO) proteins, whose 

functions are considered to be primarily transcriptional within the nucleus [11]. In contrast, 

the remaining LIM proteins are composed of other functional domains such as PDZ or LD 

regions in addition to LIM domains. These more complex proteins are thought to be 

primarily cytoplasmic [12]. Paxillin belongs to the group III LIM proteins, together with 

several other members, including zyxin and testin [13].

Most LIM domain-containing proteins have essential functions in cytoskeletal organization, 

cell fate determination, and differentiation through their interactions with other adaptor 

proteins or with DNA. In paxillin, the LIM2 and LIM3 domains have been identified as 

focal adhesion targeting motifs, and phosphorylation of these LIM domains is specific and 

critical for paxillin localization to focal adhesions [14]. Notably, in other LIM domain-

containing proteins, the zinc finger motifs can mediate DNA binding of many transcription 

factors. As mentioned, group I LIM family members, LIM Homeobox (LHX) and LMO 

proteins, are well known to be localized in the nucleus and to participate in tissue specific 
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gene regulation. LHX3, a neuroendocrine transcription factor, is expressed in nuclei of adult 

human pituitary cells, where it induces transcription of the glycoprotein alpha-subunit 

promoter to promote expression of pituitary-derived glycopeptides [15]. LMO1/2, engages 

with a large array of proteins, including LIM domain-binding protein 1 (LDB1), stem cell 

leukemia protein (SCL), and E-protein, to form a transcriptional complex that plays roles in 

the transcriptional regulation of normal and malignant hematopoiesis [16]. Zyxin, one of the 

LIM group III proteins, is an important component of focal adhesion plaques, like paxillin, 

but has also been shown to shuttle between the cytoplasm and nucleus. Although there is no 

conventional nuclear localization sequence identified, in vitro evidence suggests that zyxin 

interacts with several nuclear proteins, including transcription factors, to regulate gene 

expression [17, 18]. Taken together, it is intriguing to speculate that many if not all LIM 

domain-containing proteins may, in addition to their extranuclear effects, modulate gene 

transcription in the nucleus.

2.2 LD motif

Near the amino terminus of paxillin, there are five tandem LD motifs (Fig.1). LD motifs 

contain sequences rich in leucine and aspartate. The LD motif is a major targeting sequence 

for many protein-protein interactions, forming a scaffolding surface that can coordinate large 

sets of enzymatic reactions between interacting molecules within a protein complex. LD 

motifs contain many phosphorylation sites that are crucial for protein activation and signal 

transduction. For example, one major focal adhesion molecule, Focal Adhesion Kinase 

(FAK), while interacting with paxillin through paxillin’s LD2 domain, also binds with Crk-

associated substrate (p130Cas) to regulate its downstream effects. In this situation, paxillin 

is therefore serving as both kinase and scaffold protein in regulating focal adhesion 

assembly [19]. More specifically, the Focal Adhesion Targeting (FAT) homology domain in 

FAK binds hydrophobically through its HP1 (Hydrophobic patch 1) and HP2 (Hydrophobic 

patch 2) sites to paxillin LD motifs, LD2 and LD4, under normal conditions [20, 21]. 

However, in disease conditions such as lung cancer, paxillin can be mutated such that it 

exhibits a disordered intra-molecular regulatory region that results in masking of one of the 

LD motifs and therefore preferential binding of FAT with the other LD domain, leading to 

signaling and adhesion changes that may promote tumor growth [22]. Using similar binding 

machinery, Cerebral Cavernous Malformations 3 (CCM3), which is a frequently mutated 

protein in cerebral cavernous malformation disease, binds to paxillin via its LD1, LD2, and 

LD4 motifs to colocalize in mouse cerebral pericytes and possibly regulate cell adhesion 

[23].

Furthermore, the LD1 motif of paxillin is sufficient to bind to the mitogen-activated protein 

kinase kinase (MEKK2) amino terminal region, thus relieving MEKK2 auto-inhibition and 

triggering its activation [24]. Lastly, a recent study suggests that FAK binding to LD 

domains of paxillin plays a key role in paxillin shuttling between cytoplasm and nucleus 

[25]. While some interactions with LD1, LD2, and LD4 are characterized, the binding 

partners of LD3 and LD5 are not well known.
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2.3 Nuclear Export Sequence(NES)

As we will discuss, paxillin appears to have nuclear as well as extranuclear actions. 

However, despite reports of paxillin located in the nucleus, no apparent nuclear localization 

signal has been reported. Instead, a nuclear export signal (NES) was identified. Initial 

evidence suggesting the existence of an NES in paxillin was discovered in fibroblasts treated 

with the nuclear export inhibitor leptomycin B, a treatment that led to paxillin retention 

within the nucleus [26]. A study by Dong et al proposed that the LD4 motif may consist of a 

potential leucine-rich NES sequence. Specifically, phosphorylation of the Ser272 within the 

LD4 motif is critical for blocking paxillin nuclear export, as well as for reducing G protein-

coupled receptor kinase-interacting protein (GIT1) binding, without altering FAK1 affinity 

[27]. While these studies were suggestive, identification of the protein crystallography 

structure of the paxillin NES sequence (264RELDELMASLSDFKFMAQ281) together with 

the nuclear export protein CRM1/XPO1 provided the final proof that the NES in paxillin is 

utilized for paxillin shuttling through nuclear pore [28]. Again, the lack of a conventional 

NLS (nuclear localization signal) within paxillin protein suggests that paxillin may initially 

enter the nucleus via a non-conventional NLS or by association with other NLS-containing 

proteins. For instance, cell adhesion kinase beta/proline-rich tyrosine kinase 2, which is a 

non-receptor tyrosine kinase member of FAK family that is localized at the perinuclear 

region and shuttles between cytoplasm and nucleus, has been shown to bind with paxillin’s 

relative Hic-5 and facilitates its nuclear transportation [29].

3. The paxillin superfamily and their functions in nucleus

The paxillin superfamily includes three main members: paxillin, Hic-5 and Leupaxin. 

Similar to paxillin, Hic-5 is a group III LIM protein that consists of four LD motifs and four 

LIM domains that are highly conserved within the paxillin superfamily. Hic-5 localizes and 

functions in both focal adhesions and in the nucleus. At focal adhesions, it acts as a scaffold/

adaptor protein that appears to participate in skin fibroblast contractility, hypertrophic scar 

tissue formation, platelet aggregation and breast stromal extracellular matrix remodeling 

[30–32]. Interestingly, in these focal adhesions, Hic-5 shares some binding partners and has 

some overlapping functions with paxillin. However, unlike the global paxillin knockout 

mice, Hic-5 deficient mice are viable with no obvious histological abnormalities and only 

minor vascular defects [33] that includes altered vasculature recovery after injury and 

enhanced stretch induced vascular smooth muscle cell apoptosis. Together, these 

observations suggest that Hic-5 may play a less critical role than paxillin in organ 

development, or that the deficiency of Hic-5 may be compensated by other members in the 

paxillin family. In the nucleus, Hic-5 was initially characterized as a glucocorticoid receptor 

(GR) coactivator that binds with GR at its tau2 transcriptional activation domain [34]. Hic-5 

has been shown to selectively regulate certain sets of GR target gene expression, perhaps in 

part by inhibiting GR interaction with several chromatin remodeling enzymes such as 

chromodomain-helicase DNA-binding protein 9 (CHD9) and Braham homologue (BRM), 

which ultimately leads to chromatin remodeling and selective GR binding to DNA [35]. In 

addition to GR, Hic-5 also interacts with androgen receptor (AR) to modulate AR actions. 

As a stromal specific coactivator of AR, Hic-5 affects androgen-induced keratinocyte growth 
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factor expression in prostate stromal cells, which then alters the stromal microenvironment 

to favor tumor growth [36].

Leupaxin, another member of paxillin family, is enriched in cells of leukocyte lineage, but is 

also broadly distributed in other tissues. A recent study in hepatocellular carcinoma suggests 

that leupaxin serves as a coactivator of beta-catenin by assisting in the recruitment of the 

coactivator complex consisting of steroid receptor coactivator 1 (SRC-1) and P300 to 

enhance beta-catenin’s transcriptional activity [37]. Evidence also suggests that leupaxin 

shuttles between cytoplasm and nucleus, perhaps interacting with the AR in a ligand-

dependent pattern to regulate AR-dependent transcription in prostate cancer cells [38].

4. Paxillin actions in the nucleus

Base on the nuclear actions of other paxillin superfamily proteins, as well as on reports that 

paxillin can be found in the nucleus, it is not surprising that recent studies strongly support a 

role for paxillin itself in nuclear signaling.

The first evidence that paxillin cycles between cytoplasm and nucleus in a physiologically 

relevant scenario is from a study of paxillin interactions with an mRNA binding protein, 

polyadenylation binding protein1 (PABP1), in fibroblast cells [39]. Paxillin directly 

associates with PABP1 through the amino-terminal, LD-domain-rich region (residues 54–

313), co-localizing in the endoplasmic reticulum and in the nucleus, as well as at the tips of 

lamellipodia. This association is necessary for efficient nuclear export of PABP1, and 

facilitates transport of mRNA from nucleus to sites of protein synthesis that are occurring at 

or near the leading edge during cell migration [40]. A recent study suggests that the paxillin 

protein binds with embryonic PolyAdenylation Binding Protein (ePABP) on polyadenylated 

Mos (a germ cell specific Raf) mRNA upon androgen stimulation, which induces Mos 

protein translation and subsequent oocyte maturation (meiotic re-entry) in Xenopus laevis 
model [41]. Notably, this paxillin-ePABP interaction appears to be enhanced by 

phosphorylation of serine residues also located within the amino-terminal half of paxillin 

(Fig.1).

Besides its function as a binding partner of PABP, paxillin also interacts with nuclear 

receptors within the nucleus and functions as an AR and GR coactivator similar to its family 

member Hic-5 [42], in prostate cancer cell lines and prostate tissue. Studies from the 

DeFranco group have revealed that both Hic-5 and paxillin interact with steroid receptors 

using their carboxyl-terminal LIM domains. However, paxillin appears to potentiate AR and 

GR transactivation through the same carboxyl-terminal domain, whereas the receptor 

coactivation domain of Hic-5 seems to be located in its amino-terminal region [34, 43].

With these studies in mind, our group then demonstrated that paxillin regulates both 

cytoplasmic kinase signaling as well as nuclear transcription. In fact, we found that paxillin 

serves as a liaison between non-genomic steroid signaling in the cytoplasm and genomic 

steroid signaling in the nucleus. This pathway was first discovered in the aforementioned 

study of oocyte maturation (meiotic resumption) in Xenopus laevis, where we showed that 

paxillin is an essential regulator of meiosis in Xenopus laevis oocytes. Specifically, we 
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found that paxillin functions to enhance androgen-induced translation of the Mos protein in 

Xenopus oocytes, which then leads to activation of the MAPK cascade and subsequent 

meiotic resumption. Once extracellular signal-regulated kinase (Erk) is activated, it regulates 

the phosphorylation of serine residues on paxillin, which then acts in a positive feedback 

mechanism (likely through interactions with PABP) to enhance MAPK signaling and 

eventually oocyte maturation [41, 44]. Interestingly, we went on to demonstrate that paxillin 

similarly plays an important role in extranuclear androgen-mediated MPAK activation in 

somatic cells. In prostate cancer cells, androgen binds to membrane-localized ARs to 

promote the MMP-mediated release of membrane-bound EGF receptor (EGFR) ligands, 

which then transactivate the EGFR. Activated EGFR further induces extracellular signal-

regulated kinases 1 and 2 (ERK1/2) signaling via Src-mediated tyrosines 31/118 

phosphorylation on paxillin [45]. ERK1/2, which is still complexed with paxillin, then 

mediates phosphorylation of serines 83/126/130 on paxillin. These results are reminiscent of 

studies by Ishibe and colleagues, who demonstrated that hepatocyte growth factor (HGF) 

receptor signaling relies on a similar mechanism to regulate cell spreading, migration and 

tubulogenesis [46, 47]. Furthermore, these protein complex formations with EGFR, paxillin, 

and ERK1/2, were confirmed to be occurring in living cells using a novel method of 

fluorescence photolithography [48]. Interestingly, we found that, once phosphorylated on 

serines 83/126/130, phosphoserine paxillin is then able to translocate into the nucleus, where 

it can enhance AR and ERK-mediated transcription. In fact, Chromatin Immunoprecipitation 

(ChIP) studies using an anti-paxillin antibody demonstrated that, upon androgen or ERK 

activation, paxillin was targeted to the promoter regions of AR and ERK-dependent genes, 

respectively. In sum, our studies suggest that extranuclear androgen actions via the AR are 

inextricably linked to nuclear AR actions in a serial fashion, with paxillin serving as a 

mediator of both processes (Fig. 2). Both extranuclear and nuclear actions of paxillin appear 

to be involved in growth, migration, and invasion of prostate cancer cells both in-vitro and in 

mouse xenografts [49]. Finally, expression of paxillin and nuclear paxillin are increased in 

human prostate cancer versus benign prostate tissue, confirming that paxillin may be 

important in cancer and may also serve as a biomarker of prostate cancer [49].

Tying many of the aforementioned actions together, we have also recently shown that 

paxillin similarly regulates AR signaling in granulosa cells within ovary, where it mediates 

androgen-induced suppression of pro-apoptotic protein expression, as well as mediates 

androgen-triggered translation of follicle stimulation hormone (FSH) receptor protein, both 

of which ultimately lead to enhanced ovarian follicle growth and development [50]. It is 

intriguing to postulate that paxillin and PABP1 are working together to promote androgen-

induced FSH receptor expression, much like they work together to enhance translation in 

other models mentioned above.

Besides mediating nuclear effects of AR and ERK in the prostate and ovary, paxillin also 

plays critical roles in the nucleus of other cell types and disease processes. In a model of 

pulmonary hypertension, hypoxic exposure and platelet derived growth factor (PDGF)-BB 

induce Y13 and Y118 phosphorylation of paxillin and its subsequent localization into the 

nucleus in a time dependent fashion, leading to increased proliferation and decreased 

apoptosis of pulmonary arterial smooth muscle cells [51]. In addition, paxillin’s nuclear 

actions modulate expression of the parental imprint genes H19 and IGF2. In this model, 
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paxillin promotes an interaction between an enhancer region and the IGF2 promoter, leading 

to increased IGF2 expression. In the meantime, paxillin suppresses an enhancer/promoter 

interaction within the H19 gene, leading to decreased gene expression. Ultimately, these 

changes may play a role in cell proliferation and fetal development [27, 52].

Taken together, the aforementioned studies, plus others, demonstrate that paxillin exhibits 

versatile functions in the nucleus, ranging from nuclear receptor coactivation to facilitation 

of mRNA translocation, all contributing to enhanced genomic signaling and downstream 

physiological processes.

5. Therapeutic potentials by disruption of nuclear targeting of paxillin

Paxillin overexpression or dysregulation has been implicated in numerous cancers and other 

diseases. However, most of the studies have focused on the focal adhesion or scaffolding 

functions of paxillin in the cytoplasm. Since little has been known about its nuclear actions 

until recent years, effort at targeting only its nuclear actions have been limited. As 

mentioned, multiple studies now suggest that paxillin’s nuclear functions are critical for cell 

proliferation, as well as steroid-dependent cancer progression. For instance, depletion of 

paxillin by shRNA leads to decreased S phase cell population and increased early apoptosis 

in colorectal carcinoma cells [53]. Additionally, the paxillin-ERK1/2-cyclin D1 pathway is 

essential for the PDGF-dependent pulmonary artery smooth muscle cell proliferation and 

vascular remodeling underlying pulmonary hypertension [51]. Moreover, as mentioned, our 

group has shown that paxillin modulates AR and ERK dependent gene expression in 

prostate cancer cells and promotes prostate cancer xenograft growth in vivo. In addition, 

paxillin expression is elevated in human prostate cancer tissue compared to normal prostate 

[49]. Likewise, in breast cancer patients, paxillin’s expression is upregulated and correlates 

with HER2 overexpression [54].

With this in mind, it is intriguing to speculate that specifically targeting nuclear actions of 

paxillin, while sparing its important structural functions outside the nucleus, might be a 

useful approach toward slowing proliferation in cancer cells – especially hormone related 

malignancies such as prostate cancer and breast cancer, which compose a large subset of life 

threatening diseases all over the world. Although hormone deprivation therapy is usually 

used as the first line treatment in the advanced disease group, in many cases, tumors 

gradually evolve to the resistance subtype, resulting in more rapid disease progression. With 

emerging studies on steroid receptors characteristics, especially the relationship and 

significance of extranuclear and intranuclear signaling [55] (Fig.2), potential therapies that 

target the nuclear portion of steroid receptors, prevent steroid receptors nuclear import, or 

block the activation of coactivator/corepressor, are gaining more attention.

Presence of certain nuclear specific proteins are often related to poor prognosis and drug 

resistance. One frequently mutated gene, the truncated form of Erb2, is present in the 

nucleus and leads to ErB2 kinase inhibitor resistance in breast cancer [56]. Likewise, a 

major AR splicing variant- AR-V7, which lacks the ligand binding domain and is 

constitutively activated in the nucleus, has been implicated as a biomarker of enzalutamide 

resistance and poor prognosis among prostate cancer patients [57]. These evidences suggest 
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that discovering efficient methods that target not only the steroid receptors directly, but also 

the nuclear coregulators, will be critical for next generation of therapies.

Although paxillin’s potential as drug target has been studied for years, the currently 

available inhibitors are either Src inhibitors or pan-tyrosine kinase inhibitors, most of which 

have limitations of specificity and efficacy. For instance, Imatinib, the first targeted tyrosine 

kinase inhibitor that is used in treatment of Philadelphia chromosome (Ph+)-positive chronic 

myelogenous leukemia, actually enhances tyrosine phosphorylation of p130Cas, FAK, and 

paxillin in glioblastoma multiforme tumor cells. Imatinib also induces cell migration and 

invasion in vitro [58]. Thus, a paxillin-specific inhibitor may be a helpful addition when 

using this or other kinase inhibitors. A pharmacological study from the Ginsburg group 

using large scale library screening identified one paxillin inhibitor that blocked alpha4 

integrin-paxillin binding and reduced mononuclear leukocytes accumulation in inflammation 

sites [59]. More recently, a study from the Yates group discovered a small molecule 

inhibitor, JP-153, that abrogates the interaction between paxillin and the FAT domain in 

FAK, thus breaking down their extranuclear complex formation and paxillin activation, and 

possibly paxillin nuclear translocation. This compound exhibits inhibitory effects on VEGF 

induced retinal angiogenesis [60]. Interestingly, a transcriptomic study revealed that a 

lncRNA-PXN-AS1 is present in hepatocellular carcinoma cells. This natural paxillin anti-

sense molecule is alternatively spliced by oncofetal splicing factor, MBNL3, which results in 

a splice variant that upregulates paxillin expression [61]. Studies of lncRNA-PXN-AS1 and 

MBNL3 may open new venues for paxillin targeting therapy.

As a key component in the focal adhesion complex, the normal function of paxillin in 

regulating focal adhesion should be taken into consideration during drug design. Thus, 

targeting the tyrosine residues critical for paxillin initial activation, for example pY118, may 

hinder its focal adhesive function. In contrast, designing inhibitors that could prevent serine 

phosphorylation of paxillin and therefore nuclear entry and subsequent DNA or transcription 

factor binding, may serve as a more specific target, and therefore might be more beneficial 

for patients with advanced hormone related cancers.

Conclusions

Paxillin and its family members are complex proteins that play major roles in modulating 

signaling throughout cells. When paxillin is outside the nucleus, it functions to modulate 

cell-cell interactions, regulate cytoskeletal changes, and modulate kinase signaling. 

Changing in the latter process then leads to serine phosphorylation of paxillin, allowing it to 

enter the nucleus where it can regulate transcription, translocation of mRNAs from the 

nucleus back into the cytoplasm, and subsequent translation of mRNAs into proteins. Some 

evidence suggests that paxillin expression, activation, and nuclear localization are 

upregulated in cancer cells, which may play a critical role in tumor progression. If so, then 

nuclear paxillin, may serve as an important biomarker for diagnosis, prognosis, and 

treatment of some cancers.
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Figure 1. Schematic structure of paxillin with highlights of nuclear function related domains
Paxillin contains five LD domains on the N-terminal half and four LIM domains on the C-

terminal half of the protein. The shown N-terminal domains are critical for FAK binding and 

nuclear translocation, with highlights of critical serine/tyrosine phosphorylation sites as well 

as the NES sequence within LD4 domain. The LIM domains on the C terminal half are 

related to paxillin’s binding and transactivating of AR and GR.
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Figure 2. Model of paxillin mediated steroid signaling
In somatic cells, androgen binds to membrane-localized ARs to promote the MMP-mediated 

release of membrane-bound EGF receptor (EGFR) ligands, which then transactivate the 

EGFR. Activated EGFR further induces Erk1/2 signaling, which then regulates serine 

phosphorylation of paxillin. Phosphorylated paxillin is then able to translate into the 

nucleus, where it either binds with AR or associate with ERK to induce gene expression 

ultimately results in cell survival, proliferation, migration and invasion.
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