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Abstract

Purpose of review—Taste receptor family 2 (T2R) bitter taste receptors were originally 

identified and named on the basis of their role in type 2 taste cells of the tongue, in which they 

serve to detect the presence of potentially harmful ingested chemicals. In 2009, researchers 

demonstrated that airway epithelial cells also express T2R receptors, but their role in airway 

physiology and human disease has only recently begun to be identified.

Recent findings—Recent research has demonstrated that at least one airway T2R receptor, taste 

receptor family 2 isoform 38 protein (T2R38) is activated by secreted bacterial products. 

Activation of T2R38 in sinonasal epithelial cells stimulates nitric oxide production, increasing 

ciliary beating and directly killing bacteria. Clinical studies have also found correlations of 

TAS2R38 genotype with susceptibility to gram-negative upper respiratory infection and 

established T2R38 as an independent risk factor for chronic rhinosinusitis requiring sinus surgery.

Summary—These recent studies identify a role for T2R38 in sinonasal innate immunity and 

chronic rhinosinusitis. Clinical implications include the potential development of T2R38-directed 

topical therapies, as well as using taste testing and/or genotyping to predict susceptibility to 

infection. Further studies are needed to more clearly determine how TAS2R38 genotype affects 

patient outcomes in chronic rhinosinusitis and other upper airway diseases.
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INTRODUCTION

The immune system has been called the human sixth sense [1], because it acts as a sensory 

system to detect invading pathogens. Supporting this viewpoint, recent evidence suggests 

that the immune and taste systems utilize some of the same chemo-sensory receptors, 

namely bitter taste receptors of the taste receptor family 2 (T2R). T2Rs are G-protein-

coupled receptors originally identified in type 2 taste receptor cells of the tongue, but 

expression of T2Rs is now known to extend to multiple organ systems [2,3], including the 

airway. The need to understand the physiology of extraoral T2Rs is highlighted by the fact 

that many medicinal compounds are bitter [3]; thus, extraoral T2Rs may mediate important 

off-target drug effects [4▪].

Recent basic science and clinical studies are establishing T2Rs as part of a novel pathogen 

detection network in the airway. T2Rs are expressed in a variety of airway cell types and 

regulate multiple innate immune responses in both mice [5,6,7▪▪,8,9,10▪] and humans [11▪▪,

12▪▪]. The focus of this review is on a well studied human T2R isoform, taste receptor 

family 2 isoform 38 protein (T2R38), which is expressed in motile cilia lining the sinonasal 

cavity (nose and sinuses) [12▪▪]. T2R38 has recently been linked with sinonasal innate 

immunity, upper respiratory infection, and chronic rhinosinusitis (CRS), demonstrating that 

studying extraoral T2Rs has tremendous potential to reveal novel insights into human 

disease.

CHRONIC RHINOSINUSITIS AND SINONASAL INNATE IMMUNITY

The airway is continuously challenged by inhaled bacteria, fungi, and viruses. The sinonasal 

cavity is the front line of respiratory defense; host–pathogen interactions occur with every 

breath [13]. Nevertheless, in most individuals, immune mechanisms ensure that the 

sinonasal cavity remains free of infection [14–16]. However, upper respiratory defenses do 

sometimes fail, often resulting in the onset of CRS, a complex syndrome involving 

ineffective sinonasal mucociliary clearance (MCC), stasis of sinonasal secretions, and 

subsequent chronic infection and/or persistent inflammation [15,17,18]. Chronic infection 

and biofilm formation contribute to medically recalcitrant CRS, necessitating surgical 

intervention [13,15,17–19]. This results in a tremendous impact on quality of life. CRS 

patients requiring surgery report quality-of-life scores for physical pain and social 

functioning that are worse than those suffering from chronic obstructive pulmonary disease, 

congestive heart failure, or angina [15,17–19]. Additionally, many CRS patients are affected 

with dysosmia [20], which can cause impaired ability to taste food, feelings of isolation, and 

decreased awareness of everyday danger (e.g. smoke from fires). Treatments that better 

eradicate early infections may allow patients to retain and/or regain more olfactory function 

and improve quality of life.

Conventional management of CRS typically involves antibiotics [19]; CRS accounts for one 

in five antibiotic prescriptions in adults [15,17,18]. However, antibiotics are becoming less 

effective in the face of the increasing abundance of resistant organisms [21]. The ability to 

target and stimulate endogenous host defense pathways may be an important alternative 

therapeutic strategy. However, this requires a greater basic understanding of sinonasal 
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immunity. The primary physical airway defense is MCC [18,22,23] (Fig. 1), which clears the 

airways of inhaled pathogens, toxins, and irritants. MCC is augmented by more direct 

antimicrobial mechanisms, including secretion of antimicrobial peptides [14] and production 

of reactive oxygen and nitrogen species [24,25]. When innate defenses are not enough, 

epithelial cells can also secrete cytokines and chemokines to recruit dedicated immune cells 

and activate inflammation [14].

More effective treatment of CRS requires clearer mechanistic insights into the molecular 

mechanisms of how pathogens activate and/or thwart airway innate defenses. It is also 

unknown why some individuals are more susceptible to CRS than others. Family and twin 

studies [26,27▪,28,29] have shown that sinusitis exhibits a degree of heritability, but so far 

there has been little success in identification of specific genetic modifiers. The idea of 

genetic susceptibility to CRS is supported by observations of patients with the genetic 

disease cystic fibrosis, who exhibit increased incidences of CRS and upper airway infections 

[30–32]. Identification of valid genetic factors controlling CRS susceptibility and/or patient 

outcomes will likely reveal novel pathophysiological insights and therapeutic modalities. 

This will allow clinicians to better tailor treatment regimens to individual patients, moving 

the field further toward the ideal of personalized medicine.

THE ROLE OF T2R38 IN SINONASAL INNATE IMMUNITY

One class of receptors emerging as important components of airway innate immunity is the 

T2R family of bitter taste receptors. In type II cells of the tongue, T2Rs protect against the 

ingestion of harmful compounds, including toxic bacterial and plant products [2,3,33,34]. 

Extraoral expression of T2Rs is found in a variety of organs, including the brain, gut, 

pancreas, and bladder [2,3]. T2Rs were also recently identified within the motile cilia of 

cells of the human bronchial [35▪] and sinonasal epithelium [12▪▪]. The physiological roles 

and ligands for extraoral T2Rs are largely unknown. As many extraoral T2Rs never come 

into direct contact with ingested food, many known T2R agonists (i.e. bitter products from 

edible plants) are probably not directly relevant to extraoral function. Instead, it has been 

hypothesized that extraoral T2Rs detect bitter products from pathogenic bacteria or fungi. A 

role for T2Rs in immunity might explain their widespread distribution throughout the body. 

Initial support for this came from studies of solitary chemosensory cells (SCCs) in the 

mouse nose [36]. SCCs express T2Rs and respond to acyl-homoserine lactones (AHLs) [9], 

which are quorum-sensing molecules from gram-negative bacteria, including the airway 

pathogen Pseudomonas aeruginosa [37,38]. Many lactones are bitter [39], suggesting that 

AHLs are relevant ligands for some extraoral T2Rs.

The hypothesis that T2Rs play a role in immunity may have important clinical 

consequences. The TAS2R genes encoding T2Rs have many naturally occurring 

polymorphisms [40] underlying individual taste preferences for bitter foods and beverages, 

including vegetables [41], coffee [42], scotch [43], and beer [43]. We initially hypothesized 

that, if T2Rs function in the human airway to detect bacteria and regulate immunity, it is 

possible that genetic variation in TAS2R genes contributes to susceptibility to respiratory 

infection and/or CRS.
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Sinonasal-ciliated epithelial cells express the bitter taste receptor T2R38, localized within 

the motile cilia [12▪▪] (Fig. 2a). Sinonasal T2R38 function was studied in human tissue 

explants, as well as air–liquid interface cultures (ALI [44]) of primary sinonasal cells [12▪▪]. 

ALI cultures recapitulate a polarized respiratory epithelium with well differentiated ciliated 

and goblet cells [11▪▪,44]. When human ciliated epithelial cells were stimulated with the 

T2R38-specific bitter agonist phenylthiocarbamide (PTC; also known as phenylthiourea), 

they exhibited low-level calcium responses that activated nitric oxide synthase-mediated 

production of intra-cellular nitric oxide [12▪▪]. Pharmacological inhibition revealed that 

T2R38 signaling required two important components of the canonical taste pathway 

characterized in taste cells, namely the transient receptor potential melastatin isoform 5 

(TRPM5) ion channel and the phospholipase C isoform beta 2 (PLCβ2) [2,3,12▪▪,33,34], 

which has now been experimentally confirmed using ALIs derived from nasal septum of 

wild-type (Wt), TRPM5−/− knockout, and PLCβ2−/− knockout mice [10▪].

A major result of the nitric oxide produced during T2R38 activation is increased MCC 

[12▪▪]. Nitric oxide activates guanylyl cyclase, which produces cyclic-guanidine 

monophosphate and activates protein kinase G, which directly phosphorylates ciliary 

axoneme proteins to increase beating [45]. However, nitric oxide production is also an 

important airway defense mechanism independently of MCC [46–48]. Nitric oxide is a 

highly reactive radical that can diffuse inside bacteria cells. It produces reactive S-

nitrosothiols and peroxynitrites that can damage bacterial DNA, membrane lipids, and 

enzymes [24,25]. High levels of nitric oxide synthase are expressed in the cilia and micro-

villi of the sinonasal epithelium [49,50], and thus the sinuses are thought to be a major 

source of airway nitric oxide. The nitric oxide produced by sinonasal-ciliated epithelial cells 

in vitro was found to diffuse into the airway surface liquid and have direct bactericidal 

effects against P. aeruginosa [12▪▪], strongly suggesting that this nitric oxide may have direct 

antibacterial effects in vivo.

An important piece of evidence supporting the role of T2R38 as a bona-fide contributor to 

airway immunity was the identification of physiological bacterial ligands that activate 

T2R38 in vitro. The two major P. aeruginosa AHLs, N-butyryl-L-homo-serine lactone and 

N-3-oxo-dodecanoyl-L-homoserine lactone [38], activate T2R38 both in sinonasal cells and 

in a heterologous expression system in vitro [12▪▪]. This was confirmed using a P. 
aeruginosa strain mutated for the enzymes that synthesize AHLs (strain PAO-JP2; ΔlasI, 

ΔrhlI; [51]). Sinonasal cells produced robust amounts of nitric oxide in a T2R38-dependent 

manner when stimulated with physiologically relevant concentrations of AHLs or with dilute 

conditioned medium from Wt, but not mutant P. aeruginosa. Because many gram-negative 

bacteria secrete AHLs [52], these data suggest that T2R38 in airway cilia is a sentinel to 

detect invading gram-negative bacteria and mount nitric oxide-dependent defense responses. 

Figure 2b depicts a diagram of this pathway.

Human T2R38 functionality is affected dramatically by several well studied polymorphisms 

in TAS2R38 [53▪,54,55]. Two polymorphisms are common in Caucasians: one encodes a 

functional T2R38 and the other encodes a nonfunctional T2R38, resulting from differences 

in amino acids at positions 49, 262, and 296. The functional T2R38 contains Pro (P), Ala 

(A), and Val (V) (the PAV variant) residues, respectively, at these positions. The 
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nonfunctional T2R38 contains Ala (A), Val (V), and Ile (I) (the AVI variant) at these 

positions, respectively [56]. Loss of the V at position 296 disrupts AVI receptor activation 

[57–59]. These polymorphisms have well studied taste phenotypes. Homozygous AVI/AVI 

individuals (~30% frequency in Caucasians) are nontasters for T2R38-specific agonists, 

such as PTC [56]; AVI/AVI individuals perceive PTC as either not or weakly bitter. 

PAV/PAV individuals (~20% frequency in Caucasians [56]) are supertasters for PTC, tasting 

PTC as intensely bitter. AVI/PAV heterozygotes have varying intermediate levels of taste, 

correlating with differences of the relative expression levels of AVI and PAV alleles [53▪,56].

The effects of TAS2R38 polymorphisms were studied using primary ALIs derived from 

genotyped patients. When ALIs were stimulated in vitro with PTC, AHLs, or conditioned 

medium from P. aerugi-nosa, the antibacterial nitric oxide responses correlated with 

TAS2R38 polymorphisms. Epithelial cells from PAV/PAV supertasters exhibited markedly 

enhanced nitric oxide production, MCC, and bacterial killing compared with AVI/AVI or 

AVI/PAV cells. Cells derived from AVI/AVI nontasters or AVI/PAV heterozygotes had 

blunted nitric oxide responses that were not effective at killing P. aeru-ginosa in vitro [12▪▪]. 

This strongly suggested that PAV/PAV individuals might be less susceptible to gram-

negative infection, which has now been further studied in a clinical setting.

THE ROLE OF TAS2R38 POLYMORPHISMS IN CHRONIC RHINOSINUSITIS

Preliminary clinical data suggested that PAV/PAV T2R38 supertasters are less susceptible to 

gram-negative sinonasal infection than PAV/AVI or AVI/AVI patients, who, as described 

above, have impaired T2R38-dependent responses [12▪▪]. TAS2R38 genotype was compared 

in genotyped patients (N =56) who had undergone sinonasal surgery for CRS or for non-

CRS-related concerns (i.e. pituitary disorder) and who had microbiology results of either no 

growth (or normal respiratory flora, e.g. Staphylococcus epidermis; n =35) or positive 

cultures for gram-negative bacteria (n =21) or specifically P. aeruginosa (n =14). None of the 

patients who had gram-negative or P. aeruginosa growth was PAV/PAV a supertaster. The 

distribution of PAV/PAV, AVI/PAV, and PAV/PAV genotypes was significantly different 

between control patients and either gram-negative (P <0.006 by χ2) or P. aeruginosa (P 
<0.029) patients [12▪▪]. The control and gram-negative/P. aeruginosa patients had no 

significant differences in the distributions of common polymorphisms in TAS2R19, 

TAS2R30 (also known as TAS2R47), or TAS2R46 [12▪▪].

Further studies [60▪,61▪▪,62▪▪] have demonstrated that TAS2R38 may be a genetic marker 

for CRS. A retrospective study [60▪] was carried out using TAS2R38-genotyped patient 

samples (N =28) from individuals who had undergone primary functional endoscopic sinus 

surgery (FESS). It was determined that 46% (n =13 patients out of 28) of the FESS patients 

were AVI/AVI nontasters, 50% (n =14) were AVI/PAV heterozygotes, and 3.6% (n =1) were 

PAV/PAV supertasters. This was significantly different (P <0.043 by χ2) from the 

approximate expected distributions of 20% (n =5.6 out of 28) PAV/PAV, 50% (n =14) PAV/

AVI, and 30% (n =8.4) AVI/AVI [60▪]. This study suggested that PAV/PAV supertasters are 

less likely to need surgical intervention for CRS.
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This was followed by a subsequent prospective study [61▪▪] of TAS2R38 genotype in 

patients (N =70) undergoing primary FESS. The distribution of diplotypes in the CRS 

patients was 37% (n =26) AVI/AVI, 54% (n =38) AVI/PAV, and 8.5% (n =6) PAV/PAV. This 

was significantly different (P <0.0383 by χ2) from the 29% (n =100) AVI/AVI, 51% (n 
=177) AVI/PAV, and 20% (n =70) PAV/PAV distributions found in the general Philadelphia 

population (N =347) [61▪▪]. No significant differences were found in the allele distribution 

with respect to other risk factors, such as asthma, allergies, aspirin sensitivity, diabetes, 

smoking exposure, or nasal polyposis, suggesting that TAS2R38 is an independent risk 

factor for CRS requiring FESS.

To verify whetherT2R polymorphisms correlate with CRS, previously collected pooling-

based genome-wide association data were screened for single-nucleotide polymorphisms 

(SNPs) in taste receptors, using two populations of Canadian CRS patients, as well as a 

control population [62▪▪]. Included in this study was the TAS2R38 I296 V (rs10246939) 

SNP, thought to underlie the difference in functionality between PAV and AVI variants. The 

SNP frequency differences of at least 10% between CRS and control populations were 

considered significant. I296 V SNP frequency differences were ~15 and 11% between the 

two CRS populations compared with the control population, confirming that I296 V is 

associated with CRS [62▪▪]. Interestingly, this study [62▪▪] also found three other missense 

variants in TAS2R genes that were associated with CRS: two in TAS2R49 (rs12226920 and 

rs12226919) and one in TAS2R14 (rs1015443). Although highly intriguing, it remains to be 

determined whether T2R14 or T2R49 plays roles in sinonasal immunity.

CONCLUSION

T2R38 is part of an interkingdom eavesdropping system by which mammalian cells 

intercept bacterial quorum-sensing communications [12▪▪]. A summary of current evidence 

linking T2R38s with sinonasal innate immunity is shown in Table 1. Further prospective 

clinical studies on TAS2R38 genotype and CRS susceptibility, including the influence of 

TAS2R38 genotype on patient outcomes, are currently ongoing. However, the T2R38 

pathway is already a potential therapeutic target to promote endogenous immune responses 

in patients with upper respiratory infections. One caveat, though, is that there would likely 

be a large subset of patients who would be suboptimally responsive to the treatment with 

T2R38 agonists (i.e. PAV/AVI and AVI/AVI individuals). It is, thus, still necessary to further 

define T2R38 signaling mechanisms in airway cells, as well as to identify other T2Rs that 

activate similar responses.

It is also likely that other T2R isoforms expressed in other airway cell types may have 

important clinical relevance. Table 2 [5,6,7▪▪,8,9,10▪,11▪▪, 12▪▪,35▪,63,64▪,65–76] shows a 

representative list of known T2R expression in the airway. In particular, the genetics of T2Rs 

in nasal solitary chemo-sensory cells may play an important role in CRS susceptibility. 

Solitary chemosensory cells control antimicrobial peptide secretion in humans [11▪▪] and 

both breath-holding [8,9,36] and inflammation [7▪▪] in mice. Clinical consequences remain 

to be determined.
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A better understanding of the T2R isoforms expressed in ciliated cells will speed 

identification of potential compounds that stimulate innate defenses. The role of T2Rs as 

global mediators of innate immunity was recently supported by a report demonstrating that 

T2R-expressing chemosensory cells in the rodent urethra respond to the bitter compounds, 

as well as heat-inactivated uropathogenic Escherichia coli; activation of these cells causes 

release of ACh to activate the bladder detrusor muscle [77▪]. Further investigation of T2Rs 

in innate immunity will likely result in a significant clinical impact on the airway and other 

organ systems.
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KEY POINTS

• T2R bitter taster receptors are expressed in several airway cell types.

• The T2R38 isoform is expressed in sinonasal-ciliated epithelial cells, in which 

it detects bacterial quorum-sensing molecules and regulates nitric oxide-

dependent innate immune responses.

• Polymorphisms in T2R38 that result in decreased receptor functionality have 

been linked to both impaired innate immune response in vitro and gram-

negative infection and CRS in vivo.
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FIGURE 1. 
Mucociliary clearance. Inhaled pathogens are trapped by sticky airway mucus secreted by 

secretory goblet cells and submucosal exocrine glands (not shown).

Coordinated ciliary beating then drives the transport of the debris-laden mucus toward the 

oropharynx, where it is removed by expectoration or swallowing.
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FIGURE 2. 
T2R38 in sinonasal innate immunity.

(a) Immunofluorescence confocal micrograph of the apical section of a fixed human 

sinonasal tissue explant stained using antibodies directed against β-tubulin IV (β-tubIV, with 

green fluorescent secondary antibody; top panel), a cilia protein, and T2R38 (with red 

fluorescent secondary antibody; bottom panel), as described in [12▪▪]. Scale bar is 20 μm. 

(b) T2R38-activation by bacterial quorum-sensing molecules stimulates calcium-mediated 

nitric oxide production, which increases ciliary beat frequency and directly kills bacteria. 

AHL, acyl-homoserine lactone; Ca2+, calcium; CBF, ciliary beat frequency; NO, nitric 

oxide; NOS, nitric oxide synthase; PKG, protein kinase G.
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Table 1

Evidence linking T2R38 genotype to sinonasal innate immunity

Biological and clinical outcome

TAS2R38 genotype

ReferencesAVI/AVI PAV/AVI PAV/PAV

Intracellular calcium response in vitro Decreased Decreased Increased [12▪▪]

NO production in vitro Decreased Decreased Increased [12▪▪]

Ciliary beat frequency/MCC in vitro Decreased Decreased Increased [12▪▪]

Bactericidal activity in vitro Decreased Decreased Increased [12▪▪]

Sinonasal gram-negative infection in vivo Increased Increased Decreased [12▪▪]

CRS Increased – Decreased [60▪,61▪▪,62▪▪]

CRS, chronic rhinosinusitis; MCC, mucociliary clearance; NO, nitric oxide; T2R38, taste receptor family 2 isoform 38 protein; TAS2R38, taste 
receptor family 2 isoform 38 gene.
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Table 2

T2R expression throughout the airway

Cell type (airway region)
Processes regulated by T2R 
receptors Endogenous ligands References

Ciliated epithelial cells (nose and 
sinuses)

Nitric oxide production; cilia 
beating; direct bactericidal effects

Bacterial acyl-homoserine lactone 
quorum-sensing molecules 
(T2R38)

[10▪,12▪▪,63]

Ciliated epithelial cells (bronchi) Cilia beating Unknown [35▪]

Solitary chemosensory cells (nose 
and sinuses)

Antimicrobial peptide secretion 
(human); breath-holding and 
inflammation (mouse)

Bacterial acyl-homoserine lactone 
quorum-sensing molecules 
(mouse); unknown (human)

[5,6,7▪▪,8,9,11▪▪,64▪,65–67]

Chemosensory brush cells (trachea) ACh release to stimulate 
trigeminal neuron activation and 
breath-holding (mouse); unknown 
(human)

Bacterial AHL quorum-sensing 
molecules (mouse); unknown 
(human)

[68–71]

Smooth muscle (bronchi) Bronchodilation Unknown [72–76]

AHL, acyl-homoserine lactone; T2R, taste receptor family 2; T2R38, taste receptor family 2 isoform 38 protein.

Curr Opin Allergy Clin Immunol. Author manuscript; available in PMC 2018 April 16.


	Abstract
	INTRODUCTION
	CHRONIC RHINOSINUSITIS AND SINONASAL INNATE IMMUNITY
	THE ROLE OF T2R38 IN SINONASAL INNATE IMMUNITY
	THE ROLE OF TAS2R38 POLYMORPHISMS IN CHRONIC RHINOSINUSITIS
	CONCLUSION
	References
	FIGURE 1
	FIGURE 2
	Table 1
	Table 2

