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ABSTRACT
Macroautophagy/autophagy is an essential, conserved self-eating process that cells perform to allow
degradation of intracellular components, including soluble proteins, aggregated proteins, organelles,
macromolecular complexes, and foreign bodies. The process requires formation of a double-membrane
structure containing the sequestered cytoplasmic material, the autophagosome, that ultimately fuses with
the lysosome. This review will define this process and the cellular pathways required, from the formation
of the double membrane to the fusion with lysosomes in molecular terms, and in particular highlight the
recent progress in our understanding of this complex process.
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Introduction

The autophagy pathway starts at the birth of the phagophore
and ends at death of the autophagosome. The cellular and
molecular lifecycle of this pathway has occupied cell biologists
since the late 1950s. Fundamental insights from yeast and other
eukaryotes have provided details in some aspects of the path-
way, in particular the identification of the machinery (the auto-
phagy-related [ATG] proteins) while other aspects remain only
partially understood. This review will cover the birth (forma-
tion) and death (maturation and fusion with lysosomes) of the
autophagosome in mammalian cells. Much of the data has
been obtained by studying the stress-induced birth of the auto-
phagosome after amino acid starvation as this provides an
acute change in the ATG proteins, either by alterations in sub-
cellular localization and/or post-translational modifications.
This review will cover formation (the birth) primarily by focus-
ing on the ATG protein ATG9 and the membrane compart-
ments involved in the early stage of formation, while the
terminal stages (the death) of the autophagosome will be cov-
ered with more molecular detail as the machinery involved at
the later stage is better understood. In particular, we will sum-
marize the role of SNARE proteins, tethering factors and adap-
tors in autophagosome-lysosome fusion, the machinery of
autophagic lysosome reformation and the membrane lipids
involved in those steps.

Autophagosome formation

The ATG proteins

A dedicated cohort of ATG proteins assemble into func-
tional complexes, which are activated and recruited to
membranes to initiate autophagy (for a recent review see1

and Fig. 1). In brief, these are the ULK complex, a serine-

threonine kinase complex (ULK1, ULK2, ATG13, RBCC1/
FIP200 [RB1-inducible coiled-coil protein 1], ATG101); the
class III lipid kinase complex I producing phosphatidylino-
sitol 3-phosphate (PIK3C3/VPS34, PIK3R4/p150, BECN1/
Beclin 1, ATG14); the effector of phosphatidylinositol 3-
phosphate (PtdIns3P), the WIPI proteins; 2 ubiqutin-like
conjugation complexes, one which conjugates ATG12 to
ATG5 in association with ATG16L1 (ATG7, ATG10) and
one driving the lipidation of the Atg8 family members
(ATG7, ATG3). The Atg8 family in mammals consists of
at least 6 proteins (LC3A, B and C, GABARAP. GABAR-
APL1, and GABARAPL2/GATE-16). Finally, ATG9 is the
only transmembrane protein in this cohort, and, while
essential, its precise function remains to be determined.
For additional information on ATG proteins not men-
tioned here as well as accessory regulatory proteins see a
recent review.2

In mammalian cells, the initiation and formation of the
autophagosome after a strong stimulus such as amino acid
starvation, is now widely agreed to occur on the membrane
of the endoplasmic reticulum through the formation of the
omegasome.3 However, it is clear that the formation of this
intermediate, and growth of the phagophore, requires input
from almost all the intracellular compartments in the cell.
This view is supported by morphological data, which sug-
gests the phagophore is in contact with many organelles.4

Our current view is the requirement for these diverse
organelles may be fulfilled by vesicular transport to and
from the phagophore (Fig. 2A), but could also occur
through transient membrane contacts and exchange of pro-
teins and lipids (Fig. 2B). The latter could resolve puzzling
properties of the phagophore that define it as distinct from
all other compartments, and there is some evidence to sup-
port this hypothesis.
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Role of ER, ER-associated compartments, and the ER-Golgi
intermediate compartment (ERGIC)

Initiation of formation of the phagophore begins when the
ULK kinase complex is activated, which corresponds to
the translocation of the ULK complex at a discrete loca-
tion on the ER that has been marked by ATG9.5 Recruit-
ment of the class III phosphatidylinositol 3-kinase
(PtdIns3-kinase) follows, generating the ER domains or
structures called the omegasome, which contain PtdIns3P.
These domains are likely to be highly curved regions that
favor recruitment of PtdIns3K complex I, thus driving fur-
ther changes in the lipid composition to form the phago-
phore. This change in curvature may also facilitate
exposure or clustering of PtdIns3P to allow recruitment of
WIPI2B, which recruits the E3-like complex ATG12–
ATG5-ATG16L1.6 Evidence also supports the notion that
ER-associated exit sites (ERES), or ERGIC can contribute
membrane to the forming phagophore.7,8 Further, there is
good evidence in yeast that ERES, COPII vesicles and the
ERGIC are contributing membranes or proteins to phago-
phores and this may be driven by SNARE-mediated fusion
(for summary see9).

Role of the Golgi complex and endosomes

The Golgi complex is the distillery through which all secretory
and post-Golgi proteins pass, become terminally glycosylated
and undergo other post-translational modifications. The cyto-
plasmic surface of the Golgi complex contains receptors for
incoming vesicles, and machinery that allows bidirectional
vesicular transport through vesicles. Both in yeast and mamma-
lian cells, the main connection between the Golgi complex and
formation of autophagosomes is the multispanning membrane
protein ATG9 (ATG9A in mammals). Genetic and biochemical
evidence in yeast supports the role of the Golgi complex10,11

and the Golgi-endosomal system12,13 as the source of the ATG9
vesicles and “Atg9 compartment.”

In mammalian cells at steady state, ATG9 resides in the
Golgi complex, and it traffics through the endosomal system,
controlled by the ULK complex, MAPK14/p38 MAP kinase,14

RAB11 and TBC1D14,15 TRAPPIII,16 AP2 (adaptor related
protein complex 2) containing clathrin coats,17 and SH3GLB1/
BIF1.18 There is a role for the plasma membrane in this
dynamic cycling of ATG9 vesicles originating from this source.
This pathway involves AP2, the retromer, and TBC1D5 to sort
ATG9 from the early sorting endosome19 and SNARES.20 In
addition, new evidence supports the need for metabolism of the
lipid sphingomyelin in the biogenesis of the phagophore
whereby an increase in sphingomyelin inhibits ATG9 recycling
from endosomes.21 Finally, phosphorylation of ATG9 may alter
its function either directly, or indirectly through alterations in
its association with cellular machinery. The best characterized
of these regulatory pathways is through the ULK complex and
AMPK.22,23 Furthermore, recent data suggest a novel control of
the endocytic pool of ATG9 trafficking through the Golgi by
SRC kinase and ULK1 that also regulates the interaction with
AP1 and AP2.24 Recent data also point to a key role for the
intracellular transport of ATG9 through endosomes, including
early, sorting and recycling endosomes (Fig. 2A). Several
reports implicate the RAB11 (a small GTPase)-positive

Figure 1. Autophagy pathway in mammalian cells. The molecular pathway comprised
of the core autophagy proteins is illustrated with their associated autophagy mem-
brane compartments. The 4 major steps in the autophagic pathway are shown in
red. PtdIns3P, phosphatidylinositol 3-phosphate; PE, phosphatidylethanolamine.

Figure 2. Intracellular organelles and membrane contacts facilitating autophagosome formation. (A) The major organelles required for the secretory pathway (ER, Golgi)
and endocytosis (sorting endosome, recycling endosome) implicated in membrane contribution to phagophore formation. For simplicity not all ER-Golgi associated com-
partments (ERES, ERGIC, COP vesicles) are shown. Likewise not all endocytic-associated compartments (early endosome, late endosome, lysosome) are shown. (B) Mem-
brane contact sites proposed or potentially implicated in phagophore expansion. The MAMs (mitochondria-associated membranes) are illustrated by contact of the
phagophore with the mitochondria.
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recycling endosomes, suggesting the recycling endosomes may
play the most prominent role in this route: A direct transport
route from recycling endosomes to the forming autophagosome
has been identified, which is mediated by SNX18, a sorting
nexin,25 and evident after overexpression of TBC1D14, an
effector of RAB11 and the TRAPPIII complex.14 This pathway
delivers to the forming phagophore ULK1, ATG16L1, and LC3
in vesicles that contain TF (transferrin).

These data point to the Golgi-endosomal system as being a
key route for the production of ATG9 vesicles that could nucle-
ate the domain forming the omegasome, directly fuse with the
growing phagophore membrane or reside dynamically in a
larger intermediate compartment called the ATG9 compart-
ment (Fig. 2) which appears as a collection of small vesicles,
tubules and vacuoles.11,25 The conservation of the ATG9 com-
partment in eukaryotes points to its essential role as a storage
pool of vesicles that can be liberated and mobilized to aid the
growth of the phagophore during induction by stress such as
starvation. Further studies are needed to resolve the precise
function of ATG9.

Role of membrane contacts and lipid droplets

Mitochondria-associated membranes (MAMs), or mitochon-
dria-endoplasmic reticulum contact sites have been implicated
in the formation of autophagosomes as potential sites that con-
centrate ATG formation machinery including ATG14 and
STX17.26 STX17, a Q-SNARE protein mainly resident on ER,27

has also been implicated in the process of autophagosome clo-
sure.28 In support of these data it had been previously shown
that mitochondria are tethered to the ER, disruption of this
tethering impairs starvation-induced autophagosome forma-
tion,29 and the contacts with the ER allow transfer of both pro-
teins and lipids from mitochondria.30

Lipid droplets, formed at the ER, are important stores of
neutral lipids. Lipid droplets have a unique surface covered

with a single phospholipid bilayer and proteins, (for a recent
review see31). Lipid droplets are in the proximity of, and likely
in contact with, the forming autophagosome.32 Mobilization of
the neutral lipids stored in the lipid droplet, as well as a lipase
PNPLA5 on the surface of the lipid droplet were recently
shown to enhance autophagosome formation.33 This pathway
is likely to be conserved in yeast as the levels of enzymes
required for synthesis of neutral lipids regulate autophagy.34

Autophagosome-lysosome fusion

After closure of the phagophore, the double-membrane auto-
phagosome matures and fuse with lysosomes to degrade its
contents. The autophagosomes and lysosomes must first move
closer together and then become tethered before SNARE-medi-
ated fusion can occur. In the first step of autophagosome-lyso-
some fusion, the outer autophagosomal membrane fuses with
the single lysosomal membrane. Full fusion is completed by
degradation of the inner autophagosomal membrane by lyso-
somal hydrolases and exposure of the contents of the autopha-
gosome to the lumen of the lysosome. So far, a large set of
molecules, including cytoskeleton components and related
motor proteins, tethering factors, phospholipids, and specific
SNARE complexes, have been identified as important players
in ensuring precise and efficient fusion (Fig. 3).

Spatial positioning of autophagosomes and lysosomes

In order to achieve efficient fusion of autophagosomes and
lysosomes, both organelles need to be physically close. Starva-
tion causes perinuclear clustering of lysosomes, driven by
changes in intracellular pH,35 whereas autophagosomes are
formed randomly in the peripheral region of the cell.36 Once
closed, autophagosomes are linked to and transported along
microtubules,37 and finally concentrate in the perinuclear
region where lysosomes are located. Dynein, a minus end-

Figure 3. Schematic illustration of autophagosome-lysosome fusion. The cytoskeleton components and related motor proteins, the tethering factors, core machinery
SNAREs and phospholipids involved in the fusion process are indicated. The detailed molecular mechanisms of each factor are discussed in the text. MT, microtubule.
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directed microtubule motor, mediates the centripetal move-
ment of autophagosomes. Dynein dysfunction results in
decreased autophagosome-lysosome fusion.36,38,39 In neurons,
autophagosomes acquire retrograde mobility by fusing with
dynein-loaded late endosomes to form amphisomes, which are
then trafficked to the soma, the main location of mature acidic
lysosomes.40

Plus-end-directed microtubule motor kinesins can also
affect autophagosome-lysosome fusion. Depletion of Klp98A
causes reduced formation of starvation-induced autophagic
vesicles and clustering of autophagosomes and lysosomes in
the perinuclear region in flies. Despite the clustering of these
vesicles, they do not fuse, which suggests that Klp98A may be
involved in the formation of fusion-competent, mature auto-
phagosomes.41 It is worth noting that knockdown of FYCO1,
an adaptor required for microtubule plus-end-directed trans-
port of autophagic vesicles, also causes clustering of Lyso-
Tracker Red-negative autophagic vesicles in the perinuclear
region.42

Besides microtubule-based motors, actin-based motors, such
as MYO6/myosin VI and MYO1/myosin I, also play a role in
autophagosome-lysosome fusion by affecting autophagosome
maturation and tethering.43,44

Tethering factors required for fusion

Various tethering factors contribute to the fusion of autophago-
somes with lysosomes. Broadly speaking, these factors fall into
3 categories: the HOPS (homotypic fusion and protein sorting)
complex, RAB7, and adaptors that link autophagosomal or
lysosomal components to the core tethering or fusion
machinery.

The core tethering factor for autophagosome-lysosome
fusion is the HOPS complex. HOPS is a conserved protein
complex consisting of vacuolar protein sorting 11 (VPS11),
Vps16, VPS18, Vps33A, VPS39, and Vps41.45–47 The HOPS
complex works as a specific tether for vacuolar/lysosome fusion
events in both yeast and mammals.48,49 All HOPS subunits are
required for autophagosome-lysosome fusion.50 The HOPS
complex interacts with the Q-SNARE STX17 and facilitates
assembly of the trans-SNARE complex to mediate autophago-
some-lysosome fusion.50,51 It is interesting to note that the
HOPS complex specifically binds to STX17 on autophagosomes
but not on mitochondria or the ER, which indicates that other
factors are needed to ensure the specificity of autophagosome-
lysosome fusion.

The fusion of vesicles with target organelles depends on con-
secutive RAB-mediated tethering steps. RABs are small
GTPases that have GTP-loaded and GDP-loaded forms. GTP-
loaded RABs can be recruited to membranes, where they bind
effectors including tethering factors.52 The role of RAB7 in
membrane fusion has been extensively documented in yeast, fly
and mammals. Ypt7 (the yeast homolog of RAB7) binds HOPS
via Vps41 and Vps39.47 Because RAB7/Ypt7 can bind mem-
branes and membrane-anchored proteins, assembly of the
RAB7/Ypt7-HOPS complex can bridge 2 opposing membranes,
thus facilitating membrane fusion.53 In the context of autopha-
gosome-lysosome fusion, the requirement for RAB7 is well
established.54 RAB7 interacts with various tethering factors,

and these interactions are likely to further enhance the specific-
ity of autophagosome-lysosome fusion.55-57 Not surprisingly, as
well as RABs, various GTP/GDP exchange factors (GEFs) and
RAB GTPase-activating proteins (GAPs) can also affect auto-
phagosome-lysosome fusion.58,59

The central question surrounding vesicle fusion is the mech-
anism of specificity. Although core SNAREs and core tethering
proteins offering a degree of specificity, additional factors are
required to ensure the exquisite precision of autophagosome-
lysosome fusion. So far, various “adaptor” proteins have been
demonstrated to fulfill this role. These adaptor proteins bind to
components of autophagosomes or lysosomes, such as LC3/
Atg8 and ATG12–ATG5, while also interacting with the
SNARE complex and/or core tethering factors such as RAB7
and the HOPS complex, thus ensuring the specificity of fusion.
For example, EPG5 can bind to RAB7 and the R-SNARE
VAMP7-VAMP8 on late endosomes/lysosomes, and to both
LC3/LGG-1 (the C. elegans homolog of LC3) and assembled
STX17-SNAP29 on autophagosomes, stabilizing the assembly
of STX17-SNAP29-VAMP7-VAMP8 complexes.56 PLEKHM1
forms a bridge between LC3/GABARAP and the HOPS com-
plex and tethers VPS41 to RAB7 on lysosomes.55 TECPR1 rep-
resents another type of adaptor protein. Lysosome-localized
TECPR1 facilitates the fusion between autophagosomes and
lysosomes by binding to autophagosome-localized ATG12–
ATG5 and PtdIns3P.60 It is worth mentioning that the role of
PLEKHM1 in autophagosome maturation appears to be cell-
line specific.61 Homologs of PLEKHM1 and TECPR1 are not
involved in autophagosome maturation in C. elegans.56

The core machinery for fusion: SNAREs

SNAREs are the core components of the fusion machinery.
Assembly of the SNARE complex is sufficient to mediate mem-
brane fusion in vitro. During membrane fusion, R-SNARE and
Q-SNARE proteins on separate membranes assemble into
trans-SNARE complexes to provide the force required for
fusion. In mammalian systems, STX17 is the autophagosomal
Q-SNARE. Upon autophagy induction, STX17 is recruited
from the ER and mitochondria to completed autophagosomes.
Autophagosomal STX17 then interacts with SNAP29 and the
endosomal/lysosomal R-SNARE VAMP8 to form a trans-
SNARE complex, which mediates autophagosome-lysosome
fusion.62

Various factors regulate the assembly of the autophagosomal
SNARE complex. ATG14 binds to STX17 and stabilizes the
STX17-SNAP29 binary Q-SNARE complex on autophago-
somes, promoting membrane tethering and enhancing fusion
events.63 O-GlcNAcylation of the SNARE protein SNAP29
reduces its ability to from trans-SNARE complexes. It is worth
noting that the level of O-GlcNAcylated SNAP29 depends on
nutrient availability and is reduced by starvation.64 This adds
another level of regulation to autophagosome-lysosome fusion.

Lipids involved in fusion

Despite their low abundance, phosphoinositides (PIs) play key
roles in various cellular processes including specification of
membrane identity, regulation of cell signaling and control of
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membrane shaping.65 PIs carry out their function by serving as
membrane docking sites for a large array of effector proteins
and as precursors of lipid second messengers. PIs are concen-
trated on the cytosolic face of cellular membranes and are able
to diffuse quickly in membranes. Phosphorylation at the 3-, 4-,
and 5-position of the inositol ring of phosphatidylinositol gen-
erates seven PI isoforms. The concerted action of PI and PtdIns
kinases and phosphatases, which add or remove phosphate
groups at various positions of the inositol ring, generate the
unique PI signature of distinct membrane compartments.65

So far, PtdIns3P, PtdIns4P and PtdIns(3,5)P2 have been
shown to participate in autophagosome-lysosome fusion.60,66–
69 Changes in the PtdIns(3,5)P2 level on lysosomes, mediated
by INPP5E (inositol polyphosphate-5-phosphatase E), contrib-
ute to the autophagosome-lysosome fusion process in neu-
rons.69 PtdIns(3,5)P2 is dephosphorylated by INPP5E, which
resides on lysosomes. The decreased level of PtdIns(3,5)P2
enhances CTTN (cortactin)-dependent actin filament stabiliza-
tion on lysosomes, facilitating autophagosome-lysosome
fusion.69

PtdIns3P is also implicated in autophagosome-lysosome
fusion. As mentioned above, lysosomal TECPR1 binds to the
ATG12–ATG5 conjugate on autophagosomes. TECPR1 only
binds to PtdIns3P when it is in a complex with ATG12–ATG5.
Deletion of the pleckstrin homology/PH domain from TECPR1
abolishes its ability to bind PtdIns3P and to mediate autopha-
gosome-lysosome fusion, indicating that the TECPR1-PtdIns3P
interaction is likely required for fusion.60 In addition to
PtdIns3P, PtdIns4P, which is generated on autophagosomes by
PI4K2A/PI4KIIa, is also crucial for autophagosome-lysosome
fusion.68

Coordination of closure and fusion

The processes of autophagosome formation, closure, and
fusion with lysosomes need to be tightly coordinated to
guarantee successful delivery of the engulfed contents to
lysosomes for degradation. Premature fusion of autophago-
somes with lysosomes may cause insufficiency or failure of
autophagy. This coordination is achieved by controlling the
localization of STX17, the autophagosomal SNARE. STX17
is mainly localized on the ER and mitochondria under nor-
mal conditions; however, the completion or near-comple-
tion of autophagosomes triggers the relocation of STX17 to
autophagosomes, thus making the completed autophago-
somes fusion-competent.28

Inhibitors of autophagosome-lysosome fusion

Bafilomycin A1 (BafA1) is widely used as an inhibitor of auto-
phagosome-lysosome fusion. It has been generally assumed
that BafA1 inhibits autophagosome-lysosome fusion by block-
ing vacuolar-type HC-translocating ATPase pump activity.
However, Mauvezin et al. showed that BafA1 interferes with
autophagosome-lysosome fusion and autolysosome acidifica-
tion in 2 separate processes. BafA1 targets the vacuolar-type
HC-translocating ATPase on the lysosome to prevent lumenal
acidification, and independently inhibits Ca-P60A/SERCA to
disrupt autophagosome-lysosome fusion.70

Autophagic lysosome reformation

Upon fusion of lysosomes with the outer membrane of an auto-
phagosome, the lysosomal contents enter the space between the
2 autophagosome membranes, and the degradation of the inner
membrane of the autophagosome occurs in an LC3-dependent
manner. Once the inner membrane breaks down, the process
of autophagosomal cargo degradation begins. The degradation
products, including amino acids and sugars, are transported
out of the autolysosome through members of a family of lyso-
some efflux transporters, and the autolysosome volume is con-
sequently reduced.

The limiting membrane of autolysosomes contain mem-
branes from different sources including lysosomes, late endo-
somes and autophagosomes. Autolysosomes are not permanent
structures and disintegrate once autophagy is terminated. The
termination step of autophagy is a process dubbed as autopha-
gic lysosome reformation (ALR).71 During ALR, lysosomal
membrane proteins are recycled from autolysosomes through
tubular structures named reformation tubules. At the tips of
these tubules, nascent lysosomes, called proto-lysosomes, are
formed through a scission/budding process. Initially proto-
lysosomes are not acidic and do not contain lysosome lumenal
proteins, but eventually they mature into functional lysosomes
in a protein synthesis-dependent manner.72

ALR can be divided into a series of steps including trigger-
ing, initiation, cargo sorting, autolysosome tubulation, proto-
lysosome scission, and proto-lysosome maturation (Fig. 4). In
the past few years, an increasingly clear picture of the molecular
regulation of ALR has started to emerge.

Upon starvation, autophagy is triggered by inhibition of
mTOR (mechanistic target of rapamycin). Adding rapamycin
after autolysosome formation blocks ALR, and adding serum to
starved cells causes activation of mTOR and initiation of

Figure 4. The overview of the autophagic lysosome reformation (ALR) process. mTOR reactivation trigger ALR. Clathrin-mediated buds driving initiation, microtubules and
the motor protein KIF5B mediating tube elongation, and DNM2 (dynamin 2)-mediated proto-lysosome scission couple with the function of multiple phospholipids.

AUTOPHAGY 211



ALR.71 In cells undergoing serum or glutamine starvation,
which mimics in vivo starvation in a more physiologically rele-
vant way, prolonged nutrient withdrawal causes elevated amino
acid levels through the combined effect of autophagic degrada-
tion and increased amino acid uptake. Knockdown of SPNS/
spinster, a lysosomal sugar efflux transporter, impairs the auto-
lysosomal degradation capacity and attenuates mTOR reactiva-
tion, indicating that autophagic degradation contributes to
reactivation of mTOR.73 Prolonged starvation also causes acti-
vation of the general amino acid control pathway, which results
in upregulation of amino acid transporters on the plasma mem-
brane and contributes to mTOR reactivation.74 At this point,
the identity of the substrate of mTOR in the context of trigger-
ing ALR is still not clear.

Reformation tubules and proto-lysosomes do not contain
autolysosomal lumenal proteins. Thus, a cargo retention mech-
anism must exist. PI4KB/PI4KIIIb, a PtdIns4P kinase, appears
to play key roles in autolysosomal cargo retention, as lysosomal
lumenal components have uncontrolled access to reformation
tubules in PI4KB¡ cells.75 However, the mechanism by which
PI4KB regulates cargo retention is unknown. Furthermore, it is
still unclear how different membrane components are sorted
out during ALR.

Autolysosome tubulation is initiated by formation of cla-
thrin-coated, PtdIns(4,5)P2-enriched buds on autolysosomes.
PtdIns(4,5)P2 generated by PIP5K1B recruits AP2 to the sur-
face of autolysosomes, and the AP2 links in turn to clathrin.
The formation of clathrin-coated buds creates PtdIns(4,5)
P2-enriched microdomains, as one clathrin molecule can
recruit 4 PtdIns(4,5)P2 molecules.72 Through direct interaction
with PtdIns(4,5)P2, KIF5B, a microtubule plus-end motor, is
recruited in clusters to autolysosomes and generates a force
that pulls reformation tubules out of the autolysosome. The
autolysosome tubulation process has been successfully reconsti-
tuted in vitro using defined components. In this system, micro-
tubules are polymerized and coated on a glass slide. Purified
KIF5B is able to pull out tubules from PtdIns(4,5)P2-containing
liposomes or purified autolysosomes in a clathrin-dependent
manner.76

Once tubular structures are formed, proto-lysosomes are
generated from the tips of tubules through scission, which
mimics the process of clathrin-mediated endocytosis. The
core component of the scission machinery is the large
GTPase DNM2 (dynamin 2), which functions by binding to
PtdIns(4,5)P2.

77 The PtdIns(4,5)P2 involved in autolysosome
tubulation and proto-lysosome scission is generated by dif-
ferent kinases. PIP5K1B regulates autolysosome tubulation
whereas PIP5K1A mediates the formation of proto-lyso-
somes. A lack of PIP5K1A results in failure of proto-lyso-
some fission and elongation of reformation tubules.72 In
addition to PtdIns(4,5)P2, PtdIns3P and PtdIns4P are also
involved in this process. Lysosomal PIK4B/PI4KIIIb, which
generates PtdIns4P, plays an important role in scission.
Knockdown of PIK4B/PI4KIIIb causes extensive autolyso-
some tubulation.75 Lysosome-localized PtdIns3P produced
by PIK3C3/VPS34-UVRAG is also important in the scission
process.78 At this moment, it is still not clear how different
phospholipids and their kinases coordinate during the tubu-
lation and scission processes.

Conclusions

The complexity of the life cycle of the autophagosome is just
beginning to be unveiled. While the fundamental advance in
our understanding was the identification of the Atg genes in
yeast, the impact of this essential pathway on human health is
now becoming apparent.79 Integrating both the genetic data
and the role of autophagy in the physiology of diseases requires
an understanding of the molecular details driving the process, as
well as the cellular pathways that control the membrane-
mediated events. Here, we have provided a snapshot of the for-
mer and detailed the latter to highlight the recent progress the
field has made. Understanding the molecular details of both the
process itself, and the cellular pathways required for the process
will be essential for development of therapeutics targeting auto-
phagy in human diseases.

Abbreviations

ALR autophagic lysosome reformation
AP adaptor protein
ATG autophagy related
ERGIC ER-Golgi intermediate compartment
HOPS homotypic fusion and protein sorting
mTOR mechanistic target of rapamycin
PI phosphoinositides
PtdIns3K phosphatidylinositol 3-kinase
PtdIns3P phosphatidylinositol-3-phosphate
SNARE Soluble NSF attachment protein receptor
ULK unc-51 like autophagy activating kinase
VPS vacuolar protein sorting
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