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SUMMARY

Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of 

progenitor and stem cell-like features. Here, we provide novel stemness indices for assessing the 

degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression 

machine learning algorithm (OCLR) to extract transcriptomic and epigenetic feature sets derived 

from non-transformed pluripotent stem cells and their differentiated progeny. Using OCLR, we 

were able to identify previously undiscovered biological mechanisms associated with the 

dedifferentiated oncogenic state. Analyses of the tumor microenvironment revealed unanticipated 

correlation of cancer stemness with immune checkpoint expression and infiltrating immune system 

cells. We found that the dedifferentiated oncogenic phenotype was generally most prominent in 

metastatic tumors. Application of our stemness indices to single cell data revealed patterns of 

intra-tumor molecular heterogeneity. Finally, the indices allowed for the identification of novel 

targets and possible targeted therapies aimed at tumor differentiation.

ETOC

Stemness features extracted from transcriptomic and epigenetic data from TCGA tumors reveals 

new drug targets for anti-cancer therapies
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INTRODUCTION

Stemness, defined as the potential for self-renewal and differentiation from the cell-of-

origin, was originally attributed to normal stem cells that possess the ability to give rise to all 

cell types in the adult organism. Cancer progression involves gradual loss of differentiated 

phenotype and acquisition of progenitor-like, stem cell-like features. Undifferentiated 

primary tumors are more likely to result in cancer cell spread to distant organs, causing 

disease progression and poor prognosis, particularly because metastases are usually resistant 

to available therapies (Friedmann-Morvinski and Verma, 2014; Ge et al., 2017; Shibue and 

Weinberg, 2017; Visvader and Lindeman, 2012).

An increasing number of genomic, epigenomic, transcriptomic, and proteomic signatures 

have been associated with cancer stemness. Those molecular features are causally connected 

to particular oncogenic signaling pathways that regulate transcriptional networks that sustain 

the growth and proliferation of cancer cells (Ben-Porath et al., 2008; Eppert et al., 2011; 

Kim et al., 2010). Transcriptional and epigenetic dysregulation of cancer cells frequently 

leads to oncogenic de-differentiation and acquisition of stemness features by altering core 

signaling pathways that regulate the phenotypes of normal stem cells (Bradner et al., 2017; 

Young, 2011). Cell-extrinsic mechanisms can also affect maintenance of the undifferentiated 

state, largely through epigenetic mechanisms. Tumors comprise a complex, diverse, 

integrated ecosystem of relatively differentiated cancer cells, cancer stem cells, endothelial 

cells, tumor-associated fibroblasts, and infiltrating immune cells, among other cell types. 

The microenvironment of a tumor, considered as a pathologically formed “organ” is 

frequently characterized by hypoxia, as well as by abnormal levels of various cytokines, 

growth factors, and metabolites (Lyssiotis and Kimmelman, 2017). It provides numerous 

opportunities for cell-cell signals to modulate the epigenome and expression of stem cell-

like programs in cancer cells, frequently independent of their genetic backgrounds (Gingold 

et al., 2016).
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Over the last decade, The Cancer Genome Atlas (TCGA) has illuminated the landscapes of 

primary tumors by generating comprehensive molecular profiles composed of genomic, 

epigenomic, transcriptomic, and (post-translational) proteomic characteristics (Hoadley et 

al., 2014; Tomczak et al., 2015), along with histopathological and clinical annotations. The 

resulting resource enabled us to analyze cancer stemness quite extensively in almost 12,000 

samples of 33 tumor types.

First, we defined signatures to quantify stemness, using publicly available molecular profiles 

from normal cell types that exhibit various degrees of stemness. By multi-platform analyses 

of their transcriptome, methylome, and transcription factor binding sites using an innovative 

one-class logistic regression machine-learning algorithm (OCLR) (Sokolov et al., 2016), we 

obtained two independent stemness indices. One (mDNAsi) was reflective of epigenetic 

features, the other (mRNAsi) was reflective of gene expression. We then identified 

associations between the two stemness indices and novel oncogenic pathways, somatic 

alterations, and microRNA and transcriptional regulatory networks. Those features 

correlated with, and perhaps govern, cancer stemness in particular molecular subtypes of 

TCGA tumors. Importantly, higher values for stemness indices were associated with 

biological processes active in cancer stem cells and with greater tumor dedifferentiation, as 

reflected in histopathological grade.

Metastatic tumor cells appeared more dedifferentiated phenotypically, probably contributing 

to their aggressiveness. We also found tumor heterogeneity at the single-cell level by 

measuring stemness in transcriptome profiles obtained from individual cancer cells. Using 

CIBERSORT to profile immune cell types in TCGA tumors, we obtained insight into the 

interface of the immune system with stemness. Finally, we identified compounds specific to 

selected molecular targets and mechanisms that may eventually lead to novel treatments that 

trigger differentiation and exhaust the stemness potential of highly aggressive neoplasms.

RESULTS

DNA methylation- and mRNA expression-based stemness classifiers

We analyzed publicly available non-tumor and tumor datasets for which transcriptomic and 

epigenomic molecular profiles were available (Figure 1A). We derived stemness indices 

using an OCLR algorithm trained on stem cells (SC; ESC/iPSC) classes and their 

differentiated ecto-, meso- and endoderm progenitors. We chose OCLR because it does not 

penalize misclassification of stem cell-derived progenitors at different stages of 

differentiation, which still carry some of the undifferentiated features in their molecular 

profiles (its output was also validated against Random Forests in Figure S1A). OCLR-based 

transcriptomic and epigenetic signatures were applied to TCGA datasets to calculate the 

mRNAsi and mDNAsi. Each stemness index (si) ranges from low (zero) to high (one) 

stemness (Table S1). The tumor samples stratified by the indices were used for the 

integrative analyses.

mRNA expression-based stemness index—We validated the mRNAsi by applying it 

to an external dataset composed of both stem cells and somatic differentiated cells (Nazor et 

al., 2012) (Figure 1B), and by scoring molecular subtypes of breast cancers and gliomas that 

Malta et al. Page 5

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are characterized by different degrees of oncogenic dedifferentiation associated with 

pathology and clinical outcome (Figures S1B and S1C). All stem cell samples attained 

higher si values than samples from differentiated cells. TCGA tumors display various 

degrees of cancer stemness as revealed by mRNAsi (Figure 1C, left) and mDNAsi (Figure 

1C, right). Germ-cell tumors, basal breast cancer, and Ly-Hem cancers displayed highly 

dedifferentiated phenotypes in comparison to other tumor types.

Using GSEA, we compared our signature to 16 gene sets that were associated with stemness 

in cancer and healthy cells in previous studies (Ben-Porath et al., 2008; Ivanova et al., 2006; 

Kim and Orkin, 2011; Mathur et al., 2008; Palmer et al., 2012; Sato et al., 2003; Venezia et 

al., 2004; Yan et al., 2011). These sets spanned 2,564 unique genes, with no two sets 

overlapping by more than 134 genes. In all cases, the published stemness gene sets were 

significantly enriched in mRNAsi (Figure 2A). We found that “Cancer Hallmark” gene sets 

were significantly enriched, as were MYC targets which significantly contributed to the 

positive side of the signature (Hanahan and Weinberg, 2011). This is consistent with MYC 

being one of the transcription factors that drive pluripotency in ESC (Young, 2011).

Wnt/β-catenin and TGFβ signaling pathways were significantly enriched on the negative 

side of the stemness signature. This negative enrichment does not imply absence of specific 

signals in cancer stem cells, but rather that this signaling is lower relative to stem cell-

derived progenitors, as captured by the signature weights. This is again consistent with other 

GSEA results, as both signaling pathways are known mediators of the EMT mechanism 

(Gonzalez and Medici, 2014). We also computed the correlation of mRNAsi against mRNA 

expression of published pan-cancer EMT markers (Mak et al., 2016), which revealed 

significant correlations with for most tumors (Figures S2C). This is consistent with the 

biology of ESCs, which grow as epithelioid, polygonal cells in vitro and epithelial cancer 

precursors having stem-like properties. Importantly, most TCGA samples are primary 

tumors of an epithelial phenotype. Most skin melanoma cases come from lymph nodes and 

this tumor type shows higher expression of vimentin, a key marker of mesenchymal 

phenotype. mRNAsi is positively correlated with other core stem cell factors: EZH2, OCT4, 

and SOX2 (Figure 2B and Table S2). Finally Moonlight analysis of the oncogenic signatures 

from MSigDB further validated our gene expression based index and confirmed engagement 

of MYC, EZH2, along with E2F3, MTOR, SHH in driving oncogenic dedifferentiation 

(Figure 2C) (Colaprico et al., 2018).

DNA methylation-based stemness index—We defined the mDNAsi using OCLR by 

combining: 1) supervised classification between ESC/iPSC and their progenies; 2) stem cell 

signatures associated with pluripotency-specific genomic enhancer elements based on 

ChromHMM from Roadmap, and 3) ELMER, which uses DNA methylation to identify 

enhancer elements and correlates their state with the expression of nearby genes. 219 CpG 

probes (Figure S2A) were selected in training OCLR using the PCBC datasets. By selecting 

probes previously defined to be active stemness-specific enhancers, we confirmed the ability 

of our approach to derive an mDNAsi. Since we focused exclusively on hypomethylated, 

functionally important CpG probes associated with stem cells, we further explored cis-

activated genes.
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We scored each TCGA sample using the mDNAsi and used an external dataset to confirm 

that stem cells had higher mDNAsi than differentiated samples (Figure 1B, left plot). TCGA 

tumor types show different degrees of inferred dedifferentiated phenotype (Figure 1C, right). 

Within these, Individual tumor samples show variation for cancer stemness. As anticipated, 

TCGA samples derived from the primary tumors show higher cancer stemness indices 

compared to non-tumor samples obtained from adjacent normal tissue-of-origin (Figure 

S1E, bottom).

Most of our selected probes fell within non-promoter elements, yet the SOX2-OCT4 

transcription factor binding motif is one of the most highly enriched signatures within these 

regions. The SOX2-OCT4 complex is a critical master regulator of pluripotency and 

stemness, and is highly enriched in tumor samples with high mDNAsi (Figure 2D).

Correlations of mRNAsi and mDNAsi—Since the inputs for mDNAsi and mRNAsi are 

not necessarily complementary, we explored stratification of glioma samples by the 

epigenetically regulated-mRNAsi (EREG-mRNAsi), a stemness index generated using a set 

of stemness-related epigenetically regulated genes. The EREG-mRNAsi, based on both 

RNA expression and epigenetics, elucidates the discrepancy between mDNAsi and mRNAsi 

and shows a positive correlation with both indices (Figure S1F). Both mRNAsi and mDNAsi 

show good correspondence for a majority of tumors (Figures S1F and S2B). We observed 

major discrepancies in the case of LGG, THCA, and THYM. For gliomas, mDNAsi is 

correlated positively with tumor pathology and clinical features, while mRNAsi shows a 

negative correlation. This result could arise from a high frequency of IDH1/2 mutations and 

resulting DNA hypermethylation.

Stemness index can stratify recognized undifferentiated cancers

We examined BRCA, AML, and gliomas to study if the mRNAsi/mDNAsi predict stemness 

in poorly differentiated tumors. In BRCA, we found a strong association between the 

stemness index and known clinical and molecular features (Figure 3A, left). The mRNAsi 

was highest in the basal subtype, known to exhibit an aggressive phenotype associated with 

an undifferentiated state. BRCA samples with high mRNAsi were more likely to be ER-

negative, and enriched for FAT3 and TP53 mutations. We noted that high mRNAsi was 

associated with higher protein expression of FOXM1, CYCLINB1 and MSH6 as well as 

higher microRNA-200 family expression (Figure 3A, right). Invasive lobular type of BRCA 

(ILC), characterized by better prognosis in comparison to invasive ductal carcinoma (IDC), 

has a lower mRNAsi (Figure 3A, right). We also applied our indices to non-TCGA BRCA 

samples (Reyngold et al., 2014), and found a similar correlation between mRNAsi and 

mDNAsi in those samples. Moreover, mRNAsi also stratified BRCA samples with distinct 

histology in this dataset (Figure S1B). Using datasets with estimated tumor cell type 

composition provided by the epigenetic deconvolution method (Onuchic et al., 2016) we 

found that both mRNAsi and mDNAsi were more highly correlated with malignant 

epithelial cells than with normal epithelial cells suggesting that our indices identify distinct 

cancerous epithelial cell populations characterised by different features or degrees of 

stemness (Figure S1D).
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We found an association between the mRNAsi, RNA expression subtypes previously defined 

by TCGA, and the French-American-British (FAB) classification of AML (Figure 3B). The 

mRNAsi showed the strongest correlation with the stage of myeloid differentiation of the 

AML samples. FAB subtypes M0 (undifferentiated), M1 (with minimal maturation), and M2 

(with maturation) were characterized by high mRNAsi. In contrast, M3 well-matured 

promyelocytic subtype, which is associated with benign chromosomal abnormalities and 

favorable clinical outcome had low mRNAsi (Figure 3B, right upper). High mRNAsi was 

associated with higher expression of miR-181c-3p, miR-22-3p, and miR-30b-3p (Figure 3B, 

right bottom).

We found a strong association between high mDNAsi, high pathologic grade and recently 

published molecular subtypes of glioma (Figure 3C). mDNAsi was low in less aggressive 

gliomas that are characterized by codel and G-CIMP-high features and was highest in highly 

aggressive GBMs characterized by IDH mutations (G-CIMP-low) and poor clinical 

outcome. Also, high mDNAsi is strongly associated with more aggressive classical and 

mesenchymal subtypes of GBM, suggesting that it can stratify tumors with distinct clinical 

outcomes. We also found that high mDNAsi was associated with mutations in NF1 and 

EGFR and infrequent mutations in IDH1, TP53, CIC, and ATRX (Figure 3C, left), with 

higher expression of ANNEXIN-A1 protein and lower expression of ANNEXIN-A7, and 

with expression of the miR-200 family (Figure 3C, right bottom).

We obtained similar results on non-TCGA glioma samples for which both mRNA expression 

and DNA methylation data were available (Turcan et al., 2012) (Figure S1C). The negative 

correlation between mDNAsi and mRNAsi was restricted to LGG samples, specifically the 

IDH mutant subtypes (G-CIMP high and codel). IDH1 mutations are known to reduce cell 

differentiation, and high values of the mRNAsi in a subset of IDH mutant gliomas might 

capture this phenomenon (Lu et al., 2012).

Pan-cancer stemness landscape

Next, we tested the ability of our indices to identify previously unexplored features of cancer 

stemness across all TCGA tumors. First, we performed an enrichment analysis by sorting all 

TCGA samples by stemness index for each tumor type and looking for associations with 

mutations, molecular and clinical features. The most salient associations of mRNAsi and 

mDNAsi are presented in Figure 4, while the following results of the comprehensive 

analyses are shown in the supplementary material: associations with mutations (Figure S3), 

associations with miRNA expression and protein abundance (Figure S4), associations with 

the tumor grading and clinical outcome (Figure S5).

Correlations of mRNAsi and mDNAsi with mutations in genes, miRNA and 
expression of proteins—We found a strong association between mDNAsi and known 

molecular subtypes, somatic mutations in SETD2 and TP53 genes, and with tobacco 

smoking status in LUAD (Figures 4A and S3). Current smokers and recently reformed 

smokers have higher mDNAsi than non-smokers or long-term reformed smokers. This 

suggests that the stemness of LUAD tumors might be activated in response to environmental 

stimuli such as smoking, and might influence te aggressiveness of the tumor. We also found 
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an association between mDNAsi and higher protein expression of CYCLINB1 and FOXM1, 

which is a pro-stemness transcription factor upstream of CYCLINB1 (Figure 4A, lower 

plots). FOXM1 has been associated with dedifferentiation in pancreatic cancer cells (Bao et 

al., 2011) as well as tumor proliferation in the kidney (Xue et al., 2012) and ovarian (Wen et 

al., 2014) cancers. Our result suggests that it could be a driver of dedifferentiation and 

proliferation in breast and lung cancers. Stemness of LUAD tumors is also associated with 

lower expression of ANNEXIN-A1 (Figure 4A). ANNEXIN-A1 has been indicated as a 

differentiation marker in pancreatic (Bai et al., 2004) and urothelial cancers (Kang et al., 

2012), therefore we suspect that the relationship between ANNEXIN and FOXM1 

expression and tumor differentiation may extend to other tumor types (Figure S4C).

Analyses of HNSC samples revealed that high indices are correlated with NSD1 mutation, 

E-cadherin protein expression, miR-200-3p, and previously identified classical molecular 

subtypes (Figure 4B). NSD1 mutation was recently linked in HNSC tumors to blockade of 

cellular differentiation and promotion of oncogenesis (Papillon-Cavanagh et al., 2017). 

Interestingly, miR-200 family members have been implicated in cancer initiation and 

metastasis, as well as self-renewal of healthy stem cells (Gregory et al., 2008; Tellez et al., 

2011). HNSC tumors with high mDNAsi have reduced programmed death ligand 1 (PD-L1) 

protein level (Figure 4B).

In LIHC samples, we found an association between mRNAsi and high pathological grade 

(Figure 4C). Negative associations between mRNAsi and the probability of OS or PFS were 

detected (Figures 4E and S5C). In contrast to the majority of tumor types, LIHC samples 

with high mRNAsi have low expression of miR-200 family members (Figure 4C). The 

miR-200 family is known to be associated with progression of hepatocellular carcinoma 

(Tsai et al., 2017; Wong et al., 2015), and the miR-200b-ZEB1 circuit has been suggested as 

a master regulator of stemness in these cancers (Tsai et al., 2017). We found associations of 

mRNAsi with higher CYCLINB1 and ACC1 and with lower PD-L1 and ANNEXIN A1 

protein expression in LIHC (Figure 4C). ACC1 was associated with pathomorphological 

markers of LIHC aggressiveness (vascular invasion and poor differentiation) and its 

upregulation was correlated with poor OS and disease recurrence in hepatocellular 

carcinoma patients (Wang et al., 2016). LIHC samples with high mRNAsi were associated 

with specific genomic alterations (e.g., TP53, CTNNB1, AXIN1, among others).

Detailed analyses of ACC samples revealed an association between high mRNAsi and 

defined molecular subtypes (Zheng et al., 2016), clinical stage, and mutations in PRKAR1A 
and TP53 genes (Figure 4D). We found a positive correlation between mRNAsi and adrenal 

differentiation score, that is based on expression of 25 genes that are important for adrenal 

function (Zheng et al., 2016) (Figure 4D).

Stemness indices are correlated with tumor pathology and predictive of 
clinical outcome—We observed a positive correlation between tumor histology and 

pathology grading and both stemness indices for the majority of the TCGA cases (Figures 

S5A, S5B, and Figures 3A, 3C, 4C, 4D, and S1B). For mRNAsi, the most significant 

correlations were found for BRCA (IDC and ILC), CESC, LIHC, PAAD, UCEC (Figure 

S5A). Interestingly, mRNAsi shows low values in GBM and STAD. On the other hand, 
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mDNAsi strongly stratifies glioma by the pathology grade culminating with the highest 

value for GBM (Figure S5B). The reversed values of mDNAsi and mRNAsi in case of 

gliomas were also evident in the clinical data analyses. An adverse association between the 

mRNAsi and survival was detected (Figure 4E), which was significant for OS and PFS after 

adjusting for clinical factors (Figures S5C). In contrast, the mDNAsi had no significant 

association with OS and PFS after correcting for clinical factors. We found a positive 

correlation between previously published glioma subtypes and mDNAsi suggesting that 

mDNAsi might recapitulate prognostic molecular subtypes (Figure 3C). The discordance 

between the mRNAsi and the mDNAsi for gliomas may be explained in part by the 

dominant genomic alteration associated with the LGG tumor type. Roughly 80% of LGG 

tumors carry an IDH1/2 mutation and, as demonstrated by our group and others, tconfers a 

genome-wide hypermethylator phenotype (G-CIMP) (Noushmehr et al., 2010; Turcan et al., 

2012). Given that the mDNAsi is driven primarily by low methylation levels associated with 

the stemness phenotype, the LGG tumors might resemble non-stem like phenotypes, which 

are predominantly hypermethylated. The subgroup of G-CIMP with the lowest overall DNA 

methylation levels (G-CIMP-low) is associated with the worst outcomes. Compared to G-

CIMP-high tumors, G-CIMP-low tumors are known to be more proliferative, express cell-

cycle-related genes, and have various stem cell-like genomic features (Ceccarelli et al., 

2016).

Cancer stemness indices are higher in tumor metastases and reveal intratumor 
heterogeneity

The TCGA samples are derived mostly from primary tumors except for skin melanoma for 

which tissues are mostly metastatic lymph nodes. We used the mRNAsi to interrogate the 

MET500 dataset comprising expression profiles from 500 metastatic samples obtained from 

22 different organs (Robinson et al., 2017). In most cases, mRNAsi was significantly higher 

in e metastatic samples compared to primary TCGA tumors (Figure 5A). Prostate and 

pancreatic adenocarcinomas metastases had the most dedifferentiated phenotypes, and are 

also more aggressive and resistant to therapies in contrast to primary tumors. Weaker 

association with the mRNAsi was due to a small number of available samples (n<20). 

Interestingly, TGCT presents the less differentiated phenotype in primary tumors when 

compared to distant metastases. Primary TGCT tuor cells have high mRNAsi and may 

differentiate when metastasizing to distant organs. A similar trend was observed for STAD.

Using another dataset, we found that mDNAsi was significantly higher in glioma samples 

obtained at first recurrence in contrast to primary gliomas (Figure 5B). Our results reveal 

significant dedifferentiation of glioma cancer cells that contribute to glioma recurrence 

which is frequently associated with poor prognosis and resistance to treatment (de Souza et 

al., 2017).

By taking advantage of single-cell transcriptome datasets, we used mRNAsi to probe tumor 

heterogeneity for oncogenic dedifferentiation of individual cancer cells (Chung et al., 2017; 

Tirosh et al., 2016). We revealed high variation of stemness in the glioma and breast primary 

tumors. Individual glioma cells showed higher variegation of oncogenic dedifferentiation in 

comparison to breast cancer cells (Figure 5C). Single cells from metastases had higher 
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stemness index in breast cancer (Figure 5D). Interestingly, the negative correlation of EMT 

signature and stemness that we observed in TCGA primary tumors was also found in 

metastatic samples (Figure 5E).

Stemness index evaluated in the context of immune response

We found that, for many tumors, higher stemness indices are associated with a reduced 

leukocyte fraction and lower PD-L1 expression (Figure 6A). For mDNAsi, the most 

distinctive negative correlations were found in the PanCan-12 squamous cluster (LUSC, 

HNSC, BLCA) (Hoadley et al., 2014) and in GBM (Figures 6A [left panel] and S6B). For 

the mRNAsi, the highest negative correlation values were seen in GBM/LGG, prostate 

adenocarcinoma (PRAD), LICH, and UCS tumors (Figures 6A [right panel] and S6A). We 

expect that such tumors will be less susceptible to immune checkpoint blockade treatments, 

due to insufficient immune cell infiltration or e pre-existing downregulation of the PD-L1 

pathway, which makes further inhibition ineffective. Our findings are consistent with 

previous reports showing a strong correlation between PD-L1 protein expression and 

infiltration of CD8+ cytotoxic lymphocytes (Zaretsky et al., 2016).

We further explored correlations between stemness and immune microenvironment variables 

in the context of molecular subtypes of tumors. Figure 6B highlights several tumor types 

with the strongest (positive or negative) correlations. Except for KIRC, the association 

between stemness and PD-L1 expression and leukocyte fraction is readily apparent from the 

increasing and decreasing trends of individual variables across the molecular subtypes. For 

example, we found mesenchymal tumors to have the highest PD-L1 expression levels, the 

most significant leukocyte fractions, and lowest mDNAsi compared to other HNSC 

subtypes, suggesting potential susceptibility to checkpoint blockade inhibitors. The use of 

immunotherapy for HNSC tumors is under active investigation (Economopoulou et al., 

2016; Fuereder, 2016), with the recent FDA approval of pembrolizumab; however, whether 

the effectiveness of therapy is limited to specific HNSC molecular subtypes is not clear from 

those reports.

To assess other relationships between stemness and tumor microenvironment, we computed 

correlations between stemness indices and individual types of immune cells. By applying 

CIBERSORT, we scored 22 immune cell types for their relative abundance in TCGA tumor 

samples. These cell types included NK cells, monocytes, macrophages, dendritic and mast 

cells, eosinophils, and neutrophils. We also obtained absolute estimates by scaling their 

relative abundance by overall leukocyte infiltration in each tumor, as determined by 

ESTIMATE applied to DNA methylation data. For any given TCGA sample, we calculated 

the correlation between mDNAsi/mRNAsi and the estimated fraction of individual immune 

cell types. In addition to individual immune subpopulation fractions, we considered the 

functional activation of distinct cells by measuring the difference between activated and 

resting fractions of NK cells, CD4+ T cells, and macrophages. This approach was motivated 

by recent observations that activation of peripheral CD4+ T cells triggered by 

immunotherapy is responsible for the specific killing of tumor cells (Spitzer et al., 2017).

Although the squamous cluster tumors had a negative correlation between stemness and the 

fraction of CD4+ T cell populations, the activation state of the CD4+ T cells was higher in 

Malta et al. Page 11

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dedifferentiated tumors. This finding is consistent with our observation that PD-L1 protein 

expression is lower in these tumors, suggesting again that immune checkpoint blockade 

might be ineffective and an additional mechanism of immune evasion may be operative. The 

opposite trend is present in thymomas, where PD-L1 protein expression and the fraction of 

the CD4+ T cell population are positively correlated with tumor dedifferentiation. Likewise, 

the activation state of CD4+ T cells is lower in dedifferentiated tumors, suggesting that they 

might be more susceptible to immunotherapy treatments (Figures S6AB).

Connectivity map (CMap) analysis identifies potential compounds/inhibitors capable of 
targeting the stemness signature

We employed CMap, a data-driven, systematic approach for discovering associations among 

genes, chemicals, and biological conditions, to search for candidate compounds that might 

target pathways associated with stemness. We found enrichment for compounds associated 

with stemness in at least three cancer types Figure 7A. Five compounds are significantly 

enriched in more than ten cancer types and have been reported to inhibit stemness-related 

tumorigenicity: the dopamine receptor antagonists thioridazine and prochlorperazine (Cheng 

et al., 2015; Lu et al., 2015, (Dolma et al., 2016)), the WNT signaling inhibitor pyrvinium 

(Xu et al., 2016), the HSP90 inhibitor tanespimycin and the protein synthesis inhibitor 

puromycin. Further, telomerase inhibitor gossypol induced apoptosis and growth inhibition 

of CSCs (Volate et al., 2010), and histone deacetylase inhibitors such as trichostatin A 

(SAHA) reduced glioblastoma stem cell growth (Chiao et al., 2013). According to our 

analysis, pyrvinium and puromycin could inhibit stemness in LUAD. We found several 

candidates with recognized anti-CSC activity for HNSCC, including the aforementioned 

compounds. For LIHC, thioridazine, a prospective inhibitor of lung cancer stem cells (Yue et 

al., 2016), pyrvinium, puromycin, prochlorperazine, and others are potential compounds 

targeting undifferentiated tumors (Figure 7).

CMap Mode-of-action (MOA) analysis of the 74 compounds revealed 56 mechanisms of 

action shared by the above compounds (Figure 7B and Table S4B). Five compounds 

(fluspirilene, pimozide, prochlorperazine, thioridazine, and trifluoperazine) shared the MoA 

of Dopamine receptor antagonist. We observed that entinostat, trichostatin-a, vorinostat 

shared MoA as HDAC inhibitors, and LY-294002, zaprinast, zardaverine as 

Phosphodiesterase inhibitors.

CMap Target analysis revealed 212 distinct drug-target genes shared by the mentioned 

compounds (Figure S7 and Table S4C). Eight genes are targets of five different compounds, 

namely DRD2 (8 drugs), HTR2A (7 drugs), HRH1 (6), ADRA1A (5), CALM1 (5), CHRM3 

(5), HTR1A (5), HTR2C (5).

Recent polypharmacology studies suggest the need to design compounds that act on multiple 

genes or molecular pathways. In this study, we observed similar mechanisms of action 

among different compounds suggesting selective therapies can target the undifferentiated 

phenotypes for selected cancer types.
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DISCUSSION

This study is based on integrated analysis of cancer stemness in almost 12,000 primary 

human tumors of 33 different cancer types. We interrogated TCGA data for mutations, DNA 

methylation, expression of mRNA and miRNA, expression and post-translational 

modification of proteins, histopathological grade, and clinical outcome. Applying 

CIBERSORT, we gained insight into the tumor microenvironment and composition of 

immune cell infiltrates. By applying a machine-learning algorithm to molecular datasets 

from normal stem cells and their progeny, we developed two different molecular metrics of 

stemness and then used them to assess epigenomic and transcriptomic features of TCGA 

cancers according to their grade of oncogenic dedifferentiation. Ultimately, the analyses led 

us to potentially actionable targets (and their modes-of-action), as candidates for possible 

differentiation therapy of solid tumors and metastases. Our approach could be applied to 

longitudinal study of samples from primary, recurrent, and metastatic cancers and gene 

expression signatures identified in the tumor samples can be used to interrogate CMap to 

suggest actionable targets and inhibitors for further analysis.

To the best of our knowledge, this is the first study in which molecular PCBC datasets 

comprised of stem cells and defined populations of their differentiated progeny have been 

leveraged to develop a classification tool and machine-learning algorithm for analysis of a 

spectrum of human malignancies. A number of cancer stemness scores, based on genes that 

are differentially expressed between CSCs and non-CSCs, have been published and are 

relevant to clinical outcomes in AML (Eppert et al., 2011; Gentles et al., 2010; Ng et al., 

2016). In those studies, gene sets enriched in ESCs (e.g., targets of NANOG, OCT4, SOX2, 

and c-MYC) were frequently overexpressed in poorly differentiated tumors compared with 

well-differentiated ones. In breast cancers, those gene sets were associated with high-grade 

estrogen receptor-negative, basal-like tumors and poor clinical outcome (Ben-Porath et al., 

2008). Another web-based tool, StemChecker, uses a curated set of 49 published stemness 
signatures defined by gene expression, RNAi screens, transcription factor binding sites, text-

mining of the literature, and other computational approaches. But it has been tested only for 

pancreatic ductal adenocarcinoma. In that case, high expression of stemness genes correlated 

with poor prognosis (Pinto et al., 2015). All previous studies were transcriptome-based and 

limited to a narrow set of genes and a small number of tumor types.

In the present study, we found oncogenic dedifferentiation to be associated with several 

characteristics: mutations in genes that encode oncogenes and epigenetic modifiers, 

perturbations in specific mRNA/miRNA transcriptional networks, and deregulation of 

signaling pathways. Cancer stemness also appeared to involve core expression of Myc, Oct4, 

Sox2, and other genes involved in the regulatory circuitry that underlies normal and 

malignant self-renewal potential. Our indices derived from mRNA expression and DNA 

methylation signatures reliably stratified tumors of known stemness phenotype. High 

mRNAsi was associated with basal breast carcinomas but also Her2 and lumB subtypes that 

are more aggressive than the hormone-dependent lumA group. In contrast, high mDNAsi 

was strongly associated with high-grade glioblastomas, poor overall and progression-free 

survival. The association between stemness signatures and adverse outcome for some tumor 
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types, including gliomas, may reflect malignant cell origins or the impact of their 

microenvironment.

Dedifferentiated cells can arise from different sources: from long-lived stem or progenitor 

cells that accumulate mutations in oncogenic pathways, or via dedifferentiation from non-

stem cancer cells that convert to CSCs through deregulation of developmental and/or non-

developmental pathways. It is important to distinguish between the inherent stemness of 

CSCs and dedifferentiation induced by the tumor microenvironment. However, addressing 

that issue would require further validation beyond the scope of this study using other 

genomic datasets and/or laboratory experiments.

Both stemness indices were lowest in normal cells, increased in primary tumors, and highest 

in metastases, consistent with the idea that tumor progression generally involves oncogenic 

dedifferentiation. Interestingly, we observed negative associations between stemness and 

EMT gene signatures. The relationship between EMT and stemness remains a hotly debated 

topic, with several studies showing that EMT is necessarily associated with stemness 

(Fabregat et al., 2016). However, most TCGA data are obtained from primary tumors, which 

exist in a pre-EMT state, since EMT is strongly associated with tumor progression and with 

metastasis for many tumor types. Cancer cells in many primary solid tumors are basically 

epithelial regardless of their degrees of dedifferentiation, but some cells in such contexts 

could acquire mesenchymal characteristics, either by accumulating additional mutations or 

by undergoing epigenetic changes shaped by the tumor microenvironment. Those 

mesenchymal cells can traverse the underlying tissue, enter the bloodstream and seed distant 

organs where they reacquire an epithelial phenotype to form metastatic tumors.

We observed epithelial phenotype and increased stemness index in molecular profiles of 

tumor type-matched metastatic samples in the MET500 cohort. This portends an association 

between dedifferentiation and spread of tumor cells to distant organs. The observation is 

further supported by high mDNAsi in samples from recurrent gliomas. It appears that tumor 

growth de novo, or at recurrence/metastasis, is associated with an increased stemness 

phenotype. Decreased mRNAsi levels seen in TGCT suggest its possible differentiation as a 

germ cell tumor type induced by the microenvironment of liver or lung parenchyma, the 

organs it most often colonises. Clinically, in general, tumor progression is associated with 

greater aggressiveness and resistance to therapy of almost all types.

The mRNAsi was high for individual primary glioma and breast cancer cells. Interestingly, 

when applied to transcriptomic profiles obtained from analysis of single cancer cells in bulk 

tumors, stemness indices revealed a high degree of intratumor heterogeneity with respect to 

dedifferentiation phenotype. The heterogeneity was greater in gliomas than in breast cancer, 

suggesting that intratumor environment, including stromal cells, hypoxia, and infiltration of 

immune cells, may play a role in shaping CSC niches, and affect cancer cell developmental 

plasticity. Further molecular analyses of cancer cells stratified by the stemness phenotype 

would provide novel insights into the biology of primary tumors.

We found that, for a number of tumor types (GBM, LUSC, HNSC, and BLCA), higher 

mDNAsi was associated with reduced leukocyte fraction and/or lower PD-L1 expression. 
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Such tumors are expected to be less susceptible to immune checkpoint blockade, due either 

to insufficient immune cell infiltration of tumors or to inherent downregulation of the PD-L1 

pathway. Both factors can render immune checkpoint immunotherapy ineffective. The 

interaction between PD-L1 on cancer cells and PD1 receptor on T-cells helps cancer cells 

elude the immune system by preventing activation of cytotoxic T cells in lymph nodes and 

subsequent recruitment of other immune cell types to the tumor site (Chen and Mellman, 

2013). The presence of tumor-infiltrating lymphocytes and/or PD-L1 expression correlates 

with aggressiveness in gastrointestinal stromal tumors (Bertucci et al., 2015) and breast 

carcinomas (Polónia et al., 2017).

Common features shared between cancer cells and stem cells in the context of the immune 

response are being highlighted by a growing number of studies showing that vaccination 

with ESC or iPSC can raise specific immune response against cancer cells (Kooreman et al., 

2018). That finding may indicate that both cell populations use protein networks that, in 

tumors, result in uncontrolled self-renewal and de-differentiated phenotypes 

histopathologically defined by loss of architecture specific to the tissue of origin. We 

speculate that the indices described here may help predict the efficacy of stem-cell based 

immunotherapies and contribute to the identification of patients who will respond to such 

therapies.

We interrogated CMap using the gene expression signatures from tumor samples with the 

highest and lowest mRNAsi levels. Surprisingly perhaps, the Cmap analysis, which is based 

on only a limited number of treated cell lines, very precisely selected drugs that have been 

shown to affect cancer stem cells with specificity. These translational analyses may 

ultimately pave the way for implementation of differentiation therapies for solid tumors.

Here, we have also shown that cancer hallmarks can be extracted from datasets on cells with 

defined phenotypes and used to train machine-learning methods applicable to index 

molecular profiles of cancer. Our mRNAsi and mDNAsi can be translated into stemness 

scores (e.g., STEM50) that stratify tumors based on their dedifferentiation features, thus 

providing biomarkers for prediction of patient outcomes and response to to differentiation 

therapies.

By defining new metrics of cancer stemness and using them to interrogate TCGA datasets, 

our results provide a comprehensive characterization of dedifferentiation as new and 

significant hallmarks of cancer. The strengths of the approach are that it leverages features of 

dedifferentiated cells across a spectrum of tumor types that reflect tumor pathology and, in 

some cases, clinical outcome. This study also provides strategies for integrated analysis of 

cancer genomics based on machine-learning methods trained on molecular profiles obtained 

from cells with defined phenotypes. The findings based on those methods may advance the 

development of objective diagnostics tools for quantitating cancer stemness in clinical 

tumors, perhaps leading eventually to new biomarkers that predict tumor recurrence, guide 

treatment selection, or improve responses to therapy.
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STAR★Methods

Detailed methods are provided in the online version of this paper and include the following:

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Workflow to reproduce the 
stemness index

This paper https://bioinformaticsfmrp.github.io/PanCanStem_Web/

CIBERSORT (Gentles et al., 2015) https://precog.stanford.edu/

R 3.3.1 (R Core Team, 
2017)

https://www.R-project.org

ggplot2 (v2.2.1) (Wickham, 2009) https://CRAN.R-project.org/package=ggplot2

gelnet (v1.2.1) (Sokolov et al., 
2016)

https://CRAN.R-project.org/package=gelnet

GSEA (Subramanian et al., 
2005)

https://software.broadinstitute.org/gsea/index.jsp

TCGAbiolinks (v2.4.3) (Colaprico et al., 
2016)

http://bioconductor.org/packages/TCGAbiolinks/

ELMER (v1.4.1) (Yao et al., 2015) http://bioconductor.org/packages/ELMER/

fgsea (v1.2.1) (Sergushichev, 2016) http://bioconductor.org/packages/fgsea/

Methylumi (v2.20.0) (Davis et al., 2015) http://bioconductor.org/packages/methylumi/

MoonlightR (v1.2.0) (Colaprico et al., 
2018)

http://bioconductor.org/packages/MoonlightR/

Amaretto (Gevaert et al., 
2013)

http://med.stanford.edu/gevaertlab/software.html

STATA (v13) (StataCorp, 2013) http://www.stata.com/

Deposited Data

TCGA data NIH Genomic Data 
Commons (GDC)

https://gdc.cancer.gov/about-data/publications/PanCanStemness-2018

Progenitor Cell Biology 
Consortium (PCBC)

(Daily et al., 2017; 
Salomonis et al., 
2016)

https://www.synapse.org/pcbc

Chromatin State (ChromHMM) (Roadmap 
Epigenomics 
Consortium et al., 
2015)

http://www.roadmapepigenomics.org

Stem Cells Validation set (Nazor et al., 2012) GEO: mRNA expression (GSE30652) and DNA methylation 
(GSE30654)

Glioma validation set (Sturm et al., 2012) GEO: mRNA expression (GSE36245) and DNA methylation 
(GSE36278)

Glioma validation set (Turcan et al., 2012) GEO: GSE30339

BRCA validation set (Reyngold et al., 
2014)

GEO: GSE59000

Deconvolution of breast cancer 
(BRCA)

(Onuchic et al., 
2016)

http://genboree.org/theCommons/projects/edec

MET500 - Metastatic solid 
tumors

(Robinson et al., 
2017)

Database of Genotypes and Phenotypes (dbGaP) accession number 
phs000673.v2.p1

Gliomas Single Cell RNA 
expression

(Tirosh et al., 2016) GEO: GSE70630
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REAGENT or RESOURCE SOURCE IDENTIFIER

BRCA Single Cell RNA 
expression

(Chung et al., 2017) GEO: GSE75688

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

Maciej Wiznerowicz (maciej.wiznerowicz@iimo.pl).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical and molecular data were collected from the NIH Genomic Data Commons (GDC) 

of 11,392 participants from The Cancer Genome Atlas PanCancer Atlas cohort (https://

gdc.cancer.gov/about-data/publications/PanCanStemness-2018).

METHODS DETAILS

DNA Methylation Data—A total of 9,627 PanCancer TCGA samples across 33 different 

tumor types were available for DNA methylation using the robust Illumina 

HumanMethylation 450 (HM450) platform. TCGA samples included primary (8,471), 

recurrent (41), and metastatic tumor (394) tissues and a set of 721 non-tumor tissues.

Level 3 data were downloaded from TCGA Data Portal using TCGAbiolinks functions 

GDCquery, GDCdownload and GDCprepare importing into R (http://www.r-project.org) for 

further analysis (Colaprico et al., 2016).

DNA methylation level 3 data are β-values that were calculated from pre-processed raw data 

using the methylumi Bioconductor package (Davis et al., 2015). Pre-processing steps 

included background correction, dye-bias normalization, and calculation of β-values and 

detection p-values. β-values range from zero to one, with zero indicating no DNA 

methylation and one indicating complete DNA methylation. A detection p-value compares 

the signal intensity difference between the analytical probes and a set of negative control 

probes on the array. Any data point with a corresponding p-value greater than 0.01 is 

deemed not statistically significantly different from background and is thus masked as “NA” 

in TCGA level 3 data. The data levels and the files contained in each data level package are 

on the NIH Genomic Data Commons (GDC).

In addition to TCGA data, we used a dataset of 99 human stem/progenitor cells from the 

Progenitor Cell Biology Consortium (PCBC) (https://www.synapse.org/pcbc) to define stem 

cell signatures (Daily et al., 2017; Salomonis et al., 2016). PCBC samples were profiled 

using the Illumina HumanMethylation 450 (HM450) platform and consisted of 4 embryonic 

stem cells (ESC), 40 induced pluripotent stem cells (iPSC), 22 stem cell (SC)-derived 

embryoid bodies (EB), 11 SC-derived mesoderm day 5 (MESO), 11 SC-derived ectoderm 

(ECTO), and 11 SC-derived definitive endoderm (DE). We downloaded raw IDAT files from 

PCBC Genomic Data Commons and processed the data according to the TCGA standard 

level 3 protocol described above.
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RNA Expression Data—PanCancer TCGA RNA sequence level 3 normalized data were 

downloaded from the GDC Data Portal using TCGAbiolinks functions GDCquery, 

GDCdownload and GDCprepare importing into R (http://www.r-project.org) for further 

analysis (Colaprico et al., 2016). A total of 10,852 samples across 33 tumor types were 

available, including primary (9,702), recurrent (45) and metastatic tumor (395) tissues and a 

set of 710 non-tumor tissues.

We also downloaded PCBC RNA sequence data from the PCBC Synapse Portal (https://

www.synapse.org/pcbc), consisting 16 ESC, 77 iPSC, 66 SC-derived EB, 29 SC-derived 

MESO, 29 SC-derived ECTO, and 36 SC-derived DE (Daily et al., 2017; Salomonis et al., 

2016).

Stemness Index Derived Using OCLR—To calculate a stemness index (si) based on 

mRNA expression or DNA methylation, we built a predictive model using one-class logistic 

regression (OCLR) (Sokolov et al., 2016) on the pluripotent stem cell samples (ESC and 

iPSC) from the PCBC dataset (Daily et al., 2017; Salomonis et al., 2016).

For mRNA expression-based signatures, to ensure compatibility with the TCGA PanCancer 

cohort, we first mapped the gene names from Ensembl IDs to Human Genome Organisation 

(HUGO), dropping any genes that had no such mapping. The resulting training matrix 

contained 12,945 mRNA expression values measured across all available PCBC samples. 

For DNA methylation-based signatures, we used each of the signatures (probe set) described 

below.

We mean-centered the data, then applied OCLR to just the samples labeled SC (which 

included both ESC and iPSC). We chose to use the one-class framework because of its 

robustness in the absence of the a “negative” class. The PCBC data does not have data for 

fully differentiated cells, and progenitor cell types might exhibit some of the stemness 

signals.

Once the signature is obtained, it can be applied to score new samples. For RNA expression 

data, we computed Spearman correlations between the model’s weight vector and the new 

sample’s expression profile. We advocate for the use of Spearman correlation over the more 

traditional dot product operation because it is more robust with respect to potential cross-

dataset batch effects that may arise. For DNA methylation data, which follow the beta 

distribution, the samples were scored using the standard application of a linear model: f(x) = 

w^T x + b.

We validated our approach using leave-one-out cross-validation by withholding each SC 

sample in turn. A separate signature was then trained on all other SC samples and used to 

score the withheld sample as well as all the non-SC samples. The performance was 

measured using the area under the curve (AUC) metric, which can be interpreted as the 

probability that the model correctly ranks a positive sample above a negative (Agarwal et al., 

2005). In our cross-validation experiment, every withheld SC sample was scored higher than 

all the non-SC samples, yielding an overall AUC of 1.0.
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We performed additional validation of the stemness signature by applying it to an external 

dataset composed of pluripotent stem cells (ESC and iPSC), somatic cells (17 distinct tissue 

types and several primary cell lines of diverse origin), and hydatidiform mole samples 

(Nazor et al., 2012). The mRNA expression data for the study were downloaded from GEO 

(GSE30652) as were DNA methylation data (GSE30654). We observed that all of the SC 

samples were correctly scored above all of the somatic samples by both platforms (Figure 

1B). This is particularly striking for mRNA expression, because mRNA expression in study 

by the Nazor et al. was measured using microarrays, whereas the signature was trained using 

RNA-seq data.

Having validated the signature by using cross-validation and external SC data, we then 

applied it to score the TCGA PanCancer cohort using the same Spearman correlation (RNA 

expression) or linear model (DNA methylation) operators. The indices were subsequently 

mapped to the [0,1] range by using a linear transformation that subtracted the minimum and 

divided by the maximum. The mapping was done to assist with interpretation as well as 

integration with the stemness indices derived from other data platforms (i.e., DNA 

methylation and mRNA expression).

Additionally, we downloaded independent, non-TCGA datasets of gliomas [(Sturm et al., 

2012) (GSE36245, GSE36278) and (Turcan et al., 2012) (GSE30339)] and BRCA samples 

(Reyngold et al., 2014) (GSE59000) and applied our metrics to measure the stemness in the 

validation data. For mRNA expression, the preprocessing consisted of mapping the Illumina 

probe IDs (Illumina HumanHT-12 V3.0 platform) to HUGO symbols, and then reducing the 

signature and the external dataset to a common set of genes. We then computed the 

Spearman correlation between the signature and the external samples. For DNA methylation, 

we applied the linear model.

DNA Methylation Stemness Signatures—Due to the magnitude of the available DNA 

methylation platform Infinium HumanMethylation450 (HM450), we defined DNA 

methylation-based stemness signatures as a reduced input to the OCLR machine learning 

algorithm. For the DNA methylation-based stemness indices, three signatures were utilized, 

each defining a distinct, biologically relevant, molecular phenotype of stemness. First, we 

performed a supervised analysis between human pluripotent stem cells (ESC and iPSC) and 

stem cell-derived progenitors (embryoid bodies [EB], mesoderm [MESO], ectoderm 

[ECTO], and definitive endoderm [DE]) (β value mean difference < −0.4 and false discovery 

rate [FDR] < 10e-22; β value mean difference > 0.3 and false discovery rate [FDR] < 

10e-17).All ‘rs’ and ‘ch’ probes were removed prior to analyses. To eliminate somatic 

tissue-specific probes, we removed probes that were consistently methylated (standard 

deviation β value > 0.05) in non-tumor adult tissues available through TCGA. This resulted 

in a set of 62 pluripotent cell-specific and differentially methylated regions, which was then 

used as input for the OCLR to determine the stemness index for each TCGA tumor sample, 

named “differentially methylated probes-based stemness index” (DMPsi). Interestingly, 

most of these probes (85%) were positioned within intergenic regions known as open seas 

(Figure S2A).
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Second, we defined a stem cell signature associated with genomic enhancer elements. 

Enhancers have been shown to be a critically relevant functional element for defining gene 

target expression and chromatin organization. For this, we downloaded Chromatin State data 

(ChromHMM) from the NIH Roadmap Epigenomics Consortium (http://

www.roadmapepigenomics.org), which defined 18 chromatin states (based on 6 different 

histone marks: H3K4me3, H3K27ac, H3K4me1, H3K36me3, H3K9me3, and H3K27me3) 

across 98 different cell types (Roadmap Epigenomics Consortium et al., 2015). Briefly, by 

using ChromHMM data we mapped the HM450 probes to the chromatin states in each 

individual cell type; then we identified genomic regions corresponding to active enhancers 

that are specific to pluripotent stem cell states (ESC and iPSC), meaning that each region 

was defined as active enhancers (according to their states: 9-EnhA1 and 10-EnhA2 

(Roadmap Epigenomics Consortium et al., 2015)) in all pluripotent stem cells (n=9) whereas 

not enhancer (enhancer in less than 25% of non-pluripotent stem cells (n= 89)) in non-

pluripotent stem cells. We identified 82 DNA methylation probes of the HM450 platform 

that mapped to enhancer elements and considered them to be a DNA methylation-based 

pluripotent stem cell enhancer signature, which was then used as input for the OCLR to 

evaluate stemness signatures for TCGA samples, named “enhancer-based stemness index” 

(ENHsi) (Figure S2A).

Third, we applied ELMER (Enhancer Linking by Methylation/Expression Relationships), an 

R/Bioconductor package (Yao et al., 2015) that uses DNA methylation to identify enhancer 

elements and correlates enhancer state with expression of nearby genes to identify putative 

transcriptional targets. Using ELMER, we compared pluripotent stem cells (ESC and iPSC) 

to stem cell-derived progenitors (EB, MESO, ECTO, DE) from PCBC and identified 87 

CpGs that were hypomethylated in the pluripotent state (ESC and iPSC) compared to stem 

cell-derived progenitors and that potentially regulate 103 genes. We confirmed the 

importance of these probe-gene pair targets by identifying that the SOX2-OCT4 

transcription factor binding motif was among the most highly enriched signatures within 

these elements (+/−250 bp from the center). The SOX2-OCT4 complex is an important 

master regulator of pluripotency and stemness. We then derived a new set of signatures using 

the OCLR and defined TCGA samples’ stemness as “epigenetically regulated stemness 

indices” for each molecular feature (RNA expression-based Epigenetically regulated-

mRNAsi [EREG-mRNAsi] and DNA methylation-based [EREG-mDNAsi]).

Because there was high concordance among the three DNA methylation-based indices 

(DMPsi, ENHsi, and EREG-mDNAsi) (not shown) and each contributes important and 

complementary biological relevance to stemness, we combined the three stemness signatures 

(total of 219 probes) and derived a comprehensive DNA methylation index, named mDNAsi 
(Figure S2A). The lists of probes and genes used to derive the stemenss indices are provided 

on the publication portal accompanying this publication (https://gdc.cancer.gov/about-data/

publications/PanCanStemness-2018).

Stemness vs Molecular and Clinical Features—To evaluate the performance of our 

stemness indices across the entire TCGA cohort, we performed an enrichment analysis by 

sorting TCGA samples by stemness index for each tumor type and looked for associations 

with all available genomic features (by using comprehensive mutation data [MC3]), 
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molecular features (previously published TCGA molecular subtypes available at 

TCGAbiolinks package (http://bioconductor.org/packages/release/bioc/html/

TCGAbiolinks.html) (Colaprico et al., 2016; Silva et al., 2017), through the function 

“PanCancerAtlas_subtypes()”, which provides full access to the curated matrix used for this 

study), and clinical features (more than 10,000 features). We used the fgsea R/Bioconductor 

package to compute the enrichment scores (Sergushichev, 2016). Briefly, for each tumor 

type we ranked the TCGA samples according to their stemness index (from -low to -high 

stemness index) and tested if any particular genomic/molecular/clinical feature was 

associated with either -low or -high stemness index in a non-random behavior. We 

performed 10,000 permutations for each parameter analyzed to calculated our enrichment 

score. We then normalized the enrichment scores to mean enrichment of random samples of 

the same size (NES - normalized enrichment score). Tables containing all the results can be 

accessed at https://gdc.cancer.gov/about-data/publications/PanCanStemness-2018. In 

addition, an interactive portal with the results across all tumor samples/types vs. mDNAsi 

and mRNAsi can be accessed at https://bioinformaticsfmrp.github.io/PanCanStem_Web/

where the user can search for any gene or molecular/clinical feature of interest.

Stemness versus Clinical Predictors—The associations between the three stemness 

indices and overall survival (OS) and progression free survival (PFS) in different tumors 

were evaluated in two stages. First, the proportional hazard (PH) model with the index as a 

single continuous covariate was used to test whether there was a statistically significant 

effect on OS or PFS. Given that, for each outcome, the effects of the three indices were 

tested for 33 cancer types. The significance level of the tests was adjusted for multiple 

testing to control the overall type I error probability at 5%. In the next stage, the cancer types 

for which at least one index showed a statistically significant association with either OS or 

PFS were analyzed in more detail by using a multivariable PH model that included relevant 

clinical factors. Moreover, the model included a functional form of the index obtained by 

using degree-2 fractional polynomials (Royston and Altman, 1994). The plausibility of the 

PH assumption was checked by using the test based on the scaled Schoenfeld residuals 

(Therneau and Grambsch, 2000). The analyses were conducted using STATA v13 software.

To select the clinical factors for inclusion in the PH model used in the second stage of the 

OS/PFS analysis for selected cancer types, a detailed analysis of the association between the 

stemness indices and demographic and clinical features (such as sex, age, race, stage, grade, 

etc.) was carried out by using linear models. mRNAsi and EREG-mRNAsi were analyzed on 

the original scale, while mDNAsi was transformed logarithmically to make its distribution 

more symmetric. The fit of the constructed models was assessed by using residual plots. The 

analyses were conducted using STATA v13 software.

The screening of the association between the stemness indices and OS (Figure 4E) by using 

univariable proportional hazard (PH) models indicated a statistically significant (using p 

values adjusted for multiple testing) effect of mRNAsi on OS for LGG (p < 0.0001) and 

STAD (p = 0.005) and on PFS for GBM (p = 0.04), LGG (p < 0.0001), LIHC (p = 0.05), 

STAD (p = 0.04), and UCEC (p = 0.03). For mDNAsi, an effect on OS was found for LGG 

(p < 0.0001) and on PFS for KIRP (p = 0.04) and LGG (p < 0.0001). Finally, for EREG-

mRNAsi, a statistically significant effect on OS was found for ACC (p = 0.005), KIRC (p = 
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0.008), and LGG (p = 0.03), and on PFS for ACC (p = 0.03), LGG (p = 0.03), and UCEC (p 

= 0.04). In these selected cases, multivariable analyses were conducted (using STATA v13 

software), which took into account the effect of clinical factors. The analyses confirmed (by 

using unadjusted p values) the effect of mRNAsi on OS for STAD (p = 0.0001) and for 

GBM/LGG (p = 0.002) and the effect on PFS for GBM/LGG (p = 0.008) and LIHC (p = 

0.002). For mDNAsi, the effect on PFS in KIRP was confirmed (p = 0.0001), while for 

EREG-mRNAsi, the effect on PFS in UCEC was confirmed (p = 0.05). These confirmed 

results indicate that the indices have a potential role as novel, independent prognostic factors 

for the indicated tumor types.

Compounds Targeting with Cancer Stemness—To determine which target drugs 

might be useful against cancer stem cells, we used the Broad Institute’s Connectivity Map 

build 02 (CM) (Lamb et al., 2006), a public online tool (https://portals.broadinstitute.org/

cmap/) (with registration) that allows users to predict compounds that can activate or inhibit 

based on a gene expression signature.

To further investigate about mechanism of actions (MoA) and drug-target we performed 

specific analysis within Connectivity Map tools (https://clue.io/) (Subramanian et al., 2017).

Using Connectivity Map (Query) in May 2017 having data available from a collection of cell 

lines (MCF, PC3, HL60 and SKMEL5) and 164 compounds as small molecules 

perturbagens. We obtained 33 mRNA expression signatures (one for each cancer type) by 

applying a differential expression analysis to samples with high mRNAsi and low mRNAsi, 

using the function TCGAanalyze_DEA from the the R/Bioconductor package 

TCGAbiolinks version 2.5.9 (Colaprico et al., 2016), carrying edgeR pipeline. The table 

with differentially expressed genes is reported as Table S3. Due to a limitation of the 

Connectivity Map tool that matches gene symbol and HG-U133A probe set (eg 

200800_s_at) GPL96 platform ID, we had to remove duplicate IDs after sorting by 

decreasing |logFC|. We selected the top 1000 genes (500 up regulated and 500 

downregulated) where the number of differentially expressed genes was enough or 

considering the aggregation of up-regulated or down-regulated genes.

Connectivity MAP is a method similar to GSEA analysis and follows a 4 step approach: (i) 

looking for similarity between a query signature (diff.expr. genes) and expression profiles 

present in the dataset using pattern-matching strategy based on Kolmogorov-Smirnov test 

(ii) rank-ordering the list of genes according their diff.expr. relative to the control from the 

above expression profiles with significantly similarity (iii) comparison of each rank-ordered 

list with a query signature to specify when up-regulated query genes appear in the proximity 

of the top of the list or near the bottom (“positive connectivity”) or vice versa (“negative 

connectivity”) producing an Enrichment Score (ES) from −1 to 1. (iv) All instances in the 

database are then ranked according to their connectivity scores; those at the top are most 

strongly correlated to the query signature, and those at the bottom are most strongly 

anticorrelated.

For each cancer type we obtained two tables that applied the Connectivity Map’s findings to 

stemness mRNA expression signatures, namely, “detailed results” and “permuted results”. 
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We used the permuted results and filter (with p < 0.05), to identify an average of 74 

compounds per tumor type that are predicted to repress or activate the stemness signature 

(Table S4A).

Connectivity Map (CMap) was recently updated (September 2017) (Subramanian et al., 

2017), providing the end-users new functionalities and new graphical interface as web-

server, previous registration (https://clue.io/) allowing easily the extraction of drug-

interaction knowledge using as input a signature of genes or compounds.

The new interface (https://clue.io/), provided 7 different analysis (query, touchstone, 

proteomics query, command, data library, repurposing, morpheus).

In particular CMap Query it is a tool for perturbagens that give rise to similar (or opposing) 

expression signatures, for a technical limit, the CMap Query 2017 allows only to upload 150 

genes max for up-regulated genes and 150 genes for down-regulated genes. For this reason 

we considered the results analysed in May 2017 using 500 genes for up-down regulated 

genes.

STATISTICAL ANALYSIS

R version 3.3.1 was used for all statistical analyses, unless specified otherwise. The 

statistical details of all experiments are reported in the figure legends and figures, including 

statistical analysis performed, statistical significance and exact n values.

To identify differentially methylated DNA methylation probes, we used the Wilcoxon test 

followed by multiple testing using the Benjamini-Hochberg (BH) method to estimate false 

discovery rate (Benjamini and Hochberg, 1995).

To identify proteins and microRNAs differentially expressed between tumors with low vs. 

high stemness index, we used a t-test followed by multiple testing using BH.

P values for the association between stemness index and continuous clinical data were also 

computed using a t-test followed by multiple testing using BH.

DATA AND SOFTWARE AVAILABILITY

All data are available on the NIH Genomic Data Commons (GDC), https://gdc.cancer.gov/

about-data/publications/PanCanStemness-2018.

The workflow to reproduce the stemness index, including downloading PCBC and TCGA 

PanCan33 datasets, training a stemness signature, and applying it to score TCGA samples 

can be accessed at https://bioinformaticsfmrp.github.io/PanCanStem_Web/.

An interactive portal with the results for enrichment of molecular and clinical features and 

Stemness Indices across all tumor samples/types can be accessed at https://

bioinformaticsfmrp.github.io/PanCanStem_Web/ where the user can search for any gene or 

molecular/clinical feature of interest.
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Refer to Web version on PubMed Central for supplementary material.
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ADDITIONAL RESOURCES - Abbreviations of the TCGA Tumor Types

ACC Adrenocortical carcinoma

AML Acute myeloid leukemia

BLCA Bladder urothelial carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

DLBC Lymphoid neoplasm diffuse large B-cell lymphoma
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ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and neck squamous cell carcinoma

KICH Kidney chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LGG Brain lower grade glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MESO Mesothelioma

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and paraganglioma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC Sarcoma

SKCM Skin cutaneous melanoma

STAD Stomach adenocarcinoma

TGCT Testicular germ cell tumors

THCA Thyroid carcinoma

THYM Thymoma

UCEC Uterine corpus endometrial carcinoma

UCS Uterine carcinosarcoma

UVM Uveal melanoma
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HIGHLIGHTS

• Epigenetic and expression-based stemness indices measure oncogenic 

dedifferentiation

• Immune microenvironment content and PD-L1 levels associate with stemness 

indices

• Stemness index is increased in metastatic tumors and reveals intratumor 

heterogeneity

• Applying stemness indices reveals potential drug targets for anti-cancer 

therapies

Malta et al. Page 30

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Development and validation of the Stemness Indices
(A) Overall methodology. Highlighted are data sources Progenitor Cell Biology Consortium 

(PCBC), Roadmap and ENCODE databases, OCLR machine learning algorithm, and the 

resulting stemness indices mRNAsi, mDNAsi and EREG-mRNAsi. The indices for each 

TCGA tumor sample were correlated with known cancer biology, tumor pathology, clinical 

information, and drug sensitivity.

(B) Stemness indices of the validation set derived using our stemness signature.

(C) TCGA tumor types sorted by the stemness indices obtained from transcriptomic 

(mRNAsi) and epigenetic features (mDNAsi); indices were scaled from 0 (low) to 1 (high). 

The TCGA tumor types were grouped based on their histology and cell-of-origin into stem 

cell-like (SC), lympho-hematopoietic (Ly-Hem), Adenocarcinomas, Squamous Cell 
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Carcinomas (Squamous), Neuronal lineage (Neuronal), Sarcomas (Sar), Kidney tumors 

(Kidney), and not belonging to any of the above (Misc) (Table S2).

See also Figures S1 and S2; and Tables S1 and S2.
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Figure 2. Biological processes associated with cancer stemness
(A) Gene Set Enrichment Analysis showing RNAseq-based stemness signature evaluated in 

the context of gene sets representative for Hallmarks of Stemness and Cancer.

(B) Correlation between mRNAsi and mRNA expression for published hallmarks of 

stemness.

(C) Correlation between mRNAsi and selected oncogenic processes.

(D) Association between the epigenomic-based stemness signature (EREG-mDNAsi and 

EREG-mRNAsi) and enrichment in the transcription factor binding sites.

See also Figure S2 and Table S2.
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Figure 3. Molecular and clinical features associated with stemness in breast cancer, acute 
myeloid leukemia, and gliomas
(A) An overview of the association between known molecular and biological processes and 

stemness in BRCA (Left). Columns represent samples sorted by mRNAsi from low to high 

(top row). Rows represent molecular and biological processes associated with mRNAsi. 

Rows named “EDec CEp 2 and 4” represent estimated cell type proportions. Top right, 

boxplots of mRNAsi in individual samples, stratified by molecular subtype and histology. 

Bottom right, correlation of mRNAsi and representative protein expression and microRNA.
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(B) Similar to A, association of mRNAsi in AML. Top right, mRNAsi by mRNA-based 

molecular subtype and by FAB classification. Bottom right, correlation scores of mRNAsi 

and representative microRNA.

(C) As in A and B, GBM and LGG sorted by mDNAsi. Top right, mDNAsi by molecular 

subtype and grade. Bottom right, correlation scores of mDNAsi and representative protein 

expression and microRNA. All molecular and clinical features shown are statistically 

significant.

See also Figures S1, S3, S4, and S5.
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Figure 4. Selected molecular and clinical features associated with the Stemness Indices in TCGA 
tumors
(A) Association of molecular and clinical features with stemness in LUAD. Top, mDNAsi 

by integrative molecular subtypes, smoking history, and mutations of TP53 and SETD2. 

Bottom, correlation scores of mDNAsi and representative protein expression.

(B) Stemness in HNSC. Top, mDNAsi stratified by molecular subtypes and mutation of 

NSD1. Bottom, correlation scores of mDNAsi and representative protein and microRNA 

expression.
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(C) Stemness in LIHC. Top, mRNAsi stratified by grade and mutations of TP53, CTNNB1, 

and AXIN1. Bottom, correlation scores of mRNAsi and representative protein and 

microRNA expression.

(D) Stemness in ACC. Top, mRNAsi stratified by mRNA molecular subtypes, clinical stage, 

and mutations of PRKAR1A and TP53. Bottom, correlation scores of mRNAsi and adrenal 

differentiation score.

(E) Cox proportional hazards model analysis. Left, progression-free survival; right, overall 

survival. Hazard ratio greater than one denotes a trend toward higher stemness index with 

worse outcome.

See also Figures S3, S4, and S5.
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Figure 5. Analysis of cancer stemness in the context of metastatic state and intratumor 
heterogeneity
(A) mRNAsi is higher in cancer metastases in comparison to the TCGA primary tumors.

(B) mDNAsi is higher in recurrent glioma samples compared to the primary glioma 

occurrence from the same patient. G-CIMP - glioma CpG methylator phenotype.

(C) and (D) Application of mRNAsi to single-cell transcriptome of gliomas and breast 

cancer reveal intratumor heterogeneity and various degrees of the oncogenic 

dedifferentiation. (E) Correlation of mRNAsi and mRNA expression of CDH1 (epithelial 

marker) and CDH2 (mesenchymal marker) in the cancer metastases.
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Figure 6. Association of stemness index with immune microenvironment
(A) mDNAsi and mRNAsi in the context of immune microenvironment. Each panel shows 

the Spearman correlation between the stemness index and PD-L1 protein expression plotted 

against Spearman correlation between the same stemness index and total leukocyte fraction, 

as estimated from DNA methylation data.

(B) Highlight of tumor types that exhibit strong correlation between stemness and PD-L1 

expression or total leukocyte fraction. See also Figure S6.
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Figure 7. Correlation of cancer stemness with drug resistance – Connectivity map analysis
(A) Heatmap showing enrichment score (positive in blue, negative in red) of each compound 

from the CMap for each cancer type. Compounds sorted from right to left by descending 

number of cancer type significantly enriched.

(B) Heatmap showing each compound (perturbagen) from the CMap that share Mechanism 

of actions (rows). Sorted by descending number of compound with shared mechanism of 

actions.

See also Figure S7 and Tables S3 and S4.
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