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ABSTRACT
In yeast, Tom22, the central component of the TOMM (translocase of outer mitochondrial membrane)
receptor complex, is responsible for the recognition and translocation of synthesized mitochondrial
precursor proteins, and its protein kinase CK2-dependent phosphorylation is mandatory for TOMM
complex biogenesis and proper mitochondrial protein import. In mammals, the biological function of
protein kinase CSNK2/CK2 remains vastly elusive and it is unknown whether CSNK2-dependent
phosphorylation of TOMM protein subunits has a similar role as that in yeast. To address this issue, we
used a skeletal muscle-specific Csnk2b/Ck2b-conditional knockout (cKO) mouse model. Phenotypically,
these skeletal muscle Csnk2b cKO mice showed reduced muscle strength and abnormal metabolic activity
of mainly oxidative muscle fibers, which point towards mitochondrial dysfunction. Enzymatically, active
muscle lysates from skeletal muscle Csnk2b cKO mice phosphorylate murine TOMM22, the mammalian
ortholog of yeast Tom22, to a lower extent than lysates prepared from controls. Mechanistically, CSNK2-
mediated phosphorylation of TOMM22 changes its binding affinity for mitochondrial precursor proteins.
However, in contrast to yeast, mitochondrial protein import seems not to be affected in vitro using
mitochondria isolated from muscles of skeletal muscle Csnk2b cKO mice. PINK1, a mitochondrial health
sensor that undergoes constitutive import under physiological conditions, accumulates within skeletal
muscle Csnk2b cKO fibers and labels abnormal mitochondria for removal by mitophagy as demonstrated
by the appearance of mitochondria-containing autophagosomes through electron microscopy. Mitophagy
can be normalized by either introduction of a phosphomimetic TOMM22 mutant in cultured myotubes, or
by in vivo electroporation of phosphomimetic Tomm22 into muscles of mice. Importantly, transfection of
the phosphomimetic Tomm22 mutant in muscle cells with ablated Csnk2b restored their oxygen
consumption rate comparable to wild-type levels. In sum, our data show that mammalian CSNK2-
dependent phosphorylation of TOMM22 is a critical switch for mitophagy and reveal CSNK2-dependent
physiological implications on metabolism, muscle integrity and behavior.

List of abbreviations: ACTB: actin beta; ACTN2: actinin alpha 2; Atg32: Yeast mitochondrial outer
membrane protein required to initiate mitophagy; Atp2: yeast beta subunit of the F1 sector of
mitochondrial F1Fo ATP synthase; CMAP: compound muscle action potential; Cox4: subunit IV of yeast
cytochrome c oxidase; BCL2L13: BCL2 like 13; BECN1: Beclin 1; BN-PAGE: blue native polyacrylamide gel
electrophoresis; BNIP3: BCL2 interacting protein 3; BNIP3L: BCL2 interacting protein 3 like; CSNK1: casein
kinase 1; CSNK2: casein kinase 2; CSNK2A1: casein kinase 2 alpha 1; CSNK2A2: casein kinase 2 alpha 2;
CSNK2B: casein kinase 2 beta; FACS: fluorescence-activated cell sorting; FUNDC1: FUN14 domain containing
1; GFP: green fluorescent protein; GST: glutathione S-transferase; FCCP: carbonyl cyanide p-
trifluoromethoxypheny-?lhydrazone; FDB: flexor digitorum brevis; GSK3B: glycogen synthase kinase 3 beta;
HSA-Cre: reflects reporter mice which use the human ACTA1 (actin, alpha 1, skeletal muscle) promoter 5’ in
front of the bacterial cre recombinase gene; IMM: inner membrane of mitochondria; LAMP2: lysosomal
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associated membrane protein 2; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; Mdh1: yeast
mitochondrial malate dehydrogenase 1; MDH2: malate dehydrogenase 2; mEPC: miniature end plate current;
MFN2: mitofusin 2; NDUFA10: NADH:ubiquinone oxidoreductase subunit A10; NLS: nuclear localization signal;
NMJ: neuromuscular junction; OCR: oxygen consumption rate; OMM: outer membrane of mitochondria;
OPTN: optineurin; PARL: presenilin associated rhomboid like; PD: Parkinson disease; PECAM1: platelet and
endothelial cell adhesion molecule 1; PINK1: PTEN induced putative kinase 1; PKA: cAMP-dependent protein
kinase A; PRKN/PARK2: parkin RBR E3 ubiquitin protein ligase; qPCR: quantitative PCR; RFP: red fluorescent
protein; RT: reverse transcriptase; SDHA: succinate dehydrogenase complex flavoprotein subunit A; SDS-
PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; shRNA: short hairpin RNA; SLC25A4/5/
31: solute carrier family 25 member 4/5/31; SQSTM1: sequestosome 1; TMRM: tetramethyl rhodamine methyl
ester; TOMM: translocase of outer mitochondrial membrane; TOMM20: translocase of outer mitochondrial
membrane 20; TOMM22: translocase of outer mitochondrial membrane 22; TOMM40: translocase of outer
mitochondrial membrane 40; TOMM70: translocase of outer mitochondrial membrane 70; TUNEL: TdT-
mediated dUTP-biotin nick end labeling; VDAC1/2/3: voltage dependent anion channel 1/2/3.

Introduction

Mitochondria are specialized organelles that supply the cells
with energy, play important roles in different metabolic path-
ways, contribute to the maintenance of ion concentrations and
regulate apoptosis.1 The vast majority of mitochondrial pro-
teins is encoded by nuclear DNA and has to be translocated
from the cytosol into the mitochondria. The import of nearly
all mitochondrial proteins requires a preprotein translocase of
the outer mitochondrial membrane (TOMM complex).2 Upon
interaction of typical precursor proteins with the TOMM
receptors, precursor proteins are transferred to the central
receptor TOMM22, which acts in cooperation with TOMM20,
and subsequently to the import channel TOMM40.3,4 Adjacent
to TOMM20 and TOMM22, there is a third receptor,
TOMM70, which is mainly required for the import of non-
cleavable hydrophobic precursors, like the metabolite carriers
of the inner membrane.5–7 After passing through the TOMM
complex, the precursor proteins use different machineries to
reach their functional destination in the 4 mitochondrial sub-
compartments: outer membrane of mitochondria (OMM),
intermembrane space, inner membrane of mitochondria
(IMM), and mitochondrial matrix.3,4,8 In yeast, it has recently
been reported that protein kinase CK2/casein kinase 2 (in
mammals CSNK2) constitutively phosphorylates the receptor
Tom22 at S44 and S46, an event which is critical for the biogen-
esis of further TOMM subunits and promotes mitochondrial
protein import.9,10 Up to now, nothing is known about
CSNK2-dependent TOMM22 phosphorylation in mammals.
Unfortunately, the finding in yeast does not help to understand
whether CSNK2-dependent TOMM22 phosphorylation occurs
in mice because mouse and yeast TOMM22/Tom22 primary
structures show only approx. 25% identity, and mouse
TOMM22 does not contain the CSNK2-target sites S44 and
S46, as in yeast.

Dysfunction of mitochondria causes fragmentation of the
mitochondrial network and might induce mitophagy, a specific
type of autophagy.2,11 Aberrant mitochondrial quality control
has been linked to cellular abnormalities and cell death. Genetic
findings support causal contribution of mitochondrial dysfunc-
tion to Parkinson disease (PD).12–17 Among the mutated genes
in familial PD are PRKN/Parkin (Park2 in mice) and PINK1
(PTEN induced putative kinase 1).15–19 PINK1, which is par-
tially imported into mitochondria, and PARK2, an E3 ubiquitin
ligase that localizes to the cytosol, both are involved in selective

clearance of damaged mitochondria.20,21 In healthy cells, full-
length PINK1 (65 kDa) inserts into the IMM with its
presequence in a membrane potential-dependent manner.
Thereafter, PINK1 is processed by the protease PARL, that
cleaves within the transmembrane segment and generates a
destabilizing amino terminus, followed by degradation of
cleaved PINK1 (53 kDa) by the ubiquitin-proteasome sys-
tem.22–25 Hence, under physiological conditions the protein
level of PINK1 in cells is extremely low. Dissipation of the inner
membrane potential of damaged mitochondria leads to an
accumulation of PINK1 (65 kDa) at the OMM. PINK1 is then
neither sequestered into the IMM, nor processed, but it remains
on the OMM where it is stabilized by TOMM7,26 and recruits
PRKN/PARK2, which induces mitophagy.27 Recently, it has
been reported that PINK1 activates PRKN/PARK2 by phos-
phorylation of ubiquitin.28,29 Then PRKN/PARK2 ubiquitinates
outer mitochondrial membrane proteins and thereby labels
damaged mitochondria for removal.2 PINK1, like almost all
mitochondrial proteins, is synthesized in the cytosol as a pre-
protein, targeted to the surface of the organelle, and then trans-
located across the OMM utilizing the TOMM complex.30–32

Previously, it has been found that for the membrane-potential
dependent import of PINK1 into the mitochondria the import
receptor TOMM70, but not TOMM40, is used.23 Others
reported that PINK1 can be crosslinked with TOMM20.33

Altogether, it is still a matter of debate what protein PINK1
binds to on OMMs.26,33

The protein kinase CSNK2/CK2 is a tetramer composed of 2
catalytically active a- and 2 b-subunits, and is important for
cell proliferation, differentiation, and survival.34 Previously, we
have shown that CSNK2 binds, and in some cases also phos-
phorylates, several protein members at neuromuscular junc-
tions (NMJs) of mice and thereby stabilizes the postsynaptic
apparatus.35,36 In the absence of the b-subunit of CSNK2,
CSNK2B, in skeletal muscle fibers, mice develop an age-depen-
dent muscle weakness and a decrease of grip strength.35

Here, we asked whether CSNK2 phosphorylates TOMM22
in skeletal muscle fibers of mice and whether this influences
mitochondrial physiology. We show that (1) CSNK2 phosphor-
ylates TOMM22 at serine 15 and threonine 43, (2) CSNK2-
dependent TOMM22 phosphorylation is not involved in the
regulation of mitochondrial protein import in vitro, (3) skeletal
muscles from skeletal muscle Csnk2b cKO mice contain dys-
functional mitochondria, and (4) PINK1, PRKN/PARK2,
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MFN2 (mitofusin 2), OPTN (optineurin) and SQSTM1/p62 are
involved in the removal of impaired mitochondria. Ablation of
Csnk2b in skeletal muscle fibers leads to a significant increase
of cytosolic SQSTM1-associated aggregates which returned to
normal values after introduction of phosphomimetic TOMM22
mutants into muscle fibers in vivo. Importantly, (1) transfec-
tion of the inactive TOMM22 mutant, TOMM22S15A,T43A, in
muscle cells correlates with the appearance of SQSTM1-associ-
ated aggregates in comparison with transfection of wild-type
TOMM22, and (2) transfection of a phosphomimetic
TOMM22 mutant into cultured muscle cells from skeletal mus-
cle Csnk2b cKO mice restored their oxygen consumption rate
comparable to wild-type levels. Altogether, CSNK2-dependent
TOMM22 phosphorylation in mice is not required for mito-
chondrial protein import, or for TOMM complex biogenesis.
CSNK2-dependent phosphorylation of TOMM22 in mice
rather appears to regulate mitochondrial homeostasis through
mitophagy.

Results

The ablation of Csnk2b in skeletal muscle fibers of mice
results in impaired muscle histology, increased number of
central nuclei and apoptotic cells

Previously, we have shown that protein kinase CSNK2 inter-
acts with, and in some cases phosphorylates, several proteins
of neuromuscular junctions (NMJ).35,36 Thereby, CSNK2
appears to ensure proper maintenance of CHRN (cholinergic
receptor nicotinic) aggregates at the postsynaptic apparatus of
NMJs.35 In our in vivo model conditional deletion of Csnk2b
in striated skeletal muscle fibers was achieved by use of a Cre
driver mouse using the human ACTA1 (actin, alpha 1, skeletal
muscle) promoter (previously denominated HSA-Cre
mouse).37,38 Muscle-specific homozygous conditional knock-
out (cKO) csnk2b mice (csnk2bΔ/Δ, HSA-Cre), in comparison
with control mice of the same litter (Csnk2b+/Δ, HSA-Cre),
have less grip strength and their postsynaptic endplates cover
the full spectrum from almost nonfragmented to heavily frag-
mented patterns.35 No difference was detected between wild-
type (Csnk2b+/+) and heterozygous mice with one deleted
Csnk2b allele (Csnk2b+/Δ, HSA-Cre) or mice with floxed
Csnk2b alleles (Csnk2b+/loxP, Csnk2bloxP/loxP), arguing against
any haploinsufficiency.35 In this manuscript, control mice
(Csnk2b+/loxP, Csnk2bloxP/loxP or Csnk2b+/Δ, HSA-Cre), were
compared with corresponding muscles of homozygous skele-
tal muscle cKO Csnk2b mice (csnk2bΔ/Δ, HSA-Cre) of the
same litter. Since CSNK2 is known to be ubiquitously
expressed and pleiotropic,39 we asked whether the extent of
muscle weakness in the csnk2bΔ/Δ, HSA-Cre mice only
depends on fragmented NMJs. First, we recorded neural
transmission at the NMJs of control and csnk2bΔ/Δ, HSA-Cre
mice (Fig. 1A). Previously, a reduction of the amplitude of
miniature end plate currents (mEPCs) has been observed in
the csnk2bΔ/Δ, HSA-Cre diaphragms.35 We questioned
whether this change explains the full extent of muscle weak-
ness in csnk2bΔ/Δ, HSA-Cre mice. We decided to compare
neural transmission in the csnk2bΔ/Δ, HSA-Cre and control
diaphragms in more detail by differentiating between heavily

fragmented or almost not fragmented NMJs.35 Neural trans-
mission was only affected in muscle fibers containing strongly
fragmented NMJs (» 25% of total), reflected by » 20% lower
amplitudes of mEPC (Fig. 1A).35 No significant decrease of
mEPC amplitudes was observed in the csnk2bΔ/Δ, HSA-Cre
muscle fibers that contain less fragmented NMJs (Fig. 1A).
Nerve-dependent extracellular recordings demonstrated nei-
ther a change of compound muscle action potential (CMAP)
amplitudes, nor a different CMAP decrement at 5 Hz between
control and the csnk2bΔ/Δ, HSA-Cre diaphragms (Fig. 1A).
Hence, the extent of muscle weakness of the csnk2bΔ/Δ, HSA-
Cre mice cannot solely be explained by impaired neural trans-
mission. Considering that CSNK2 accumulates at NMJs, but
is still expressed along the whole muscle fiber,35 we speculated
that CSNK2 might also have extrasynaptic targets in muscle
fibers.35,36 Towards identification of such targets, we per-
formed different histological staining to screen for changes in
the csnk2bΔ/Δ, HSA-Cre skeletal muscle fibers in comparison
with controls. We decided to analyze both, glycolytic (gastroc-
nemius, tibialis anterior), and oxidative (soleus, diaphragm)
muscles. A comparative look at hematoxylin and eosin stained
cross-sections of gastrocnemius and soleus muscles of control
and the csnk2bΔ/Δ, HSA-Cre mice (6 to 8 months old) revealed
more of reduced fiber diameters in csnk2bΔ/Δ, HSA-Cre
muscles (Fig. 1B). Cross-sections of the csnk2bΔ/Δ, HSA-Cre
muscles had a more granular appearance, interstitial fibrosis
was visible between fibers, and some fibers looked even split
(Fig. 1B). Cytochrome oxidase (COX) histochemical staining
of muscle cross sections typically labels fibers with high mito-
chondrial content, like slow fiber types (type I) or fast oxida-
tive type fibers (type IIa), with a dark color. Adult csnk2bΔ/Δ,
HSA-Cre skeletal muscle type I and IIa fibers showed a less
intense staining; especially in soleus muscle that is mainly
composed of type I and IIa muscle fiber types (Fig. 1B), indi-
cating lower mitochondrial content in the csnk2bΔ/Δ, HSA-
Cre muscle fibers. Other histological staining methods, like
the Gomori trichrome, succinate dehydrogenase and nicotin-
amide adenine dinucleotide dehydrogenase staining, of adult
control and csnk2bΔ/Δ, HSA-Cre muscle cross-sections also
pointed to a potential impairment of oxidative metabolism in
csnk2bΔ/Δ, HSA-Cre muscle fibers.40 In comparison with
adult, in young csnk2bΔ/Δ, HSA-Cre mice (30 d), histochemi-
cal staining of muscle cross-sections did not show any abnor-
malities, like changes in fiber diameter (Fig. 1B). Moreover,
skeletal muscles from adult csnk2bΔ/Δ, HSA-Cre mice con-
tained a high number of central nuclei, which indicated regen-
erative events (Fig. 1C). To find out whether the increase of
central nuclei in the csnk2bΔ/Δ, HSA-Cre skeletal muscles
pointed to degenerative changes, the number of TUNEL-posi-
tive nuclei per hind limb muscle cross-section was quantified
and turned out being significantly increased in the csnk2bΔ/Δ,
HSA-Cre compared to control muscle (Fig. 1D). To under-
stand whether the lower mitochondrial content in the
csnk2bΔ/Δ, HSA-Cre muscle fibers which was indicated by
COX staining might be indirectly influenced by muscle con-
tractile activity, voluntary walking distances of mice were
recorded but the measurements indicated no differences
between control and csnk2bΔ/Δ, HSA-Cre mice at young age
and during adulthood (Fig. 1E).
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Figure 1. csnk2bΔ/Δ, HSA-Cre muscle fibers exhibit impairment of neural transmission and morphological abnormalities. (A) The table summarizes electrophysiological
recordings of intracellular miniature endplate current (mEPC) amplitude, rise, and decay time constants at NMJs of control and csnk2bΔ/Δ, HSA-Cre mice. A statistically sig-
nificant difference was only found for mEPC amplitude of strongly fragmented, in comparison with less fragmented, NMJs of csnk2bΔ/Δ, HSA-Cre mice. No difference was
detected between less fragmented NMJs of the csnk2bΔ/Δ, HSA-Cre in comparison with NMJs of control mice. Extracellular recordings of compound muscle action poten-
tial (CMAP) and CMAP decrement (5Hz) did not reveal any changes between control and csnk2bΔ/Δ, HSA-Cre diaphragm muscles. Three mice per genotype were recorded.
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The amount and functionality of mitochondria are
affected in csnk2bΔ/Δ, HSA-Cre skeletal muscle fibers

We speculated that the diminished oxidative capacity of
csnk2bΔ/Δ, HSA-Cre muscle fibers is caused by mitochondrial
impairments. We employed different strategies to analyze
whether mitochondrial number or physiology is affected in
csnk2bΔ/Δ, HSA-Cre muscle fibers from adult 6- to 8-mo-old
mice. First, lower mitochondrial genome copy numbers were
quantified in the snk2bΔ/Δ, HSA-Cre muscles soleus and gas-
trocnemius in comparison with corresponding control muscles
(Fig. 2A). Second, a lower mitochondrial amount was detected
in the snk2bΔ/Δ, HSA-Cre, mito-EGFP compared to control
muscle with GFP labeled mitochondria (Csnk2b+/Δ, HSA-Cre,
mito-EGFP) (Fig. 2B). For this, a conditional reporter mouse
line, which contains a mitochondrially located EGFP fluores-
cent protein,41 was bred with csnk2bΔ/Δ, HSA-Cre mice. Off-
spring that inherited the EGFP allele, with control or csnk2bΔ/Δ,
HSA-Cre muscles were compared. In all muscle fibers, the
myosin signal was used as a gauge for muscle fiber volume and
detected by second harmonic generation microscopy,
and mitochondrial EGFP was imaged by 2-photon microscopy
and related to fiber volume (Fig. 2B). Third, the amount of sev-
eral endogenous mitochondrial proteins in muscle lysates from
control and csnk2bΔ/Δ, HSA-Cre mice was compared by west-
ern blot and protein bands were detected and quantified by
densitometric scanning (Fig. 2C, D). All mitochondrial protein
amounts were significantly reduced in csnk2bΔ/Δ, HSA-Cre in
comparison with control muscle cells (Fig. 2C, D). Fourth,
because lower mitochondrial activity and higher number of
central nuclei in csnk2bΔ/Δ, HSA-Cre muscles (Fig. 1B, C) might
indicate a higher vulnerability of mutant fibers, we examined
sensitivity of csnk2bΔ/Δ, HSA-Cre muscle cells towards oxida-
tive stress. Mitochondria are known to provide the energy for
most cell functions, but at the same time senescent or damaged
mitochondria influence the amount of toxic reactive oxygen
species.42 Muscle cells from neonatal limbs of wild-type or
csnk2bΔ/Δ, HSA-Cre litters were cultured, differentiated to myo-
tubes to induce cre recombinase expression, and exposed to
oxidative stress by adding hydrogen peroxide to their culture
medium. In comparison with wild-type muscle cells, csnk2bΔ/Δ,
HSA-Cre myotubes are more sensitive to a dose-dependent
increase of hydrogen peroxide as demonstrated by significantly
higher numbers of TUNEL-positive cell nuclei (Fig. 2E). Fifth,
we compared mitochondrial function in control and csnk2bΔ/Δ,
HSA-Cre muscle fibers by epifluorescence microscopy based
on the accumulation of TMRM signal and sequential addition
of the ATP synthase inhibitor oligomycin and the ionophore
carbonyl cyanide p-trifluoromethoxyphenylhydrazone
(FCCP).43 After addition of oligomycin to muscle fibers, only
damaged mitochondria fail to keep mitochondrial membrane
potential, an event that is reflected by a decrease of TMRM sig-

nal intensity. csnk2bΔ/Δ, HSA-Cre fibers from 6- to 8-mo-old
mice were not able to keep mitochondrial membrane potential
over time, unlike muscle fibers from control mice (Fig. 2F).
Next, the respiratory control rates were measured and found to
be significantly lower in mitochondria isolated from csnk2bΔ/Δ,
HSA-Cre muscles in comparison with mitochondria from con-
trols indicating a lower capacity for substrate oxidation and
ATP turnover and confirming an eventual increase in proton
leak (Fig. 2F, G). Altogether, our data suggest that number and
functionality of mitochondria are affected in csnk2bΔ/Δ, HSA-
Cre muscle fibers of adult mice of 6 to 8 mo of age.

CSNK2 phosphorylates mouse TOMM complex receptor
TOMM22

At this point, our data point to an impairment of oxidative
metabolism and mitochondrial number and functionality
(Fig. 1B, 2A to D, F, G). One reason might be impaired mito-
chondrial protein import. In fact, yeast CK1, CK2 and PKA
regulate the import and assembly of Tom22, demonstrating
that this central receptor is a target for the posttranslational
regulation of mitochondrial protein import.9,10 In yeast, CK2
constitutively phosphorylates the cytosolic precursor of Tom22
at S44 and S46.10 Strikingly, the yeast and mouse Tom22/
TOMM22 primary structures have only 24.2%, identity and
mouse TOMM22 does not contain S44 and S46, not to mention
the absence of any CSNK2 target site within the amino acid
stretch aligning with yeast Tom22 S44 and S46 (Fig. 3C). Still,
we asked whether CSNK2-dependent TOMM22 phosphoryla-
tion also occurs in mice. We performed in vitro phosphoryla-
tion assays and demonstrated that recombinant mouse
TOMM22 is phosphorylated by purified CSNK2 in vitro but
not by CSNK1 or PKA as in yeast (Fig. 3A). Moreover, phos-
phorylation of recombinant TOMM22 also occurred after incu-
bating it with control muscle lysates from 4 different mouse
hind limb muscles (Fig. 3B). On the other hand, recombinant
TOMM22 was significantly less phosphorylated using corre-
sponding muscle lysates from csnk2bΔ/Δ, HSA-Cre litter mice
(Fig. 3B). Then, we scanned the primary structure of mouse
TOMM22 to identify potential CSNK2 target motifs. Three
amino acid residues were predicted by different algorithms as
being targets of CSNK2 in mice, namely S15, T43, and S45
(Fig. 3C). We substituted all 3 residues independently by ala-
nine and subjected the resulting TOMM22 mutant proteins to
in vitro phosphorylation by recombinant CSNK2 (Fig. 3D). S15
and T43 of TOMM22 turned out to be specifically phosphory-
lated by CSNK2, but that was not the case with S45 (Fig. 3D).
Next, we confirmed phosphorylation of TOMM22 at S15 by
transfecting the T7-tagged wild-type TOMM22, and TOMM22
containing the S15A or T43A single nonphosphorylatable
mutations (TOMM22S15A or TOMM22T43A), as well as the

N = number of NMJs. (B) Representative images of hematoxylin and eosin or COX stained hind limb muscle cross sections are shown. Note, dark colored mitochondrial
rich fibers (type I and IIa) are less colored in the adult 6- to 8-month-old csnk2bΔ/Δ, HSA-Cre muscles. Moreover, the histological stainings of cross-sections of the
csnk2bΔ/Δ, HSA-Cre are of more granular appearance in comparison with controls. (C) Number of central nuclei were counted in control or csnk2bΔ/Δ, HSA-Cre gastrocne-
mius muscle cross-sections of adult 6- to 8-mo-old mice and presented as graph. N = 5 mice per genotype. (D) Quantification of the total number of TUNEL-positive nuclei
of muscle fibers of 6- to 8-mo-old mice of control or csnk2bΔ/Δ, HSA-Cre muscles soleus and gastrocnemius per muscle cross-section. N = 5 mice per genotype. (E) Volun-
tary walking distance of control and csnk2bΔ/Δ, HSA-Cre mice is shown in relation to the age of the mice. N = 5 mice per genotype. Note, differences of walking distances
between control and csnk2bΔ/Δ, HSA-Cre mice are not significant (P values >0.05).
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Figure 2. csnk2bΔ/Δ, HSA-Cre muscles possess fewer and functionally abnormal mitochondria. (A) The relative mitochondrial genome copy numbers of adult 6- to 8-mo-
old mice of control and csnk2bΔ/Δ, HSA-Cre muscles were determined by qPCR. Values were normalized to PECAM1 and are presented as relative amount of control mito-
chondrial genome copy number (control is set to 1.0). N = 3 mice per genotype. (B) A Mito-EGFP allele was introduced into csnk2bΔ/Δ, HSA-Cre mice. Fluorescence intensi-
ties of Mito-EGFP of control and csnk2bΔ/Δ, HSA-Cre diaphragm muscles from 4- to 6-mo-old mice were detected by 2-photon microscopy and related to the sum of
second-harmonic generation and Mito-EGFP signal intensities. This sum correlates with muscle fiber volume. Note, less EGFP fluorescence signal was detected in
csnk2bΔ/Δ, HSA-Cre muscles in comparison with controls which points to a lower mitochondrial amount. N = 3 mice per genotype. (C) Representative immunoblot images
of mitochondrial proteins (TOMM20, a subunit of the mitochondrial outer membrane translocase; VDAC1/2 and VDAC3 (voltage dependent anion channel 1/2/3); SLC25A
members 4/5/31 (solute carrier family 25 members 4/5/31); SDHA (succinate dehydrogenase complex flavoprotein subunit A); MDH2 (malate dehydrogenase 2) prepared
from control and csnk2bΔ/Δ, HSA-Cre soleus and tibialis anterior muscles of adult 6 to 8-mo-old mice. Histone H3 was used as a control representing a protein, which
belongs to a different organelle than mitochondria. ACTN2 was probed as loading control. (D) Protein bands shown in (C) were quantified using ImageJ, normalized to
ACTN2, and their expression was plotted relative to control (set to 1.0). N = 5 mice per genotype. Note, there is a significant reduction of mitochondrial proteins in
csnk2bΔ/Δ, HSA-Cre muscles. (E) The total number of TUNEL-positive cultured myotubes was determined after incubation of the cells with increasing amounts of hydrogen
peroxide. Graph shows a comparison between wild-type and csnk2bΔ/Δ, HSA-Cre TUNEL-positive cells. (F) Mitochondrial membrane potential was measured in isolated
fibers from old flexor digitorum brevis muscles of adult 6 to 8-mo-old mice of control and csnk2bΔ/Δ, HSA-Cre mice. Fibers were isolated, placed in cell culture, and loaded
with TMRM. TMRM accumulates in the mitochondria that are able to maintain mitochondrial membrane potential. Oligomycin and the protonophore FCCP were added at
the indicated time points. TMRM staining was monitored in at least 10 fibers per genotype. N = 3 mice per genotype. Note, mitochondria from csnk2bΔ/Δ, HSA-Cre mice
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combined TOMM22S15A,T43A nonphosphorylatable mutations,
individually into cultured cells, preparing cell lysates, and ana-
lyzing phosphorylation of TOMM22 S15 with a TOMM22-
phosphoserine-15 -specific antibody by western blot (Fig. 3E).
Previously, ablation of Csnk2b in muscle fibers has been associ-
ated with both, higher CSNK2 catalytic activity, and impaired
phosphorylation of a CSNK2 target protein,35 arguing that
changed protein amounts of subunits CSNK2A1 or CSNK2A2
in muscles might indicate affected phosphorylation pattern.
We asked whether the absence of Csnk2b has any effect on the
endogenous protein amount of the catalytic activity-containing
subunits CSNK2A1 or CSNK2A2 in csnk2bΔ/Δ, HSA-Cre mus-
cle (Fig. 3F). By western blots, csnk2bΔ/Δ, HSA-Cre soleus and
tibialis anterior muscle lysates showed different patterns for
CSNK2A subunits; CSNK2B was in both muscles not detect-
able (Fig. 3F to H). Interestingly, csnk2bΔ/Δ, HSA-Cre soleus in
comparison with control muscle lysates, regardless whether
from approximately 2- or 6- to 8-mo-old adult mice, contained
significantly less CSNK2A2 protein, (Fig. 3F). Soleus muscles
from mice (6 to 8 mo) possess more CSNK2A1, but less
CSNK2A2 protein levels, in csnk2bΔ/Δ, HSA-Cre compared to
controls (Fig. 3F, G). In the csnk2bΔ/Δ, HSA-Cre tibialis anterior
in young and old mice significantly more CSNK2A1, but less
CSNK2A2 protein levels were detected in comparison with
controls (Fig. 3F, H).

Neither mitochondrial protein import, nor TOMM complex
biogenesis is impaired in mitochondria isolated from
Csnk2b ablated skeletal muscles

After we showed that CSNK2 phosphorylates TOMM22, we
expected to detect impairments of mitochondrial protein
import and TOMM complex biogenesis in mice similar to
yeast.9 We examined mitochondrial protein import by moni-
toring the fate of 3 different radiolabeled yeast mitochondrial
precursor proteins, Cox4, Mdh1, and Atp2, after incubation
with isolated functional mitochondria from adult control and
csnk2bΔ/Δ, HSA-Cre muscles (Fig. 3I). To our surprise, mito-
chondrial protein import was not affected by the absence of
Csnk2b (Fig. 3I).

In yeast, TOM complex biogenesis was also impaired in the
absence of CK2.9 Accordingly, we looked for TOMM complex
biogenesis in mice by analyzing the amount of different
TOMM complex protein members, TOMM20, TOMM22, and
TOMM40 (Fig. 3J). To this end, we analyzed the TOMM
complex from mitochondria of skeletal muscles of 2 and 6 to 8-
mo-old wild-type or csnk2bΔ/Δ, HSA-Cre mice by blue native
polyacrylamide gel electrophoresis (BN-PAGE) upon solubili-
zation of mitochondria with Triton X-100 and compared the
amount of specific TOMM proteins within the native TOMM
complex by western blot (Fig. 3J). We did not detect any differ-
ence of protein band intensities for TOMM proteins 20, 22,
and 40, between mitochondria originating from wild-type or
csnk2bΔ/Δ, HSA-Cre muscles (Fig. 3J).

Removal of mitochondria in csnk2bΔ/Δ, HSA-Cremuscle
fibers occurred by autophagy

Our data indicate that protein homeostasis in mitochondria of
csnk2bΔ/Δ, HSA-Cre muscle fibers from adult 6 to 8-mo-old
mice is affected (Fig. 2C, D). We asked whether in the csnk2bΔ/
Δ, HSA-Cre fibers defective mitochondria are selectively
degraded by autophagy, a process termed mitophagy. This
might explain the lower amount of mitochondrial proteins in
csnk2bΔ/Δ, HSA-Cre muscle lysates from adult mice in compari-
son with controls (Fig. 2C, D). A marker for mitophagy,
PINK1, is imported through the TOMM complex in healthy
mitochondria and known to bind to the OMM of damaged
mitochondria.44 We analyzed whether PINK1 is involved in
labeling of mitochondria in csnk2bΔ/Δ, HSA-Cre muscle cells.
In fact, we observed an accumulation of the full-length PINK1
(65 kDa) in csnk2bΔ/Δ, HSA-Cre compared with control
muscles, indicating that PINK1 labeled mitochondria for
removal in csnk2bΔ/Δ, HSA-Cre muscle fibers (Fig. 4A, B).
Accordingly, the amount of the processed PINK1 (53 kDa) was
reduced in csnk2bΔ/Δ, HSA-Cre muscles (Fig. 4A, B). So far it is
unclear, to which of the TOMM receptors PINK1 binds.23,33

Here, recombinant GST-tagged PINK1 was expressed in bacte-
ria, purified, and used to pull down TOMM20, TOMM22,
TOMM70, or TOMM40 (Fig. 4C). Importantly, PINK1 pulled
down all of these TOMM proteins, albeit to a lower extent even
TOMM40 (Fig. 4C). Regarding its topology, PINK1 has a pre-
dicted mitochondrial targeting signal (MTS) at its amino-ter-
minal end, a transmembrane (TM) domain in its central part,
and a kinase domain (KD) at its carboxy terminus.45 Mapping
the interacting epitopes of PINK1, we detected only its mito-
chondrial targeting signal (MTS) interacting with TOMM22
protein (Fig. 4D). We used PINK1-MTS to analyze its binding
to different TOMM22 variants. We wondered whether the
interaction between PINK1 and TOMM22 is influenced by the
phosphorylation status of TOMM22 S15 and T43, as these resi-
dues are part of the cytosolic domain of TOMM22 and phos-
phorylated by CSNK2 (Fig. 3D). In fact, wild-type TOMM22
and TOMM22S15A,T43A bound similar amounts, while the phos-
phomimetic TOMM22 mutants bound almost 4-fold more
PINK1 (Fig. 4E, F).

Removal of mitochondria in csnk2bΔ/Δ, HSA-Cre muscle
fibers might be monitored by several key mitophagy markers.
As known, the dissipation of the mitochondrial membrane
potential and labeling of impaired mitochondria by PINK1 and
PRKN/PARK2 ensures ubiquitination of mitochondrial outer
membrane proteins, like MFN2.2 Significantly higher amounts
of MFN2, PARK2, and ubiquitinated MFN2, were detected in
diaphragm muscle protein lysates of csnk2bΔ/Δ, HSA-Cre com-
pared with control 6 to 8-mo-old littermates (Fig. 5A). During
autophagy, autophagosomes engulf cytoplasmic components,
including cytosolic proteins and organelles. MAP1LC3B/LC3B
(microtubule associated protein 1 light chain 3 beta) is involved
during autophagosome formation and recruited to phagophore

were not able to hold inner mitochondrial membrane potential, like control mitochondria. (G) Isolated mitochondria from control and csnk2bΔ/Δ, HSA-Cre muscles were
used to measure oxygen consumption after incubation with the indicated substrates and inhibitors, and calculate respiratory control rates which are summarized by the
graph. N = 6 mice per genotype. Note, mitochondria of csnk2bΔ/Δ, HSA-Cre mice show lower respiratory control rates in comparison with mitochondria isolated from con-
trol muscles.
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Figure 3. CSNK2 phosphorylates TOMM22 and the absence of Csnk2b compromises CSNK2 catalytical activity and protein amount, but neither is required for TOMM com-
plex biogenesis nor mitochondrial protein import. (A) Mouse TOMM22 was purified and used for in vitro radio-isotope-assisted phosphorylation with different kinases. The
image of the autoradiogram shows that mouse TOMM22 was only phosphorylated in the presence of protein kinase CSNK2 and is not phosphorylated by any of the other
kinases used. The amount of histidine-tagged TOMM22 served as loading control. (B) In vitro radio-isotope-assisted phosphorylation of TOMM22 is less efficient by muscle
lysates of csnk2bΔ/Δ, HSA-Cre mice in comparison with muscles of control litters. The amount of recombinant TOMM22 was adjusted by measuring the total protein
amount and verified by Coomassie-stained SDS-PAGE. (C) Alignment of mouse and yeast TOMM22/Tom22 primary structure stretches. Potential mouse TOMM22
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membranes.46 MAP1LC3B exists in 2 forms, the nonlipidated
form I and the lipidated form II, the latter is anchored in phag-
ophore and autophagosomal membranes. Here, we analyzed
both MAP1LC3B forms and detected more of them in
csnk2bΔ/Δ, HSA-Cre in comparison with control muscles

(Fig. 5B). In accordance with these MAP1LC3B data, signifi-
cantly higher BECN1/Beclin 1 amounts, a marker for localization
of autophagic proteins to phagophores,47 were detected in
csnk2bΔ/Δ, HSA-Cre soleus muscle lysates (Fig. 5B). Yet another
mitophagy marker family, BNIP3 (BCL2 interacting protein 3)

phosphosites in comparison with phosphosites in yeast Tom22 are depicted by asterisks. The panel also depicts kinase prediction scores for mouse phosphosites serine 15,
threonine 43 and serine 45, obtained as potential CSNK2 target sites with ScanSite 3, Disphos 1.3, NetPhosK 1.0 and NetPhos 2. The target sequence of CSNK2 is known to
be represented by [S-X-X-(D/E/pS/pY)].39 (D) In vitro phosphorylation experiments were performed with purified mouse TOMM22 wild-type protein and its alanine
mutants together with recombinant CSNK2 using radiolabeled ATP. (E) T7 tagged TOMM22 wild-type and alanine-mutant expression plasmids were transfected into cul-
tured cells, protein lysates immunprecipitated by a T7-specific antibody, precipitates were resolved by SDS-PAGE, and western blot membranes incubated with either a
T7 or a TOMM22-p-S15-specific antibody. Note, the TOMM22-p-S15-specific antibody detects wild-type TOMM22, but not the TOMM22S15A or TOMM22S15A,T43A mutants.
(F) The amount of catalytic activity-containing CSNK2A1 and CSNK2A2 subunits was determined in the absence of Csnk2b in skeletal muscle fiber lysates. Skeletal muscles
soleus and tibialis anterior were used from approximately 2- (n = 3 mice per genotype) and 6- to 8-mo-old (n = 3 mice per genotype) mice. Obviously, CSNK2B protein is
absent in csnk2bΔ/Δ, HSA-Cre muscle lysates. ACTN2 served as loading control. (G and H) Graphs represent protein amounts of CSNK2 subunits which were analyzed
before by western blot (F). Note, in response to the absence of Csnk2b, protein amounts of CSNK2A1 and CSNK2A2 subunits are delicately balanced and seem to be
adjusted in a muscle-type specific manner. (I) To determine the capacity of mitochondria for importing precursor proteins the in organello import assay with radiolabeled
precursor proteins was used.72 [35S]-radiolabeled yeast proteins Cox4, Mdh1 and Atp2 were individually imported into mitochondria (Dc, membrane potential). Mito-
chondria were treated with proteinase K and analyzed by SDS-PAGE. p, precursor; m, mature. Import into mitochondria after the longest import time was set to 100%
(control). Note, all mitochondrial precursor (p) proteins are imported into mitochondria and processed to shorter mature (m) size with similar time kinetic between control
and the csnk2bΔ/Δ, HSA-Cre indicating mitochondrial protein import in vitro being unaffected. (J) Mitochondria were isolated from skeletal muscles of adult wild-type or
csnk2bΔ/Δ, HSA-Cre mice and equal amounts of native TOMM complexes were resolved by blue-native gels (BN) which are used to separate native protein complexes.
After western blot, different TOMM family members within native TOMM complexes were detected by specific antibodies as shown by representative images. The amount
of these TOMM family members is similar between TOMM complexes from mitochondria of wild-type or csnk2bΔ/Δ, HSA-Cre muscles, indicating proper biogenesis of
TOMM complexes.

Figure 4. PINK1 accumulates as a full-length 65-kDa protein in csnk2bΔ/Δ, HSA-Cre diaphragms and preferentially binds to phosphomimetic TOMM22. (A) Representative
immunoblot images showing that diaphragms of csnk2bΔ/Δ, HSA-Cre mice in comparison with controls contain less of processed PINK1 (53 kDa) and more of the full-
length PINK1 (65 kDa). (B) Protein levels of unprocessed and processed PINK1 as shown in (A) were quantified by ImageJ and normalized to ACTN2. N = 3 mice per geno-
type. SDS-PAGE and western blot was repeated 3 to 5 times per protein lysate. (C) Representative western blot membrane images demonstrated interaction of PINK1
with all TOMM receptors, TOMM20, 22, 70, and the import channel TOMM40. GFP-T7 was used as a negative control. (D) Western blot membrane image demonstrated
that the mitochondrial targeting sequence (MTS, spanning the area from amino acid 1 to 94) of PINK1 interacts with TOMM22. (E) Representative TOMM22 immunoblot
images of GST affinity isolations. GST-PINK1-MTS was utilized to affinity isolate individually wild-type, inactive alanine- or phosphomimetic-TOMM22 mutants. Note,
TOMM22S15D,T43D or TOMM22S15E,T43E bound significantly stronger to PINK1-MTS in comparison with wild-type TOMM22 or TOMM22S15A,T43A. N = 3 independent experi-
ments. (F) Protein levels of wild-type and mutant TOMM22 as shown in (E) were quantified using ImageJ, normalized to 1/10 input. Note, PINK1 bound significantly more
phosphomimetic TOMM22, than wild-type or alanine-mutant TOMM22 proteins.
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and BNIP3L (BCL2 interacting protein 3 like), are proteins
involved in induction of cell death and autophagy.48 Indeed,
BNIP3 levels were increased in csnk2bΔ/Δ, HSA-Cre soleus
muscles (Fig. 5B). We also found SQSTM1, an autophagic recep-
tor protein which is a well-known substrate of the autophagy-
lysosome system, to be increased in muscles of csnk2bΔ/Δ, HSA-
Cre mice (Fig. 5B). The increased amounts of these markers in
csnk2bΔ/Δ, HSA-Cre mice fed ad libitum suggested an impaired
autophagy eventually due to a block of the autophagic flux. Ubiq-
uitin is phosphorylated at S65 by PINK1 to activate PRKN/
PARK2.28,29 By analyzing muscle lysates of control and csnk2bΔ/Δ,
HSA-Cre mice significant higher amount of phospho-S65 ubiqui-
tinated proteins were detected in csnk2bΔ/Δ, HSA-Cre lysates
(Fig. 5C). To further focus on PINK1- and PARK2-mediated
autophagy mitochondria were isolated from skeletal muscles of
adult control and csnk2bΔ/Δ, HSA-Cre mice, lysed, and analyzed
by SDS-PAGE and western blot (Fig. 5D, E). Accumulated

amounts of PARK2, the mitophagy receptor OPTN, and
SQSTM1 were detected and quantified in mitochondria which
were isolated from the csnk2bΔ/Δ, HSA-Cre (Fig. 5D, E). It is
known that mitochondria sustaining damage, accompanied by
loss of membrane potential, accumulate PINK1 on their outer
membrane rather than import and proteolyse PINK1. In this con-
text, a 700-kDa PINK1 complex was previously reported.33 We
analyzed the 700-kDa PINK1-complex formation in mitochon-
dria isolated from skeletal muscles of control and csnk2bΔ/Δ,
HSA-Cre mice. BN-PAGE immunoblot analysis demon-
strated significantly more PINK1 accumulated on the outer
membrane of mitochondria (700-kDa PINK1 complex) iso-
lated from csnk2bΔ/Δ, HSA-Cre muscles (Fig. 5F). Taken
together, these results reveal that endogenous imported
PINK1 accumulates into a 700-kDa PINK1 complex on the
outer membrane of mitochondria which were isolated from
adult 6- to 8-mo-old csnk2bΔ/Δ, HSA-Cre mice.

Figure 5. Mitochondria from csnk2bΔ/Δ, HSA-Cre muscles display impaired mitophagy and accumulation of endogenous and radiolabeled PINK1 at mitochondrial outer
membranes. (A) Representative immunoblot images of muscle lysates after immunoprecipitation of MFN2, SDS-PAGE, and western blot are shown. Note, more ubiquiti-
nated MFN2 was detected in csnk2bΔ/Δ, HSA-Cre diaphragm, and more PARK2 coprecipitated with MFN2 from csnk2bΔ/Δ, HSA-Cre muscle lysates. (B) Representative
immunoblot images of muscle lysates from control and csnk2bΔ/Δ, HSA-Cre mice probed with antibodies labeling proteins implicated in autophagy, are shown. (C) Phos-
pho-S65-ubiquitinated proteins from diaphragm muscle lysates from control and csnk2bΔ/Δ, HSA-Cre mice were immunoprecipitated with a phospho-S65-ubiquitin-reac-
tive antibody. The representative immunoblot image shows higher amounts of phospho-S65 ubiquitinated proteins in muscle lysates from csnk2bΔ/Δ, HSA-Cre mice in
comparison with control controls. (D) Mitochondria were isolated from skeletal muscle, lysed and subjected to immunoblot analysis. Cytosolic lysates served as controls,
are shown on the same blots, and demonstrate the quality of the mitochondrial fraction. Note, these data confirm the increase of 65-kDa PINK1 in csnk2bΔ/Δ, HSA-Cre like
shown in Fig. 4A where whole diaphragm lysates instead of isolated mitochondria were used. (E) Quantifications of immunoblots, like the representative one shown in
(D). N = 3 mice per genotype. Note, isolated mitochondria of csnk2bΔ/Δ, HSA-Cre muscles possess more of the 65 kDa PINK1, PARK2, OPTN, and SQSTM1. (F) Immunoblot
analysis of PINK1 isolated from mitochondria and resolved by BN-PAGE. Note, significantly higher amounts of PINK1 are part of a quaternary 700-kDa PINK1 complex in
mitochondria isolated from csnk2bΔ/Δ, HSA-Cre muscle.
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Autophagic flux is blocked in skeletal muscle Csnk2b cKO
muscles

Autophagy is also detectable by formation of SQSTM1-associ-
ated cytosolic aggregates.49,50 To find out whether csnk2bΔ/Δ,
HSA-Cre muscle cells contain aggregates associated with
SQSTM1, we immunostained frozen muscle cross sections of
oxidative soleus and glycolytic tibialis anterior muscles of adult
6- to 8-month-old control and csnk2bΔ/Δ, HSA-Cre mice with a
SQSTM1-reactive antibody (Fig. 6A). SQSTM1-associated
aggregates were significantly accumulated in the cytosol of
csnk2bΔ/Δ, HSA-Cre muscle cells (Fig. 6A, B). Additional evi-
dence for the occurrence of mitophagy in csnk2bΔ/Δ, HSA-Cre
in comparison with control muscle fibers was supported by
colocalization of the markers SQSTM1 with TOMM20 on cross
sectioned muscle fibers (Fig. S1). The occurrence of mitophagy
in the absence of Csnk2b in muscle fibers was further confirmed
by electron microscopy (Fig. 6C). Autophagosomes containing
mitochondria were accumulated in csnk2bΔ/Δ, HSA-Cre muscle
fibers in comparison with controls (Fig. 6C). In fact, in both
csnk2bΔ/Δ, HSA-Cre soleus and extensor digitorum longus
muscles, the number of autophagosomes that contained mito-
chondria was significantly higher compared to controls
(Fig. 6D). Further, mitochondria were rarely localized in lyso-
somes of csnk2bΔ/Δ, HSA-Cre muscle fibers by detecting coloc-
alization of LAMP2 (lysosomal-associated membrane protein
2) with TOMM20 by immunofluorescence staining of muscle
cross sections (Fig. S1).

To monitor mitophagy-driven entry of damaged mitochon-
dria into autolysosomes and their degradation, we used a mito-
chondrial targeted Keima (mt-mKEIMA) fluorescent protein
which is sensitive to low pH and resistant to degradation by
lysosomal hydrolases. Mt-mKEIMA fluoresces green at neutral
pH in the cytosol, and red upon entry into acidic autolyso-
somes.51 Importantly, electroporation of a plasmid encoding
mt-mKEIMA into flexor digitorum brevis muscles of control
and csnk2bΔ/Δ, HSA-Cre mice revealed a significant decrease of
mitophagy flux in csnk2bΔ/Δ, HSA-Cre muscle fibers thereby
indicating a block of autophagy flux (Fig. 6E). To understand
more about the mitophagy in csnk2bΔ/Δ, HSA-Cre muscles, we
decided to apply established paradigms, starvation and colchi-
cine treatment to control and csnk2bΔ/Δ, HSA-Cre mice. First,
we starved control and csnk2bΔ/Δ, HSA-Cre mice for 24 h, a
well-characterized stimulus able to induce the formation of
autophagosomes in muscles.52 Fasting prompted autophago-
some formation reflected by higher amounts of MAP1LC3B-II
in control and, even more, in csnk2bΔ/Δ, HSA-Cre muscles
which is more evident after normalization to ACTN2 (actinin
alpha 2) and presentation of MAP1LC3B protein amounts by a
graph (Fig. 6F, G). We assessed variations in protein amounts
of SQSTM1 in the fed condition and during fasting (Fig. 6F,
G).49,50 The increase of SQSTM1 in soleus muscle of fed
CSNK2 mutant mice mirrored MAP1LC3B-I and -II levels,
while in the glycolytic tibialis muscle an increase of SQSTM1
was not detectable (Fig. 6F, G). In csnk2bΔ/Δ, HSA-Cre muscles
after starvation MAP1LC3B-I levels significantly decrease
pointing to an increase of autophagosome formation (Fig. 6F,
G). Second, we treated mice with colchicine, a drug that blocks
the fusion of the autophagosome with the lysosome and

thereby prevents the degradation of the autophagosome con-
tents, including MAP1LC3B.53 Mitochondria were isolated
from 3 different mice per genotype and analyzed by SDS-
PAGE and western blot for autophagy markers, MAP1LC3B-II,
SQSTM1, and mitophagy marker PRKN/PARK2 (Fig. 6H, I).
Colchicine treatment led to a marked increase in MAP1LC3B-
II in isolated mitochondria of control and csnk2bΔ/Δ, HSA-Cre
mice, while SQSTM1 levels in mitochondria isolated from
csnk2bΔ/Δ, HSA-Cre mice were comparably high, like in colchi-
cine-treated control and did not further change upon treat-
ment, indicating a block of autophagy flux (Fig. 6H, I).

Phosphomimetic TOMM22 expression in skeletal muscle
Csnk2b cKO muscle cells rescues mitochondrial protein
amounts, restores oxygen consumption rates, and
diminishes the number of SQSTM1-associated aggregates

In order to confirm the role of CSNK2-dependent mouse
TOMM22 phosphorylation for mitochondrial homeostasis in
vivo, we asked whether the introduction of phosphomimetic
TOMM22 in csnk2bΔ/Δ, HSA-Cre muscle might reduce the
number of SQSTM1-associated aggregates. At the same time,
the expression of endogenous Tomm22 in the same muscle cells
was knocked down by appropriate shRNAs complementary to
Tomm22 3’-UTR (Fig. S2A). The efficiency of Tomm22 knock-
down was measured with the help of a reporter plasmid, which
was generated for this purpose and contained a luciferase gene
fused to Tomm22 3’-UTR (Fig. S2A). Accordingly, decreased
luciferase activity reflects the efficiency of Tomm22 knockdown
(Fig. S2A). Additionally, we electroporated a CMV-driven
Tomm22-T7 expression plasmid. After electroporation of this
plasmid together with the shRNA-containing plasmid (Fig.
S2A, no. 2), the expression of Tomm22-T7 was still detectable
in hind limb muscle fibers (Fig. S2B). Next, a Tomm22-specific
shRNA was electroporated together with a Tomm22 expression
plasmid into the soleus muscle of mice. The electroporated
areas of muscle fibers were detected by coelectroporation of a
RFP-nls plasmid, which stained the nuclei of transfected cells
(Fig. 7A). Electroporation of a wild-type Tomm22 expression
plasmid into soleus muscle did not change the number of
SQSTM1-associated aggregates (Fig. 7A). However, electropo-
ration of the phosphomimetic TOMM22 protein did not
change SQSTM1 immunostaining pattern in control, but sig-
nificantly reduced number of SQSTM1-associated aggregates in
csnk2bΔ/Δ, HSA-Cre soleus muscle (Fig. 7A, B).

Vice versa, we would now expect that transfection of inac-
tive TOMM22S15A,T43A should result in the increase of
SQSTM1-associated aggregates in muscle cells. To this end, we
cultured C2C12 cells and transfected them with shRNA to
knockdown endogenous wild-type TOMM22 expression, and
with an expression plasmid encoding either wild-type or inac-
tive TOMM22 (Fig. 7C). Importantly, only after transfection of
a plasmid encoding inactive, not wild-type, TOMM22 a signifi-
cant increase of SQSTM1-associated aggregates was observed
(Fig. 7C, D).

We asked whether phosphomimetic TOMM22 mutant pro-
tein is able to rescue the reduction of mitochondrial protein
amount in csnk2bΔ/Δ, HSA-Cre muscle cells. Primary myoblasts
were isolated from skeletal muscle tissue of control and
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Figure 6. A block of mitophagy flux is involved in the accumulation of SQSTM1-associated cytosolic aggregates in csnk2bΔ/Δ, HSA-Cre muscles of adult mice. (A) Represen-
tative images of SQSTM1-immunostained soleus and tibialis anterior muscle cross-sections. High-resolution images of individual muscle fibers are shown on the right.
Note, a higher number of SQSTM1-associated accumulations in cross-sectioned csnk2bΔ/Δ, HSA-Cre muscle fibers were visible. N = 3 mice per genotype. (B) Graph shows
the quantification of grey sum fluorescence intensities of SQSTM1-immunostained cross-sections using ImageJ. (C) Representative electron microscopy images of
csnk2bΔ/Δ, HSA-Cre muscle fibers showing autophagosomes containing mitochondria (capital ‘M’). Mitochondria outside of vacuoles are labeled by a lowercase ‘m’.
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csnk2bΔ/Δ, HSA-Cre mice, cultured, differentiated to myotubes,
lysed, and monitored for expression of several mitochondrial
proteins by SDS-PAGE and western blot (Fig. 7E). Differentia-
tion of myoblast to myotubes was maintained for more than
10 days to ensure induction of HSA-Cre recombinase in cul-
tured cells (data not shown). By comparison with control mus-
cle cells, the amount of mitochondrial proteins was reduced in
csnk2bΔ/Δ, HSA-Cre myotubes (Fig. 7E, F, 2C). After transfec-
tion of cultured myoblasts with phosphomimetic, but not wild-
type, Tomm22 expression plasmid in csnk2bΔ/Δ, HSA-Cre cells
and differentiation to myotubes no reduction of mitochondrial
proteins in csnk2bΔ/Δ, HSA-Cre myotubes was observed
(Fig. 7E, F).

Finally, we asked whether oxygen consumption rates
(OCRs) are changed in muscle cells depending on whether they
express wild-type, inactive, or phosphomimetic TOMM22 pro-
teins; together with a GFP plasmid. First, OCRs from trans-
fected and FACS sorted C2C12 cells were measured and
compared depending on whether transfected expression
plasmids encode wild-type TOMM22 or an inactive
TOMM22S15A,T43A. OCRs were increased in C2C12 cells
expressing TOMM22S15A,T43A in comparison with wild-type
TOMM22 (Fig. 7G). Second, OCRs were measured using cul-
tured primary muscle cells from wild-type or csnk2bΔ/Δ, HSA-
Cre mice (Fig. 7H). csnk2bΔ/Δ, HSA-Cre muscle cells were also
transfected with expression plasmids encoding either wild-type
or the double-mutant, phosphomimetic TOMM22S15E,T43E.
Additionally, all primary cultured muscle cells were cotrans-
fected with GFP- and ubiquitous Cre- recombinase expressing
plasmids prior to FACS sort. Importantly, while csnk2bΔ/Δ,
HSA-Cre cells in comparison with the wild-type control
showed the same OCR profile like C2C12 cells transfected with
TOMM22S15A,T43A (Fig. 7G, H), csnk2bΔ/Δ, HSA-Cre cells OCR
profile was restored and similar to wild-type cells by expression
of phosphomimetic TOMM22 (Fig. 7H).

Altogether, introduction of phosphomimetic TOMM22 into
csnk2bΔ/Δ, HSA-Cre muscle cells rescues both the increased
number of SQSTM1-associated aggregates, the reduction of
mitochondrial protein markers back to the physiological levels
detected in control muscle cells, and their OCR profile.

Discussion

Previously, protein kinase CSNK2 has been identified as being
crucial for the maintenance of NMJs.35,36 Both subunits of
CSNK2 holoenzyme bind several protein members at NMJs
and some of them are phosphorylated by CSNK2 catalytical
activity.35,36 CSNK2 likely contributes to the maintenance of
pretzel-shaped aggregated nicotinic acetylcholine receptors in

adult skeletal muscles of mice.35,36 In the absence of Csnk2b in
skeletal muscles, mice lose muscle grip strength in an age-
dependent manner and neuromuscular junctions are frag-
mented.35 But the severity and extent of muscle weakness of
conditional muscle-specific Csnk2b knockout mice cannot be
solely explained by impaired neural transmission because
electrophysiological measurements detected small changes by
recording strongly fragmented NMJs (Fig. 1A). Histological
and functional studies of the csnk2bΔ/Δ, HSA-Cre mice demon-
strated changes of oxidative metabolism (Fig. 1B, 2F, G, 7G,
H).40 COX staining showed that oxidative fibers were less
intensely colored (Fig. 1B) and we wondered whether a muscle
fiber type switch might have occurred in csnk2bΔ/Δ, HSA-Cre
muscles. We stained muscles of soleus or tibialis anterior from
control and csnk2bΔ/Δ, HSA-Cre mice with different marker
proteins, but did not detect any fiber type change, neither by
myosin heavy chain isoform composition, nor by using anti-
bodies that are specific for different troponins (unpublished
data). Accordingly, an extensive fiber type switch in csnk2bΔ/Δ,
HSA-Cre muscles was unlikely.

Alternatively, less contractile activity might be the reason for
the lower amount of mitochondria, but we failed to detect dif-
ferences in voluntary walking distances between control and
csnk2bΔ/Δ, HSA-Cre mice arguing against changes of contractile
activity (Fig. 1E). Still, the amount of mitochondrial DNA and
proteins were reduced in csnk2bΔ/Δ, HSA-Cre muscles of adult
6 to 8-mo-old mice (Fig. 2A to D). In addition, mitochondria
of csnk2bΔ/Δ, HSA-Cre muscle cells were functionally compro-
mised and unable to hold mitochondrial membrane potential
after inhibiting their ATP synthase with oligomycin thereby
blocking the generation of new ATP, and displayed lower respi-
ratory control rates (Fig. 2F, G). Further evidence for dysfunc-
tional mitochondria in csnk2bΔ/Δ, HSA-Cre muscles was
provided by seahorse experiments demonstrating changes of
oxygen consumption rates (Fig. 7H) and higher proton leak
(data not shown). Of course, respiratory control rates and oxy-
gen consumption rates are not comparable, the former refers to
the respiratory control ratio (state 3/state 4), while the latter
serves like an indicator for mitochondrial respiration. Both
strategies confirmed proton leak as demonstrated by inability
of csnk2bΔ/Δ, HSA-Cre fibers to hold mitochondrial membrane
potential after inhibiting their ATP synthase with oligomycin
(Fig. 2F, G, 7H). In fact, our data indicate that in some heavily
impaired muscle fibers in csnk2bΔ/Δ, HSA-Cre muscles mito-
chondrial ATP synthase might function in reverse mode to
ensure proper mitochondrial membrane potential, like it is
reported in other mitochondrial pathologies.54,55

Generally, CSNK2 is known to phosphorylate many differ-
ent proteins in cells.39 Intriguingly, CK2 plays a role in

(D) Autophagosomes were quantified in control and csnk2bΔ/Δ, HSA-Cre muscle fibers and are represented as a graph. N = 3 mice per genotype; 5 to 10 fibers were used
for quantification for each of the muscles. Data are presented as mean § s.e.m. (E) Flux of mitophagy was analyzed by electroporation of a reporter plasmid (mt-mKEIMA)
into flexor digitorum brevis muscles of adult control and csnk2bΔ/Δ, HSA-Cre mice, changes of fluorescent spectra were detected and summarized by the presented graph.
(F) Representative immunoblot images of muscle lysates from fed and starved adult 6- to 8-month-old control and csnk2bΔ/Δ, HSA-Cre mice. After SDS-PAGE and western
blot, membranes were probed with antibodies labeling proteins implicated in autophagy, namely MAP1LC3B and SQSTM1. (G) Quantification of protein bands as seen in
(F) using Image J. For normalization, ACTN2 was used. N = 3 mice per genotype. (H) Representative immunoblot images of mitochondria isolated from muscles from 3 dif-
ferent mice per genotype after colchicine treatment. After SDS-PAGE and western blot, membranes were probed with antibodies labeling proteins implicated in autoph-
agy, namely MAP1LC3B-II, SQSTM1, and PARK2. Note, the increased amount of PARK2 refers to impaired mitophagy in csnk2bΔ/Δ, HSA-Cre muscles, while high amounts
of SQSTM1, even in the absence of colchicine, indicate a block of mitophagy flux. (I) Quantification of protein bands as seen in (H) by ImageJ. VDAC1/2 served as a loading
control.
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Figure 7. Phosphomimetic and inactive TOMM22 proteins correlate with the number of SQSTM1-associated accumulations and oxygen consumption rates in Csnk2b
ablated muscle cells. (A) Representative images of SQSTM1 immunostain of longitudinal sections of soleus muscle which were electroporated in vivo with phosphomi-
metic TOMM22 and shRNA transcribing plasmids to knockdown endogenous Tomm22. Note, a higher number of SQSTM1-associated accumulations was visible in
csnk2bΔ/Δ, HSA-Cre soleus muscle fibers. This number decreased in csnk2bΔ/Δ, HSA-Cre muscle fibers which were electroporated with a phosphomimetic TOMM22 mutant
(TOMM22S15E,T43E); but not after electroporation with wild-type TOMM22. Contemporary electroporation of an RFP-nuclear localization signal (nls) expression plasmid
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mitochondrial protein import and TOM complex biogenesis in
yeast by constitutively phosphorylating the main mitochondrial
import receptor Tom22 at S44 and S46.9,10 We wondered
whether CSNK2 plays a similar role in mice, like in yeast,
regarding mitochondrial biology of skeletal muscle fibers. In
fact, alignment of yeast and mouse Tom22/TOMM22 primary
structures does not allow functional correlations, because the
degree of identity is only »25% between these Tom22/
TOMM22 proteins (Fig. 3C). Further, mouse TOMM22 does
not possess serine residues at positions S44 and S46, like yeast
Tom22 (Fig. 3C). Different algorithms predicted amino acid
residues S15 and T43 as CSNK2 targets within mouse
TOMM22 primary structure. We showed that recombinant
mouse TOMM22 was phosphorylated (1) by CSNK2 in vitro
(Fig. 3A), (2) by skeletal muscle lysates of control mice, but not
by csnk2bΔ/Δ, HSA-Cre muscle lysates (Fig. 3B), and (3) at S15
in lysates of cultured cells (Fig. 3E). Previously, we observed an
increased catalytical CSNK2 activity by incubating a CSNK2-
specific target peptide with csnk2bΔ/Δ, HSA-Cre muscle
lysates.35 However, both in mutants and wild-type skeletal
muscles, CSNK2 activity declined with age.35 It has been specu-
lated whether CSNK2B recruits CSNK2A1 to its target proteins
to be phosphorylated.35 Importantly, we now show that protein
amounts of CSNK2A1 and CSNK2A2 are modulated in a mus-
cle-type specific pattern in the absence of Csnk2b (Fig. 3F to
H). Our data indicate that a changed CSNK2 protein amount
correlates with different phosphorylation of CSNK2 targets.

Interestingly and in agreement with our data on phosphory-
lation of TOMM22 in mice, S15 was reported being both phos-
phorylated by phosphoproteomic studies, and a potential target
of CSNK2.56 Furthermore, quantitative phosphoproteomics
studies suggest that the phosphorylation of S15 may be modu-
lated when cells are treated with inhibitors of CSNK2 (D. Litch-
field and A.J. Rabalski, unpublished data).

Obviously, we first supposed that CSNK2-dependent phos-
phorylation of TOMM22 might have similar roles as those in
yeast, regulating TOMM complex biogenesis and mitochon-
drial protein import.9,10 But at second glance, Tom22 in yeast is
also phosphorylated by CK1/CSNK1, and to lower degree by
mammalian GSK3B and PRKACA/PKA, neither CK1 nor PKA
are able to phosphorylate mouse TOMM22 (Fig. 3A),9 and
might indicate different regulation of Tom22/TOMM22 in
yeast and mice. In accordance and in contradiction to the role
of CSNK2-dependent TOMM22 phosphorylation in yeast, we
demonstrated that neither TOMM complex biogenesis was

impaired, nor mitochondrial protein import affected, in
csnk2bΔ/Δ, HSA-Cre mice (Fig. 3I, J).

In Parkinson disease, PINK1 labels damaged mitochondria,
to recruit PRKN/PARK2 and direct it to ubiquitinate MFN2
and VDAC1 (voltage dependent anion channel 1), with the
consequence of increased mitophagic elimination.20 Here, lack
of CSNK2 in skeletal muscle cells changed the processing pat-
tern of PINK1 (Fig. 4A, B; 5D, E). Moreover, we show that
PINK1 interacts with all receptors (TOMM20, 22, 70) of the
TOMM complex and also with the import channel protein
TOMM40 (Fig. 4C). During mitochondrial protein import
through the OMM, upon interaction with the initial receptors
TOMM20 and TOMM70, the protein precursors designated
for mitochondrial import are transferred to the central receptor
TOMM22 and from there to the import channel TOMM40.4

Apparently, the interaction between PINK1 and TOMM40 is
less prominent, obviously because this is the import channel
and not one of the exposed receptor proteins, which are likely
required at early import steps. It is tempting to speculate that
the interaction of PINK1 with the TOMM complex initiates by
binding of PINK1 to phosphorylated TOMM22. The interac-
tion of PINK1 with TOMM20 and TOMM70 might represent
later steps during mitochondrial PINK1 protein import. Here,
we present a model where weaker binding of PINK1 to
TOMM22 eventually does not permit further steps of PINK1
protein import ending up in labeling of mitochondria for
mitophagy (Fig. 8). PINK1-labeled mitochondria were removed
by mitophagy involving typical markers, like PARK2, MFN2,
MAP1LC3B, BECN1, BNIP3, SQSTM1, OPTN (Fig. 4A, B; 5A,
B, D, E). The enrichment of MAP1LC3B-II was more promi-
nent in the soleus muscle of 6 to 8-month-old csnk2bΔ/Δ, HSA-
Cre mice (Fig. 5B), which fits to our assumption that mitochon-
dria rich fibers, like type I and type IIa muscle fibers, are more
affected in csnk2bΔ/Δ, HSA-Cre muscle cells. Further, our data
indicate an impairment of the delivery of autophagosomes to
lysosomes or autophagosome lysosome fusion in adult 6 to 8-
mo-old csnk2bΔ/Δ, HSA-Cre muscle fibers because of the higher
MAP1LC3B-II levels in comparison with controls. The addi-
tional increase of SQSTM1 levels in csnk2bΔ/Δ, HSA-Cre
muscles might reflect early or late step block of the autophagic
flux.57 Altogether, increased MAP1LC3B-II, OPTN, and
SQSTM1 protein amounts point to impairments in autophago-
somes degradation in adult csnk2bΔ/Δ, HSA-Cre muscles. The
decrease in mitophagy flux (Fig. 6F), the appearance of protein
aggregates associated with SQSTM1 (Fig. 6A, B), and the

served for identification of the electroporated muscle fiber areas. (B) Quantification of the number of SQSTM1-associated accumulations in control or csnk2bΔ/Δ, HSA-Cre
muscle cells which were electroporated with either wild-type or phosphomimetic TOMM22. N = 3 mice per genotype. Note that expression of phosphomimetic TOMM22
lowered the number of SQSTM1-associated accumulations in csnk2bΔ/Δ, HSA-Cre muscle fibers to almost wild-type levels. (C and D) Cultured C2C12 muscle cells were
transfected with shRNA to knock down endogenous Tomm22 expression and with either wild-type or inactive Tomm22 expression plasmids. Cells were then immunos-
tained for SQSTM1, DAPI and monitored for GFP expression encoded by shRNA transcribing plasmids. N = 3 independent experiments. (C). Note, the number of SQSTM1-
associated aggregates is significantly higher in muscle cells expressing TOMM22S15A,T43A in comparison with wild-type TOMM22 (C). Number of SQSTM1-associated aggre-
gates per cell was quantified and is depicted as graph (D). (E) Cultured primary muscle cells were untransfected or transfected with Tomm22 wild-type or Tomm22S15E,T43E

expression plasmids, both together with shRNA plasmid to reduce endogenous Tomm22 expression, lysed, resolved by SDS-PAGE, western blotted, and membranes were
immunostained with antibodies specific for different mitochondrial proteins. Representative images of immunostains demonstrated that the decreased mitochondrial
protein amount in csnk2bΔ/Δ, HSA-Cre muscle cells, in comparison with controls, was rescued to normal values by transfection of a phosphomimetic TOMM22 mutant. (F)
Quantification of protein bands as seen in (E) using ImageJ. All numbers were normalized to ACTN2. N = 3 independent experiments. (G) Graphs show oxygen consump-
tion rates (OCR) in C2C12 cells which were transfected with expression plasmids encoding wild-type Tomm22 or inactive Tomm22S15A,T43A, together with GFP, and FACS
sorted prior to OCR measurement by Seahorse methodology. N = 3 independent experiments. (H) OCRs measured with cultured primary muscle cells from wild-type or
csnk2bΔ/Δ, HSA-Cre mice. Cells were transfected with expression plasmids as indicated, together with a GFP expression plasmid. Like in (G), transfected cells were FACS
sorted by their fluorophore prior to Seahorse measurements. Note, constitutively expressed Cre recombinase was transfected to all cells to ensure deletion of floxed
Csnk2b in csnk2bΔ/Δ, HSA-Cre muscle cells which occurred 48 to 72 h prior to the seahorse measurements.
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increase of autophagosomes by electron microscopy (Fig. 6C,
D) confirmed a defect of the fusion of autophagosomes with
lysosomes. The decrease of mt-mKEIMA signal in csnk2bΔ/Δ,
HSA-Cre mice indicates again a block in autophagic flux or
dysfunctional lysosomes (Fig. 6E). Consistently, a higher num-
ber of autophagosomes detectable by electron microscopy usu-
ally points to a block of autophagic flux due to a failure to fuse
autophagosomes with lysosomes. In summary, ablation of
Csnk2b in skeletal muscle fibers causes autophagosome forma-
tion on mitochondria, mitophagy, but during time a suppres-
sion of autophagosome degradation. The decrease in
mitochondrial content is due to a decrease in mitochondrial
biogenesis (data not shown).

Our data might raise the question how mitophagy in
adult csnk2bΔ/Δ, HSA-Cre muscles might cause mitochon-
drial dysfunction. Elevated mitophagy solely due to PINK1
accumulation via changes in TOMM22 phosphorylation
appears insufficient to explain why the mitochondria are
dysfunctional in csnk2bΔ/Δ, HSA-Cre muscle fibers. An
alternative interpretation might be that functionally impor-
tant mitochondrial proteins, not identified in this study,
fail to import properly causing mitochondrial dysfunction.
This might additionally promote PINK1 accumulation in
adult csnk2bΔ/Δ, HSA-Cre mice. In accordance, the mito-
chondrial membrane potential deficits in csnk2bΔ/Δ, HSA-
Cre muscle (Fig 2F, G, 7H) might contribute to PINK1
accumulation.

We speculate to consider consecutive stages in csnk2bΔ/Δ,
HSA-Cre muscles. First, up to 2 or 3 mo of age, csnk2bΔ/Δ,
HSA-Cre mice do not show any phenotype (Fig. 1B).35,40 This
might be because csnk2bΔ/Δ, HSA-Cre muscle fibers are likely
obtaining functional Csnk2b by frequently occurring fusions of
existing muscle fibers with muscle satellite cells at young age.
Note, HSA-Cre recombinase in csnk2bΔ/Δ, HSA-Cre mice is
expressed in adult striated muscle fibers and embryonic striated
muscle cells of the somites and heart, and not in muscle satellite
cells.37,38,58 Second, at adulthood (6- to 8-mo of age) and due to
lack of Csnk2b, the CSNK2-dependent phosphoproteome pro-
file of skeletal muscles of csnk2bΔ/Δ, HSA-Cre mice will be
affected. Further, muscle mitophagy is not compromised by
lack of CSNK2-dependent TOMM22 phosphorylation, but the
degradation of the cargo is impaired suggesting an eventual
lysosomal dysfunction or a problem in docking of the autopha-
gosome to lysosome. Interestingly, fasting was able to reactivate
autophagy flux in tibialis anterior muscle similar to COL6 (col-
lagen type VI) muscular dystrophies (Fig. 6F, G), suggesting
that some stress conditions are able to reactivate autophagy in
csnk2bΔ/Δ, HSA-Cre muscle.59

We asked whether dysfunctional mitochondria and
impaired mitophagy due to lack of CSNK2-dependent
TOMM22 phosphorylation in csnk2bΔ/Δ, HSA-Cre muscle
fibers might be restorable by phosphomimetic TOMM22
mutants. As proof of concept, the muscular SQSTM1-associ-
ated aggregates which accumulate in the absence of Csnk2b

Figure 8. Sketch hypothesizes a mechanism for impaired mitochondrial homeostasis and mitophagy in wild type and csnk2bΔ/Δ, HSA-Cre muscle fibers. (Left) TOMM22 in
its phosphorylated state facilitates import of PINK1 into the inner mitochondrial membrane. PINK1 in the inner membrane will be degraded by PARL, but also lead via
phosphorylation of NDUFA10 to the stimulation of oxidative phosphorylation (OXPHOS) activity. Note, it remains to be determined whether PINK1 directly phosphorylates
NDUFA10. (Right) In csnk2bΔ/Δ, HSA-Cre cells, lack of phosphorylated TOMM22 impairs PINK1 import and induce PARK2-mediated mitophagy. In addition, the lack of
NDUFA10 phosphorylation will reduce OXPHOS activity and therefore lower the membrane potential of mitochondria. We speculate that accordingly loss of TOMM22
phosphorylation fosters PINK1 to accumulate on the outer membrane of mitochondria.
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disappeared after electroporation of phosphomimetic
TOMM22 into csnk2bΔ/Δ, HSA-Cre soleus muscle in vivo
(Fig. 7A, B). Importantly, the simultaneous introduction of
inactive TOMM22S15A,T43A into skeletal muscle cells and
knockdown of endogenous wild-type TOMM22 expression
induced SQSTM1-associated aggregate formation (Fig. 7C, D).
These data argue that changes of CSNK2-dependent phosphor-
ylation status of TOMM22 are involved in mitophagy; and may
be TOMM22 even plays a role in general autophagy by yet
unknown mechanisms because phosphomimetic TOMM22 is
able to rescue csnk2bΔ/Δ, HSA-Cre muscle cell phenotype (see
above). Recently, it has been shown that PINK1 loss-of-func-
tion mutations affect mitochondrial complex I activity via
NDUFA10 (NADH:ubiquinone oxidoreductase subunit
A10).60 Here, we present a model summarizing our data and
we speculate that impaired PINK1 mitochondrial import in
csnk2bΔ/Δ, HSA-Cre muscle fibers might be additionally affect-
ing mitochondrial protein import for some proteins, not inves-
tigated within this study, due to lack of PINK1-dependent
NDUFA10 phosphorylation and decreasing mitochondrial
membrane potential (Fig. 8). Interestingly, respiratory control
rates from mitochondria in the muscle fibers of csnk2bΔ/Δ,
HSA-Cre in comparison with control mice were significantly
decreased after addition of substrates glutamate and malate
entering respiratory chain via complex I, but the decrease was
less prominent after block of complex I by rotenone and addi-
tion of substrate succinate for complex II further supporting a
potential involvement of NDUFA10 (Fig. 2G, Fig. 8).

It has been reported that CK2 mediates mitophagy and
mitochondrial fragmentation in yeast by phosphorylation of
Atg32, the yeast ortholog of BCL2L13 (Bcl2-like 13) in mam-
mals,61,62 increasing complexity and offering yet another mech-
anism responsible for the control of mitophagy by CSNK2.
Even more important was the demonstration that in vitro in
HeLa cells CSNK2 phosphorylates FUNDC1 (FUN14 domain
containing 1), an important mitophagy receptor to reverse the
effect of the PGAM5 phosphatase in the activation of mitoph-
agy.63 Although these reports are very interesting, their value
for understanding of impairments in csnk2bΔ/Δ, HSA-Cre mice
remains to be investigated. Since Tom22/TOMM22 of yeast
and mice are phosphorylated at different residues and result in
different functional roles, CSNK2 might not phosphorylate
BCL2L13 at the same residues, like in mice. Importantly, nei-
ther BCL2L13 nor FUNDC1 were quantified in phosphopro-
teomic studies to identify the CSNK2-dependent
phosphoproteome (D. Litchfield and A.J. Rabalski, unpublished
data). Further experiments are required to understand whether
these findings play a role in vivo and whether FUNDC1 activity
is changed in murine csnk2bΔ/Δ, HSA-Cre muscle.

To our knowledge, this is the first study demonstrating that
in mammalian skeletal muscle cells protein kinase CSNK2 is
involved in the regulation of mitochondrial homeostasis by
being involved in the removal of damaged mitochondria
through mitophagy. Up to now, PINK1 has been mainly stud-
ied in relation with Parkinson disease in the central nervous
system. Our data presented here, might allow approaching
principal questions about the function of TOMM proteins and
PINK1 using skeletal muscle cells.

Materials and methods

Plasmids, primers, mutagenesis

Plasmids pRFP-nls or pMAX-GFP (Lonza, VPD-1001) were
used as controls for transfection. RFP-nls was cloned into
pCMV5-T7b (derivative of pCMV5 with T7 tag, D. Russell,
University of Texas Southwestern) by using NotI and EcoRI
to introduce the 3’ nuclear localization signals of RPS6/S6
ribosomal subunit, and EcoRI and NheI to place the RFP
(pDS-Red N1; Clontech Laboratories, 632429) in frame 5’
of the nuclear localization signal, similarly previously GFP-
nls was generated.64 Cloning of mouse Tomm22
(NM_172609.3) was performed by extracting RNA from
wild-type hindlimb muscle using TRIzol Reagent (Thermo
Fisher Scientific, 15596026) according to the manufacturer’s
instructions, reverse transcribed with M-MuLV Reverse
Transcriptase (New England Biolabs, M0253), amplified by
PCR (for primers see below), and cloned in EcoRV-digested
pBluescript SK+ (Agilent Technologies, 212205). After
digestion of murine wild-type Tomm22 using primer-spe-
cific restriction sites, it was recloned in pET19b (Merck,
69677). Mutations for alanine, aspartate, or glutamate sub-
stitutions of TOMM22 amino acid residues serine 15, threo-
nine 43 and serine 45 were introduced by Q5 Site-Directed
Mutagenesis Kit (New England Biolabs, E0554S). Plasmids
were transformed in E. coli bacteria NEB 5-alpha (New
England Biolabs, C2992) or Xl10-GOLD (Agilent Technolo-
gies, 200314) and extracted by alkaline lysis with Nucleo-
bond PC100 Midiprep kits (Macherey-Nagel, 740573). For
generation of GST fusion proteins, full-length mouse Vdac1
(NM_011694.4), Tomm7 (NM_025394.3), Slc25a31
(NM_178386.3), Cox5b (NM_009942.2), Mdh2
(NM_008617.2), Pink1 (NM_026880.2) and Pink1 epitopes
were amplified by PCR and cloned in pGEX 4T1 (GE
Healthcare Life Sciences, 28-9545-49). Mouse full-length
T7-tagged Tomm22 was amplified by PCR and cloned in
pcDNA3 (currently available as pcDNA3.1; ThermoFisher
Scientific, V79020). Mouse Tomm20 (NM_024214.2),
Tomm40 (NM_001109748.1) and Tomm70 (NM_138599.5)
were amplified by PCR and cloned into pCMV5 with T7
tags. To knock down gene expression of endogenous
Tomm22, 3 different shRNA were designed complementary
to 3’ UTR of mouse Tomm22 using BLOCK-iTTM RNAi
Designer (Thermo Fisher Scientific; https://rnaidesigner.ther
mofisher.com /rnaiexpress/) and subcloned in pSUPER-
neoGFP (Oligoengine, VEC-PBS-0004) using restriction
enzyme sites HindIII and BglII. To check efficiency of
knock down, full size 3’UTR of mouse Tomm22 was ampli-
fied by PCR (for primers see below) and subcloned in
pCMX pl1 luciferase at the 3’ end of the luciferase gene
using restriction enzymes XhoI and KpnI.35 For constitutive
Cre recombinase expression pPGK-Cre-bpA (addgene,
11543) was nucleofected into csnk2bΔ/Δ, HSA-Cre primary
muscle cells.

All genes and proteins names conform to the recommenda-
tions of the HUGO (human) gene nomenclature committee,
the Mouse Genome Informatics guidelines, or the SGD (yeast)
database.
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DNA preparation and qPCR

To detect relative mitochondrial copy number, total DNA
was extracted from hind limb muscles.65 Lysis of the tissue
was performed by adding the same volume of a solution
composed of 2 mg/ml proteinase K (Carl Roth, 7528.3),
0.5% sodium dodecyl sulfate (Carl Roth, CN30) and 10 mM
EDTA, and incubating at 37�C for 2 h. The genomic DNA
was precipitated with isopropanol, dissolved in H20, and
subjected to quantitative RT-PCR with mouse-specific pri-
mers as listed below.

Gene Primer sequence

mitochondrial DNA 5’-CCTATCACCCTTGCCATCAT-3’
5’-GAGGCTGTTGCTTGTGTGAC-3’

nuclear DNA (Pecam1) 5’-ATGGAAAGCCTGCCATCATG-3’
5’-TCCTTGTTGTTCAGCATCAC-3’

Tissue culture, culturing of primary muscle cells,
transfection, luciferase assay, immunocytochemistry,
oxygen consumption rate (Seahorse)

HEK 293 cells were cultured in DMEM/F-12 (Thermo Fisher
Scientific, 31331-028) with 10% fetal calf serum (FCS; Thermo
Fisher Scientific, 10270-106) and 1% penicillin/streptomycin
(Thermo Fisher Scientific, 15140-163). Cells were transfected
with 8 mg DNA, 400 ml DMEM and 30 ml 1xPEI (Sigma-
Aldrich Chemie, 408727). Forty-eight h after transfection cells
were lysed in 10 mM HEPES, 400 mM NaCl, 10 mM KCl, 1%
NP 40 (AppliChem, A1694), 0.2 mM EDTA, 2 mM DTT
(Applichem, A1101), 10 mg/ml leupeptin (AppliChem, A2183),
10 mg/ml aprotinin (Carl Roth, A162.3).

To check knockdown efficiency of Tomm22 shRNAs,
HEK293 cells extracts were prepared 48 h after transfection
and luciferase assays performed, as described previously.35

Gene Primer sequence

Slc25a31 5’-ATAGGATCCATGTCGAACGAATCCTCCAAGAAGCA-3’
5’-TATCTCGAGTTAATCTCCTGATGAACTACCTCCAACA-3’

Cox5b 5’-ATAGGATCCATGGCTTCAAGGTTACTTCGCGGAGT-3’
5’-TATCTCGAGTCAGTGGGCCATTTGGTGGGGCA-3’

Mdh2 5’-ATAGAATTCATGCTGTCCGCTCTCGCCCGTCCT-3’
5’-TATGCGGCCGCTCACTTCATGTTCTTGACAAAGT-3’

Pink1 5’-ATAGAATTCATGGCGGTGCGACAGGC-3’
5’-TATGCGGCCGCAATGGGGCTGCCCTCCAGGAA-3’

Pink1-KD 5’-ATAGAATTCGCCACCATGATCGAGGAGAAGCAGGC-3’
5’-TATGCGGCCGCAATGGGGCTGCCCTCCAGGAA-3’

Pink1-MTS 5’-ATAGAATTCATGGCGGTGCGACAGGC-3’
5’-ATAGCGGCCGCAAGCCTGCGCCGCCCCGGG-3’

Tomm7 5’-ATAGGATCCATGGTGAAGCTGAGCAAAGAAG-3’
5’-TATCTCGAGTTATCCCCAAAGTAGGCTTAAAACCG-3’

Tomm20 5’-ATAGGATCCATGGTGGGCCGGAACAGCGCCA-3’
5’-TATCTCGAGTTAACCCATTTGCTGTCCACCAGTCATGCTAGCCATTTCCACA TCATCTTCAGCCAA-3’

Tomm22-T7
wild-type

5’-ATAAAGCTTATGGCCGCCGCCGTCGCTGCAGCCGG-3’
5’ATAGGTACCTTAAGATCTACCCATTTGCTGTCCACCAGTCATGCTAGCCATCTTTCCAGGAAGTGGA-3’

Tomm22
wild-type
CD+10 His

5’-TATCCATGGCCGCCGCCGTCGCTGCAGCCGGCGCT-3’
5’-TATGGATCCTTAATGATGATGATGATGATGATGATGATGGTGGAGCGAGAGG
TCAAAGGTGGCTCC -3’

Tomm22
(S15A)

5’-GGAGCCTCTGGCCCCCGAGGAATTAC-3’
5’- CCAGCGCCGGCTGCAGCG-3’

Tomm22
(T43A)

5’-GCTAGACGAGGCCCTGTCGGA -3’
5’-TCGTCGTCGTCGTCTTCTTC -3’

Tomm22
(S45A)

5’- CGAGACCCTGGCGGAGAGACT-3’
5’-TCTAGCTCGTCGTCGTCG -3’

Tomm22
(S15D)

5’-GGAGCCTCTGGACCCCGAGGAATTACTCCCGAAAGC-3’
5’-CCAGCGCCGGCTGCAGCG-3’

Tomm22
(T43D)

5’-GTCGGAGAGACTCTGGGGTCTG-3’
5’-AGGTCCTCGTCTAGCTCGTCGTC-3’

Tomm22
(S15E)

5’-GGAGCCTCTGGAACCCGAGGAATTACTCCCGAAAGCC-3’
5’-CCAGCGCCGGCTGCAGCG-3’

Tomm22
(T43E)

5’-TGTCGGAGAGACTCTGGGGTCTG-3’
5’-GTTCCTCGTCTAGCTCGTCGTC-3’

Tomm22
shRNA 1

5’-GATCCCCGTGGGAGAACTTTGAAATTCATTCAAGAGATGAATTTCAAAGTTCTC
CCACTTTTTA-3’
5’-AGCTTAAAAAGTGGGAGAACTTTGAAATTCATCTCTTGAATGAATTTCAAAGTT CTCCCACGGG-3’

Tomm22
shRNA 2

5’-GATCCCCGCTCCTAAGGAAGTTCTTACATTCAAGAGATGTAAGAACTTCCTTAGG AGCTTTTTA -3’
5’-AGCTTAAAAAGCTCCTAAGGAAGTTCTTACATCTCTTGAATGTAAGAACTTCCTT AGGAGCGGG-3’

Tomm22
shRNA 3

5’-GATCCCCGGCTCTTAGACCTGCTTATGTTTCAAGAGAACATAAGCAGGTCTAAGA GCCTTTTTA-3’
5’-AGCTTAAAAAGGCTCTTAGACCTGCTTATGTTCTCTTGAAACATAAGCAGGTCTA AGAGCCGGG-3’

Tomm22
3’UTR

5’-ATACTCGAGATTCTTCCTTCGGTATTTGTC-3’
5’-TATGGTACCGTTCGAGTTCTTTTAATATTT-3’

Tomm40 5’-ATAGGATCCATGGGGAACGTGTTGGCTGCCA-3’
5’-TATGCGGCCGCTCAGCCGATGGTGAGGCCGA-3’

Tomm70 5’-ATAGGATCCATGGCCGCCTCTAAGCCCATAG-3’
5’-TATGCGGCCGCTTATAATGTCGGCGGTTTTA-3’

Vdac1 5’-ATAGGATCCATGGCCGTGCCTCCCACATACGCCGAT-3’
5’-TATCTCGAGTTATGCTTGAAATTCCAGTCCTA-3’
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Primary skeletal muscle cells were prepared from leg
muscles of neonatal mice. The tissue was minced with a razor
blade, dissociated with collagenase type IV (Sigma-Aldrich
Chemie, C5138) and Dispase II (Roche Diagnostics,
04942078001) in Mg2+- and Ca2+-free DPBS buffer (Thermo
Fisher Scientific, 14190). Digestion was stopped by adding FCS.
After filtering through a cell strainer (Thermo Fisher Scientific,
352350) and centrifugation at 350 x g for 10 min, cells were
resuspended in 80% Ham F10 (Ca2+-free) (PAN-Biotech, P04-
13251), 20% FCS, 1% penicillin/streptomycin, and recombinant
human FGF (fibroblast growth factor) (5 ng/ml; Promega Cor-
poration, G507A). Subsequently, cells were seeded on Matrigel-
coated plates (Thermo Fisher Scientific, CB-40234). After 24 h,
the culture medium was replaced with 40% DMEM (Thermo
Fisher Scientific, 61965), 40% Ham F10, 20% FCS, 1% penicil-
lin/streptomycin, and recombinant human FGF (5 ng/ml). For
nucleofections, 5 £ 105 primary skeletal myoblasts were used
according to the manufacturer’s instructions (Lonza, VPD-
1001). Transfection efficiency was determined after 24 h. After
primary skeletal muscle cells reached confluency their medium
was replaced for differentiation medium (98% DMEM, 2%
horse serum [Gibco, 26050-088], 1% penicillin/streptomycin).

For Seahorse experiments, EGFP-positive C2C12 and pri-
mary muscle cells were sorted 48 h after nucleofection with a
MoFlo cell sorter (Dako, Glostrup, Denmark) and kept in the
proliferation medium for another 72 h prior to the assay. Bio-
energetics of C2C12 and primary muscle cells were determined
using the XFe96 Extracellular Flux Analyzer (Seahorse Biosci-
ence/Agilent Technologies, North Billerica, MA, USA). Cells
were seeded in cell culture microplates coated with Cell-TAK
(Sigma Aldrich Chemie, DLW354240) at a density of
20,000 cells/well and adhered for 90 min. One h before the
measurement cells were incubated at 37�C in a CO2-free atmo-
sphere. For the determination of respiratory parameters basal
oxygen consumption rate (OCR, indicator for mitochondrial
respiration) was measured. Next, responses toward the subse-
quent addition of oligomycin (1 mM; Sigma Aldrich Chemie,
75351), FCCP (1 mM; Sigma Aldrich Chemie, C2920) and the
combination of antimycin A (3 mM) and rotenone (3 mM; Agi-
lent Technologies, 103015-100; XF Cell Mito Stress Test Kit)
were evaluated allowing for the calculation of basal and maxi-
mal respiration as well as proton leak.

To generate oxidative stress, primary myoblast cells from
wild-type and csnk2bΔ/Δ, HSA-Cre murine muscles were dif-
ferentiated to myotubes and treated with H2O2 for 30 min at
37�C. The number of apoptotic cells was counted after
TUNEL assays were performed with the ApopTag® Red In
Situ Apoptosis Detection Kit (Merck, S7165). Cells were fixed
in 4% paraformaldehyde for 10 min at room temperature, per-
meabilized with 0.5% Triton X-100 (Carl Roth, 3051) in PBS
(140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM
KH2PO4, pH 7.4), incubated in a solution of ethanol:acetic
acid (2:1) for 5 min at -20�C, incubated 10 sec with equilibra-
tion buffer, incubated for 1 h at 37�C with the TdT Enzyme,
and the reaction was then stopped with the Stop/Wash Buffer.
Finally, the cells were incubated overnight at 4�C with the
anti-digoxigenin-rhodamine conjugate. Next day, cells were
washed, stained with DAPI, and mounted with Mowiol
(Merck, 475904).

Mice, genotyping, tissue sections, histochemical stainings,
immunohistochemistry, fasting, autophagic flux, in vivo
electroporation

Mouse mating and genotyping were performed as described
previously.35,66 In brief, the generation of conditional knockout
Csnk2b mice and their genotyping by PCR were reported by
Buchou et al.66 Reporter mice expressing bacterial cre recombi-
nase under the control of the human skeletal actin (ACTA1)
promoter were reported by Leu et al.38 Striated muscle condi-
tional knockout Csnk2b mice were generated by introducing
HSA-Cre reporter into homozygous mice with floxed Csnk2b
alleles and genotyped by PCR as described by Cheusova et al.35

Conditional Mito-EGFP (R26R-Mito-EGFP) mice (RIKEN
Center for Developmental Biology, CDB0216K; http://www.
cdb.riken.jp/arg/reporter_mice.html) were already described.41

For histochemical and immunofluorescence analysis, all
muscles were quick-frozen in prechilled isopentane.

Muscles were cryotome-sectioned (10 mm), permeabilized
for 5 to 10 min in PBS with 0.1 to 0.3% Triton X-100, blocked
in 10% FCS, 1% BSA (Carl Roth, 8076) for 1 h. Cryotome sec-
tions were either used for histochemical or for immunofluores-
cence stainings. Sections were embedded in DPX or mowiol.

Hematoxylin and eosin staining: sections were incubated
15 min in Mayer hemalum solution (Merck, 109249), washed
10 min in tap water, dipped 6 times in a solution containing
96% ethanol and 4% HCl, 10 min in tap water, 1 min in 70%
ethanol, 2 min in Eosin (Merck, 115935), 1 min in 100 % etha-
nol. COX: Sections were incubated 60 min at 37�C in a solution
containing 50 mM phosphate buffer, pH 7.4, 3,3-di-aminoben-
zidinetetrahydrochloride (DAB; Sigma Aldrich Chemie,
D8001), catalase (20 mg/ml; Sigma Aldrich Chemie, S41168),
sucrose and CYCS/cytochrome c (Sigma-Aldrich Chemie,
C2037). Afterwards they were washed in H2O and embedded.

The following antibodies were used for staining at indicated
dilutions: anti-SQSTM1 (PROGEN Biotechnik, GP62-C;
1:500), anti-T7 (Merck, 69522; 1:1,000), anti-LAMP2 (Develop-
mental Studies Hybridoma Bank, ABL-93; 1:1,000), anti-
MYH7/slow skeletal myosin heavy chain (Abcam, clone
NOQ7.5.4D; 1:2,000). Secondary antibodies conjugated to Cy5,
Cy3, and Alexa Fluor 488 immunofluorescent dyes (Dianova,
111-165-144, 115-165-146, 112-165-143) were used for detec-
tion. Staining with the secondary antibody without previous
incubation with the primary antibody served as a negative
control.

For starvation experiments control mice had free access to
food and water while food pellets were removed for starved
mice. Autophagic flux was monitored in fed condition using
colchicine (Sigma-Aldrich Chemie, C9754) as previously
described.67 Briefly, control and csnk2bD/D HSA-Cre mice were
treated, by intraperitoneal injection, with vehicle or with
0.4 mg/kg colchicine. The treatment was administered twice, at
24 h and at 12 h before muscle dissection and isolation of
mitochondria.

In vivo electroporation was adopted to the soleus muscle,
but in principle performed as described previously.68 In brief,
the shaved skin of the left lower hind limb of the anesthetized
animal was opened at the border between anterior and poste-
rior hind limb muscles with a longitudinal cut of»1-cm length.
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The fascia was cut between the border of soleus and gastrocne-
mius muscle and an electrode was inserted below the soleus
muscle. With a 10-ml microsyringe (World Precision Instru-
ments, Nanofil), in total 5 mg of expression plasmids were
injected into the exposed soleus muscle before placing the sec-
ond electrode on top of the muscle. With an Electro Square
Porator (ECM 830; Harvard Apparatus, MA, USA), 5 unipolar
pulses with a voltage of 20 V, each with 20 ms duration and an
interval of 221 ms, were applied. The electrodes were removed,
and the wound was closed (Silkam DSM11, Braun, Melsungen,
Germany) and sterilized. Antibiotic was injected as antiinflam-
matory prevention.

Mitochondria isolation, BN PAGE, muscle protein lysates,
western blots, GST affinity isolation, immunoprecipitation,
antibodies

Mice were sacrificed and different muscles (hind limb, dia-
phragm) dissected and used for mitochondrial isolation or fro-
zen in liquid nitrogen and used later for muscle lysates
preparation and immunoblotting. For mitochondrial isolation
and BN PAGE for the members of the TOMM complex we
used previously reported protocols.69,70 Pelleted mitochondria
were solubilized in 50 ml ice-cold buffer (50 mM NaCl, 50 mM
Imidazole-HCl, 1% Triton X-100, 5% [v:v] glycerol, 2 mM 6-
aminohexanoic acid [Merck, 800145], 1 mM EDTA, pH 7.4 at
4�C) prior to addition of 5% (w:v) Coomassie Brilliant Blue G-
250 (Serva Electrophoresis, 17524). BN PAGE was performed
at 4�C using 4–13% gradient gels with 50 mg mitochondria
loaded per lane. For SDS PAGE and immunoblotting, isolated
mitochondria or muscles were homogenized in lysis buffer
(10 mM HEPES, 400 mM NaCl, 10 mM KCl, 0.2 mM EDTA,
1% NP 40, 2 mM DTT, pH 7.9) with cOmplete protease inhibi-
tors (Sigma-Aldrich Chemie, 04693116001) and phosphatase
inhibitors (Sigma-Aldrich Chemie, P5726 and P0044). Skeletal
muscle homogenates were sonicated for 10 sec and centrifuged
at 16,100 g at 4�C for 5 min. Cleared lysate was used for immu-
noblotting experiments. Aliquots of mitochondrial or muscle
lysates were solubilized in Laemmli buffer (150 mM Tris, pH
6.8, 6% SDS, 30% glycerol, 0.3% bromophenol blue, 3% ß-mer-
captoethanol), boiled at 95�C, and loaded on 8% or 10% SDS-
PAGE. Proteins were transferred to nitrocellulose membrane
(Sigma Aldrich Chemie, Protran BA 85), blocked in 5% BSA
(Carl Roth, 8076.4) or 5% nonfat dry milk (Heirler Cenovis,
3030) in PBS, 0.1% Tween20 (Carl Roth, 9127.1) for 1 h at
room temperature.

For GST affinity-isolation assay, PINK1 and its epitopes
were fused to GST and overexpressed in E. coli BL21-Codon-
Plus (DE3)-RP (Agilent Technologies, 230255). GST fusion
proteins were harvested in 50 mM NaCl, 50 mM Tris, pH 7.6,
1 mM EDTA, 10% glycerol (Carl Roth, 3783), 2 mM DTT, 10
mg/ml leupeptin (AppliChem, A2183), 10 mg/ml aprotinin
(Carl Roth, A162) and purified with GST beads (GE Healthcare
Life Sciences, 17075601). Tom20, Tom22 (wild-type or mutant
proteins), Tom40, and Tom70, all Tom proteins with T7 tag,
were overexpressed in HEK293 cells and their interaction with
recombinant GST fusion proteins was studied in 4.3 mM
Na2HPO4, 1.47 mM KH2PO4, pH 7.0, 300 mM NaCl, 2.7 mM
KCl, 1% Triton X-100.

Immunoprecipitation was done with specific antibodies for
overexpressed proteins from cell lysates or endogenous proteins
from diaphragm muscle lysates. Antibodies were incubated
with lysates overnight at 4�C. The next day, protein A or pro-
tein G Sepharose beads (GE Healthcare Bio-Sciences AB,
10009441 and 17061801) were added and incubation was con-
tinued for another 2 h. Afterwards, beads were washed 3 times,
boiled in Laemmli buffer and loaded on SDS PAGE gel.

Primary antibodies were incubated at 1:1,000 dilution or as
mentioned. Following antibodies were purchased from Cell Sig-
naling Technology: Histone H3 (4499; 1:5,000), MAP1LC3B
(2775), MDH2 (8610). Additionally used antibodies: from
Santa Cruz Biotechnology Inc.: TOMM20 (sc-11415; 1:3,000),
TOMM40 (sc-11414), SLC25A31/ANT4 (detects in mouse also
SLC25A4/ANT1, SLC25A5/ANT2) (sc-11433), PRKN/PARK2
(sc-32282); from Sigma-Aldrich Chemie; ACTN2 (A 7811;
1:10,000); from Abcam: PRKN/PARK2 (ab15954), SQSTM1
(ab56416; 1:5,000), MFN2 (ab56889; 1:5,000), VDAC1/2/3
(ab15895; 1:5,000), SDHA (ab14715; 1:20,000); from Abnova/
Biozol: TOMM22 (H00056993-M01); from Novus Biologicals:
PINK1 (BC100-494); from Proteintech: OPTN (10837-1-AP);
from Merck: anti-phospho-S65 Ubiquitin (ABS1513); from
Enzo Life Sciences: Mono- and polyubiquitinated conjugates
(FK2); from Novagen: T7 (69522; 1.10,000); anti-p-S15-AA
(generated in the lab of Dr. Michael Marber, UK); anti-
CSNK2A1 (1:500) and anti-CSNK2A2 (1:100), both generated
in the lab of Dr. Olaf-Georg Issinger (Odense, Denmark). Note,
the VDAC antibody detects all three VDAC isoforms. VDAC1/
2 show a very similar migration electrophoretic pattern and are
indistinguishable in the immunoblot. VDAC3 migrates faster
and separately detectable by with the VDAC antibody by
immunoblot.71 Corresponding secondary antibodies conju-
gated with horseradish peroxidase (Cell Signaling Technology,
7074 and 7076; 1:3,000) were used for 2 h at room temperature.
Protein bands were detected either by SuperSignal West Femto
Maximum Sensitivity Substrate (Thermo Fisher Scientific,
34095) or by homemade chemiluminescence reagent composed
of 50 mg Luminol (Sigma Aldrich Chemie, A-4685) in 200 ml
0.1 M Tris, pH 8.6, combined with 11 mg para-hydroxy-cumar-
inic acid (Sigma Aldrich Chemie, C-9008) in 10 ml DMSO. For
that, 3 ml of the first solution and 40 ml of the second solution
were mixed with 3 ml of PBS and 1.2 ml 30% H2O2. Western
Blot results were quantified by densitometric analysis using
ImageJ software (NIH, Bethesda, MD, USA; http://rsb.info.nih.
gov/ij/). The background was subtracted with rolling ball radius
1,000 pixels and disabled smoothing option. Afterwards, pro-
tein bands of interest were labeled and measured. If not
described specifically, values in mutant mice were expressed as
relative values to control mice normalized to ACTN2 and set
to 1.0.

In vitro phosphorylation assays, mitochondrial import
assay

His-tagged yeast Tom22 was purified as described,5 his-tagged
cytosolic domain of mouse TOMM22 was produced in BL21
E.coli and the bacterial pellet was lysed in 20 mM Tris/HCl, pH
7.9, 300 mM NaCl, 10 mM b-mercaptoethanol, 2 mM MgCl2,
10 mM imidazole, 2 mM phenylmethylsulfonyl fluoride with
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addition of lysozyme, DNaseI and cOmplete protease inhibitors
(Sigma Aldrich Chemie, 04693116001), and lysed using 3
freeze-thaw cycles in liquid nitrogen and pulsed sonication on
ice using a Branson sonifier (G. Heinemann Ultraschall- und
Labortechnik, model 250) (3/3/1 min at 80% duty). Filtered
lysates were incubated with Ni-NTA (QIAGEN, 30210),
washed with wash buffer (20 mM Tris-HCl, pH 7.9, 300 mM
NaCl, 10 mM b-mercaptoethanol, 10 mM imidazole) and the
bound protein was stepwise eluted with increasing amount of
imidazole in the elution buffer (20 mM Tris-HCl, pH 7.9,
300 mM NaCl, 10 mM b-mercaptoethanol, 20–300 mM imid-
azole). Elutions with high protein content were determined by
SDS-PAGE, pooled and concentrated using the Amicon filter
system (Merck, UFC201024). Using the Amicon filter, the
buffer was exchanged to contain 20 mM Tris-HCl, pH 7.2,
30 mM NaCl, 10% glycerol, and the purified proteins stored in
aliquots at ¡80�C.

Muscle lysates were adjusted with lysis buffer (10 mM
HEPES, pH 7.0, 400 mM NaCl, 10 mM KCl, 20 mM EDTA,
1% [v:v] NP 40, 2 mM DTT) to similar protein concentrations
using adsorption at 280 nm and immunoblotting and quantifi-
cation of ACTB (MultiGauge software, Fujifilm, Kleve,
Germany).

For in vitro phosphorylation 6 mg TOMM22 were incubated
with 20 ml of muscle lysate in assay buffer 20 mM Tris-HCl,
pH 7.2, 30 mM NaCl, 10% (v:v) glycerol, 1 mM phenylmethyl-
sulfonyl fluoride, 1x PhosStop (Sigma Aldrich Chemie,
04906845001) supplemented with 10 mM MgCl2 and 10 mCi
[g-33P]ATP for 30 min at 37�C. The reaction was stopped by
the addition of 4x Laemmli buffer and analyzed by SDS-PAGE,
autoradiography and western blot. Mammalian kinase
PRKACA/PKA (P6000S) was purchased from New England
Biolabs.

[35S]Methionine-labeled yeast precursor proteins (Cox4,
Mdh1, Atp2) were synthesized in rabbit reticulocyte lysate
(Promega Corporation, L4960), and levels were adjusted as
necessary. Yeast Cox4, Mdh1 and Atp2 precursor proteins
were incubated with isolated mitochondria in import buffer
(20 mM HEPES, pH 7.4, 250 mM sucrose, 80 mM potassium
acetate, 5 mM magnesium acetate, 10 mM sodium succinate)
with 5 mM ATP (Carl Roth, K054).72 Mitochondria were
washed, treated with proteinase K, and analyzed by SDS-PAGE
and digital autoradiography. Mitochondrial membrane poten-
tial was dissipated with the addition of 1 mM FCCP. Import
reactions were performed at 24�C for 60 min. For BN PAGE,
mitochondrial pellet (50 mg protein) was solubilized in 1% digi-
tonin (Sigma Aldrich Chemie, 11024-24-1) solution containing
50 mM NaCl, 10% (v:v) glycerol, 20 mM Bis-Tris (Sigma
Aldrich Chemie, B9754), pH 7.0 and loaded on 4–13% gradient
gels. Radiolabeled proteins were detected by phosphorimaging
(STORM 860, Molecular Dynamics, Ramsey, MN, USA).

Electron microscopy, fluorescence microscopy, confocal
microscopy, 2-photon-microscopy, second harmonic
generation microscopy

For electron microscopy, mice were fixed by perfusion with
2.5% glutaraldehyde in 100 mM phosphate buffer, pH 7.4. After
dissection muscles were additionally fixed in osmium tetroxide.

Muscles were then embedded in Epon (Serva Electrophoresis,
21045), stained with lead citrate and uranyl acetate. Electron
microscopy of ultrathin sections was done using a ZEISS EM 6
microscope (Carl Zeiss MicroImaging, G€ottingen, Germany).
The number of autophagic vacuoles was quantified per surface
area of a muscle fiber (200-mm fiber length and per average
20-mm fiber diameter).

For fluorescence microscopy, stained cryosections or muscle
bundles were analyzed and documented using a Zeiss Axio
Examiner Z1 microscope equipped with an AxioCam MRm
camera and software ZEISS AxioVision Release 4.8 (Carl Zeiss
MicroImaging, G€ottingen, Germany). For quantitative analysis
of SQSTM1, images of muscles were taken and analysed using
‘Automatic Measurement’. With the Command Manager a
script was created for quantitative analysis (lower threshold
level 0 and upper threshold level 1.190). Gray sum values were
quantified for each genotype as mean value of >50 images for 3
mice per genotype (no grey sum value without SQSTM1 anti-
body was detected meaning that background subtraction was
not necessary). Quantitative analysis of SQSTM1-associated
aggregates on electroporated soleus longitudinal sections was
performed by ImageJ. Electroporated muscle fiber area was
determined, image was thresholded and number of SQSTM1-
associated aggregates was calculated by the option ‘analyze par-
ticles’ of ImageJ.

For confocal microscopy, a Leica TCS-AS (Leica Microsys-
tems, Wetzlar, Germany) confocal system with an inverted DM
IRE2 microscope equipped with 2 spectral 12-bit PMT detec-
tors and Leica Confocal software (version 2.6.1, build 1537)
was used. Single muscle fibers were imaged using a multipho-
ton microscope (TriMScope II, LaVision BioTech, Bielefeld,
Germany) with a mode-locked fs-pulsed Ti:Sa-laser (Chame-
leon Vision II, Coherent, CA, USA) at 900 nm and a combina-
tion of 2 water immersion objectives (LD C-APO 40x/1.1 W
Corr M27 on the excitation side, W Plan-APO 20x/1.0 DIC
M27 on transmission side, Zeiss). The SHG signal from myo-
sin73 and EGFP signal (2PE) are separated by a band pass filter
(450/30 for SHG and 525/50 for EGFP, Semrock, NY, USA)
and detected by a nondescanned photomultiplier (H7422-40,
Hamamatsu Photonics, Hamamatsu, Japan). EGFP signal is
measured by thresholding. Image processing was performed in
MATLAB (MathWorks, Natick, MA, USA) and Fiji based on
ImageJ (NIH, Bethesda, MD, USA).

Behavioral studies, mitochondrial membrane potential,
mitophagy flux measurements

TSE ActiMot/MoTil TSE system (Bad Homburg, Germany)
was used for activity analysis as described before.74

Mitochondrial membrane potential was measured in iso-
lated fibers from flexor digitorum brevis (FDB) muscles. FDB
fibers were obtained as described previously.75,76 Mitochondrial
membrane potential was measured by epifluorescence micros-
copy based on the accumulation of tetramethyl rhodamine
methyl ester (TMRM) fluorescence as described before.54

Briefly, FDB myofibers were placed in 1 ml Tyrode buffer
(135 mM NaCl, 4 mM KCl, 1 mM CaCl2, 1 mM MgCl2,
0.33 mM KH2PO4, 10 mM glucose, 10 mM HEPES, pH 7.3,
supplemented with 0.3% collagenase type I [Sigma Aldrich

AUTOPHAGY 331



Chemie, C01030] and 0.2% BSA) and loaded with 2.5 nM
TMRM (Thermo Fisher Scientific, T668) supplemented with
1 mM cyclosporine H (a P-glycoprotein inhibitor; Enzo Life
Sciences, ALX-380-28) for 30 min at 37�C. Myofibers were
then observed using an Olympus IMT-2 inverted microscope
(Melville, NY, USA) equipped with a CellR imaging system.
Sequential images of TMRM fluorescence were acquired every
60 s with a 20 £ 0.5, UPLANSL N A objective (Olympus, Ham-
burg, Germany). At specific times, oligomycin (5 mM) or the
protonophore FCCP (4 mM) were added to the cell culture
medium. Images were acquired, stored and analysis of TMRM
fluorescence over mitochondrial regions of interest was per-
formed using ImageJ software.

Mitophagy flux was measured in isolated transfected fibers
from FDB muscles. In vivo muscle transfection was achieved
by injection with mitochondria targeted-mKeima (mt-
mKeima) (a gift from A. Miyawaki, RIKEN, Brain Science
Institute, Japan) followed by in vivo electroporation as
described earlier.76 Twelve days after transfection, FDB fibers
were obtained as described earlier.75,76 Measurements of
mt-mKeima were made using dual-excitation ratiometric meas-
urements at 488 and 561 nm lasers with 620/29 nm and 614/
20 nm emission filters, respectively.

Muscle mitochondria were isolated as described.69 Mito-
chondrial oxygen consumption was measured with a Clark-
type oxygen electrode (Hansatech Instruments, Norfolk, UK)
as described in the same protocol. Briefly, mitochondria (1 mg/
ml) were incubated in Experimental Buffer (150 mM KCl,
10 mM Tris [pH adjusted with MOPS to pH 7.4], 10 mM
EGTA-Tris, 10 mM ATP). When indicated, mitochondria were
transferred into a Clark-type oxygen electrode chamber
(Hansatech Instruments, model: Oxygraph) and 5 mM gluta-
mate-2.5 mM malate or 2 mM rotenone-10 mM succinate were
added.

Nerve-muscle preparations

Isolated diaphragm-phrenic nerve preparations were main-
tained in Liley solution (137,8 mM NaCl, 4 mM KCl, 1 mM
MgCl2, 1 mM KH2PO4, 2 mM CaCl2, 11 mM glucose) gassed
with 95% O2-5% CO2 at room temperature.77 The recording
chamber had a volume of approximately 1 ml and was perfused
at a rate of 1 ml/min. The nerve was drawn up into a suction
electrode for stimulation with pulses of 0.1 ms duration. The
preparation was placed on the stage of a Zeiss Axio Examiner
Z1 microscope fitted with incident light fluorescence illumina-
tion with filters for red (Zeiss filter set 20) fluorescing fluoro-
phore (Carl Zeiss MicroImaging, G€ottingen, Germany). At the
beginning of the experiment the compound muscle action
potential was recorded using a micropipette with a tip diameter
of ca. 10 mm, filled with bathing solution. The electrode was
positioned so that the latency of the major negative peak was
minimized. The electrode was then positioned 100 mm above
the surface of the muscle and CMAP was recorded.

Intracellular recording and data analysis

To block muscle action potentials, so that EPCs could be
recorded m-conotoxin GIIIB (m-CTX; Peptide Institute, 4217-

v; 2 mM) was added to Liley solution.78,79 CHRNs were labeled
by adding 0.5 £ 10¡8 M of rhodamine-a-bungarotoxin
(Thermo Fisher Scientific, T1175) to the same solution. In
some experiments, the effect of the toxin wore off after 1 to 2 h
and contractions resumed in response to nerve stimulation.
These preparations were then exposed a second time to the
toxin.

Two intracellular electrodes (resistance 10 to 15 MV) were
inserted within 50 mm of the NMJs under visual inspection for
rhodamine-a-bungarotoxin-labeled CHRNs.79 Current was
passed through one electrode to maintain the membrane
potential within 2 mV of -75 mV while voltage transients were
recorded with the other. Signals were amplified by an Axo-
clamp 900A and digitized at 40 kHz by a Digidata 1440A under
the control of pCLAMP 10 (Molecular Devices, Sunnyvale, CA,
USA). Voltage records were filtered at 3 kHz and current
records at 1 kHz (8-pole Bessel filter). Current transients were
recorded using the 2-electrode voltage-clamp facility of the
Axoclamp 900A. Clamp gains were usually 300 to 1,000, reduc-
ing the voltage transients to <3% of their unclamped ampli-
tudes. At most NMJs, 50 to 100 spontaneous quantal events
were recorded during a period of 1 min. Records were analyzed
using pCLAMP 10. Spontaneous events were extracted using
the ‘template search’ facility and edited by eye to remove obvi-
ous artefacts. Events recorded from each NMJ were averaged
and the amplitude, rise time and single exponential decay time
constant determined.

Statistical analysis

Data are presented as the mean values, and the error bars indi-
cate §s.e.m.. The number of biological replicates per experi-
mental variable (n) is usually n>5 or as indicated in the figure
legends. The significance is calculated by unpaired 2-tailed stu-
dent t test, or as indicated by the figure legends, and provided
as real P values that are believed to be categorized for different
significance levels, ���P <0.001, ��P <0.01, or �P <0.05.
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