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Rab proteins as major determinants of the Golgi complex structure
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ABSTRACT
GTP-ases of the Rab family (about 70 in human) are key regulators of intracellular transport and
membrane trafficking in eukaryotic cells. Remarkably, almost one third associate with membranes
of the Golgi complex and TGN (trans-Golgi network). Through interactions with a variety of effectors
that include molecular motors, tethering complexes, scaffolding proteins and lipid kinases, they
play an important role in maintaining Golgi architecture.
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Introduction

The Golgi complex is at the crossroad between the bio-
synthetic/secretory pathway and the endocytic pathway.
Although it adopts an apparently stable organization
(Golgi stacks) at the steady state, it is a highly dynamic
organelle. For instance, Golgi resident enzymes have
been proposed to recycle continuously to pre-Golgi com-
partments and the endoplasmic reticulum (ER), although
the extent of this recycling is still a matter of debate.75,83

Late Golgi and TGN membranes are, at least in part,
consumed to produce post-Golgi transport carriers. The
morphology of the Golgi at steady state thus relies on a
tightly regulated balance between membranes arriving or
leaving at its cis-side and membranes arriving or leaving
at its trans-side.

GTPases of the Rab family (about 70 members in
human) are master regulators of vesicular transport and
membrane trafficking in eukaryotic cells. By interacting
with a wide variety of effectors, that include molecular
motors, tethering complexes, scaffolding proteins and
lipid kinases, they regulate virtually all transport steps of
vesicular traffic between cell compartments, from the
biogenesis of transport carriers to their movement along
the cytoskeleton and their tethering with target mem-
branes (for reviews, see34,82). Remarkably, about one
third of known human Rabs have been found associated
with membranes at the ER/Golgi/TGN level (for review,
see.42 Since they regulate in and out as well as intra-Golgi
trafficking, Rab proteins are expected to have a major
role in Golgi architecture and maintenance, and

functional alterations of several Rabs and Rab-interact-
ing proteins, in particular Rab effectors, have been shown
to disrupt Golgi morphology (see Fig. 1 and Table 1).

Several excellent reviews have recently addressed
the role of Rab GTP-ases in Golgi organization and func-
tion.44,64,73 Our goal here is to summarize and discuss the
recent literature on this topic. We will distinguish three
groups of Rabs, those associated to the cis-side of
the Golgi complex/intermediate compartment (IC),
those associated towards the late Golgi/TGN/post-Golgi/
endosome and secretory vesicles, and those primarily
associated with Golgi membranes (“bona fide” Golgi
Rabs).

- Pre-Golgi and cis-Golgi Rabs (Rab1, Rab2,
Rab18, Rab41/Rab6d, Rab43)

The best known Rab that regulates pre-Golgi membrane
trafficking events is Rab1 (Ypt1 in yeast S. cerevisiae).
The Rab1 family comprises two isoforms with a high
degree of sequence similarity (»92 and 86%, respec-
tively), Rab1a and Rab1b. Rab1a and Rab1b have long
been thought to fulfill redundant functions but a recent
study suggests that it may not be the case as Golgi frag-
mentation induced by Rab1a siRNA cannot be rescued
by overexpression of Rab1b.1

Rab1b was originally found associated with ER and
Golgi.66 Later studies showed that Rab1a and Rab1b are
predominantly associated with membranes of the
so-called IC, an ERGIC53/p58 positive, network of
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pleomorphic membranes located between ER exit sites
(ERES) and Golgi.72 Whether IC is a transient and motile
compartment that gives rise to cis-Golgi cisternae or
whether it is a stable compartment connected by bi-
directional vesicular traffic with ER and Golgi is still a
matter of debate. Depending on the model, the functions
of Rab1 could be slightly different: in the biogenesis of
ER-derived COPII vesicles and the tethering of COPII
vesicles and/or COPII positive IC membranes with cis-
Golgi,2 or primarily in the formation of membrane
domains on the IC and of a specialized IC sub-compart-
ment next to the centrosome called pcIC (for review,
see73).

As with Ypt1p in yeast,37 Rab1, at least Rab1b,
appears also to be involved in COPI-dependent retro-
grade transport between Golgi and ER.4 Rab1 function
in this pathway could rely on its interaction with GBF1,
the exchange factor for Arf1 involved in the biogenesis
of COPI vesicles.4 Finally, Rab1 has also been shown to
be involved in intra-Golgi transport66 but this function
remains poorly characterized, in Golgi bypass path-
ways,71 in transport of melanosomes,35 and recently in
actin-based remodeling of ER and Golgi membranes
through its interaction with WHAMM.69

The pivotal role of Rab1 in bi-directional transport
between ER and Golgi explain why alteration of Rab1
function(s) has a strong effect on Golgi morphology. The

microinjection of GDP-bound form of Rab1a (S25N) or
a mutant defective in guanine nucleotide binding
(N124I) causes Golgi disassembly.96 Similar effect is
observed by overexpressing the dominant-negative forms
of Rab1a and Rab1b61,66,88 or following Rab1 depletion
by siRNA.5 Golgi collapse is also observed by overex-
pressing TBC1D20, a Rab1 GAP in vivo.32 However,
Golgi collapse following inhibition of Rab1 function is
stronger than that observed after the inhibition of the
other players of the ER to Golgi transport pathways such
as Sar1 or the tethering factor p115, a Rab1 effector.2,32

This is likely because Rab1 is not solely involved in ER to
Golgi anterograde pathway (see above). The overexpres-
sion of Rab1b was also shown to cause Golgi enlarge-
ment.67 Interestingly, this enlargement is likely due to
increased expression of genes encoding proteins involved
in membrane transport or Golgi structure, such as
GM130, GRASP65, and GRASP55.67

The role of Rab1 in the maintenance of Golgi architec-
ture has been recently confirmed by two high-content siR-
NAs-based screens. In HeLa cells, depletion of Rab1a and
Rab1b causes, similar to that of Rab2 (see below), a strong
fragmentation of the Golgi complex.25 Similar results were
obtained inHeLa-S3 cells by Aizawa and Fukuda.1

Another important player in pre-Golgi trafficking is
Rab2. Rab2 family comprises two isoforms, Rab2a and
Rab2b. As for Rab1, a recent study showed that Rab2a and

Figure 1. Illustrative shared and distinguishing traits of Golgi important Rab proteins. Rab proteins share a GTPase cycle between
nucleotide-bound, membreane associated and –free states and functional amino acid motifs colored as indicated in (A).
However, activated Rab proteins recruit distinct effectors to regulate their respective pathways (B). As indicated in (C). Rab
proteins have distinct locations with respect to the Golgi complex and vary in abundance as quantified for purified cell
fractions.8,10,13,15,17,19,21,22,28,30,39,40,41,54,56,57,58,68,76,79,86,90,93,94
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Rab2b may have non-redundant role in Golgi morphology,
which is supported by the identification of Rab2b-specific
effector, GARI-L4, involved in Golgi compaction.1

Although the precise localization of Rab2 has been
less investigated than that of Rab1, the two proteins
appear to mainly associate with similar compartments at
steady state, i.e the IC and cis-Golgi membranes (for
review, see73). Rab2 was originally found to work, like
Rab1, in the anterograde transport pathway between ER
and Golgi.88 However, later work suggested that Rab2
could primarily function in the opposite direction (Golgi
to ER). In support of this hypothesis, Rab2 was shown to
promote the formation of retrograde COPI vesicles, in
conjunction with two of its known effectors, an atypical
kinase C iota/lambda (aPKC) and glyceraldehyde-3
phosphate dehydrogenase (GAPDH).89

Evidence also exists that Rab2 plays additional roles at
the Golgi level. Active Rab2 (GTP-bound) was shown to
directly interact with golgin-45 and both proteins form a
complex with GRASP55.78 Rab2 also interacts with other
Golgins, including GCC185 and GMAP-210.33,80 Golgins
are long coiled-coil proteins that specifically localize to
cis, medial and trans Golgi membranes. An elegant
recent study by Wong and Munro97 showed that Golgins
can, like tentacles, capture in vivo transport vesicles from
different origins (ER or endosomes-derived as well as
intra-Golgi vesicles) and thus act as tethers of transport
vesicles with Golgi membranes. In addition to Rab2, Gol-
gins bind several other Rabs (see below), mostly through
their coiled-coil regions, but the significance of Rab bind-
ing remains unclear. Concerning Rab2, it was shown that
GMAP-210 recruits transport vesicles via its N-terminus
ALPS domain and that Rab2 binding occurs in the cen-
tral coiled-coil region of GMAP-210 and downstream of
vesicle tethering.74 A tentative hypothesis is that Rab2
binding promotes a conformational change of GMAP-
210, allowing the Rab2 positive transport vesicles to get
closer to the Golgi membranes. Flexibility has been
recently documented for another Golgin, GCC185.11

In contrast to Rab1, the role of Rab2 in Golgi architecture
has not been extensively investigated. However, the overex-
pression of the Rab2 GAP, TBC1D20, induces the redistri-
bution of Golgi-resident enzymes to the ER.32 Depletion of
golgin-45 disrupts the Golgi apparatus78 and GMAP-210 is
required for Golgi assembly.74 Finally, Rab2 depletion by
siRNAs was found to strongly disrupt the Golgi in the two
high-content siRNAs-based screensmentioned above.

Three other proteins, Rab18, Rab43 and Rab41/
Rab6d, have also been implicated in pre-Golgi trafficking
events. Rab43 was found associated with several mem-
branes (ER/Golgi in;14 medial Golgi in;12 TGN in.23 Sev-
eral regulatory functions have thus been attributed to
Rab43, including ER to Golgi anterograde trafficking,

perhaps through an interaction with the dynein/dynactin
complex,14 retrograde transport between endosomes and
TGN (using Shiga toxin as a marker of this pathway)23

and anterograde trafficking of a subset of membrane
cargo through the medial Golgi.12

Whatever at which steps of transport Rab43 exactly plays
a role, the alteration of its function has strong effects on
Golgi morphology. The overexpression of the dominant-
negative mutant of Rab43 (GFP-Rab43-T32N) results in the
redistribution of various Golgi/TGN markers, including
GM130, Mannosidase II and TGN46 into scattered punctae
colocalizing with ERES, a phenotype reminiscent of that
obtained upon disruption of microtubules with nocoda-
zole.14 High overexpression of GFP-Rab43 causes the frag-
mentation of ManII and giantin-positive compartments.
Fragmentation of GM-130 and TGN46 positive compart-
ments was also observed in cells overexpressing RN-tre, pro-
posed to act as a GAP (GTP-ase activating protein) for
Rab43 in vivo.32

Less information is available on Rab18 and its exact
function(s) remain(s) poorly characterized. Rab18 seems
to be predominantly associated with ER mem-
branes,14,26,47 and to lipid droplets.63

Overexpression of GFP-Rab18 or the activated
mutant Rab18 Q67L (but not GFP-Rab18S22N) causes a
redistribution of Golgi markers near ER-exit sites
(ERES) and Rab18 depletion fragments the Golgi.14

These findings support a role for Rab18 in COPI-inde-
pendent Golgi to ER transport.14 Of note, the other func-
tions attributed to Rab18 are regulation of lipid transport
and ER architecture.26,47

Rab41, also termed Rab6d,43 shares 60% similarity
with other members of the Rab6 family (80% in its cen-
tral region). Depletion of Rab41 by siRNA or the overex-
pression of the GDP-bound forms inhibit transport of
VSV-G between ER and Golgi without having an effect
on retrograde transport between endosomes and Golgi.43

Both treatments have a profound effect on the organiza-
tion of the Golgi ribbon, which is fragmented into a clus-
ter of punctate elements. This suggests a direct role of
Rab41 in Golgi architecture. Recently, three Rab41 effec-
tors were identified (dynactin 6, syntaxin 8, and Kif18A),
and depletion of two of them (dynactin 6 and syntaxin
8) give a phenotype similar to Rab41 knock-down, sug-
gesting that they are involved in Golgi organization.45

- Late Golgi/TGN and post-Golgi Rabs (Rab3,
Rab7b, Rab8, Rab9a/b, Rab10, Rab11a, Rab13,
Rab14, Rab21, Rab22b/Rab31, Rab29, Rab39a)

Many Rabs have been associated to late Golgi/TGN com-
partments. They include Rab7b, Rab8, Rab9a/b, Rab10,
Rab11a, Rab13, Rab14, Rab29, Rab31/Rab22b, and
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Rab39a. However, these Rabs localize primarily to endo-
somal compartments (although their steady state locali-
zation may vary from one cell type to another), reflecting
the dynamic nature of the interface between late Golgi/
TGN membranes and endosomes.

Members of the Rab6 family also localize to late
Golgi/TGN membranes and to post-Golgi vesicles. How-
ever, Rab6 does not associate with endosomal mem-
branes and regulates intra-Golgi and Golgi to ER
trafficking. Rab6 will be thus considered as a “bona fide”
Golgi Rab (see next paragraph).

The Rab GTPases mentioned above have been impli-
cated in many transport pathways that have been
reviewed elsewhere.9,16,55,60,82 In most cases, the deple-
tion or the alteration of the function (s) of these GTPases
have no effect or much less pronounced effect on Golgi
morphology than of those located at the ER-Golgi inter-
face. This suggests that the regulation of membrane flux
at the late Golgi/TGN-endosome interface is not playing
a major role in the regulation of Golgi morphology.
Alteration of Golgi morphology (Golgi fragmentation)
have been however observed following Rab8a depletion1

but the significance of this result remains unclear.
A role for Rab22b/Rab31 and Rab29 in TGN mor-

phology have also been documented.59,92 However, the
functions of these GTP-ases are very poorly known and
how they regulate TGN morphology remain to be
investigated.

Of note, it was recently shown, unexpectedly, that
depletion of members of the Rab3 family (Rab3a-d) and
that of Rab21, a protein that associates with early endo-
somes, affects Golgi morphology.25 The possible reasons
for such an effect are discussed in this article.

- “Bona fide” Golgi Rabs (Rab6, Rab19, Rab30,
Rab33b, Rab34, Rab36, Rab39b)

Several Rab proteins localize almost exclusively to the
Golgi and might well be considered to be « bona fide »
Golgi Rabs. They include Rab19, Rab30, Rab33b, Rab34,
Rab36, and Rab39b. Rab34 and Rab36 interact with the
Rab7a effector RILP and regulate the spatial distribution
of late endosomes, lysosomes and melanosomes.51

Rab39b is preferentially expressed in brain and muta-
tions in the RAB39b gene are associated with neuronal
diseases27. Rab39b was recently shown to regulate ER to
Golgi trafficking of the GluA2 receptor.52 Very little is
known about Rab19 and Rab30 functions. To our knowl-
edge, the contribution of Rab19, Rab30, Rab34, Rab36
and Rab39b to Golgi architecture has not been investi-
gated, except for Rab30 whose depletion impacts Golgi
morphology.38 Of note, Rab19 and Rab30 interact with
Golgins.80

The Rab33 family comprises two isoforms, the
b isoform being ubiquitously expressed at relatively low
levels28 while the a isoform is only expressed in brain
and cells of the immune system. Rab33b localizes to the
medial Golgi cisternae.101 Rab33b has been implicated in
Golgi-to-ER retrograde transport36,90 but also in autoph-
agy as it directly interacts with Atg16L.24

The overexpression of wild-type Rab33b or its GTP-
locked form induces the redistribution of Golgi enzymes
into the ER.36,91 Evidence exists for a functional connec-
tion between Rab6 (see below) and Rab33b, possibly
through a Rab6/Rab33b « cascade ». This Rab cascade
may contribute to Golgi compartmentalization and
membrane domain formation as suggested by Pfeffer.65

These points are discussed in detail in a recent review.44

In humans, mutations in Rab33b that affect GTP-bind-
ing results in vastly decreased protein abundance and
defects in skeletal formation and early death.3,18

The best studied Golgi associated protein Rab, and the
most abundant, is Rab6 (Ypt6p in yeast). We take this
example as being illustrative of the extent to which we
understand the relative role of local Rab recruited pro-
tein machines in Golgi structure/function relationships.

The type member of the Rab6 family, Rab6A, was dis-
covered almost 30 years ago29,100 and the encoding gene
has been shown to be essential to mammalian develop-
ment in utero.77 The Rab6 family comprises 4 proteins,
named Rab6A, Rab6A’, Rab6B and Rab6C. Rab6A’ is
generated by alternative splicing of the RAB6A gene and
differs from Rab6A by only three amino acids.20 Both
proteins are ubiquitously expressed and are together the
most abundant Golgi-associated Rab protein.28 Rab6B is
encoded by a separate gene and is mostly expressed in
neurons and neuroendocrine cells.62 The exact function
of the neuronal isoform Rab6B is unknown. RAB6C is a
primate-specific retrogene transcribed in a limited num-
ber of human tissues. It encodes a protein with altered
biochemical properties compared to other Rab6 isoforms
that localizes to centrosome and is involved in cell cycle
progression.99 A slightly more distant protein, Rab41,
can be considered to be a 5th member of the Rab6
family.43

Numerous studies have established the essential role
played by Rab6A/A’ in the regulation of several transport
steps at the level of the Golgi complex, including retro-
grade transport between endosomes and the endoplas-
mic reticulum via the Golgi complex, anterograde
transport between Golgi and the plasma membrane, as
well as in the homeostasis of Golgi mem-
branes.31,46,48,49,50,84,95 As expected, these multiple roles
in Rab6 in Golgi derived trafficking are then mediated by
the recruitment of a wide array of Rab6 effector proteins
to the Golgi complex. At least 15 different Rab6 effectors
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have been identified.7,30 In a manner not well understood
yet, effector recruitment must be localized and context
sensitive. In brief, Rab6 can and does promote the for-
mation of localized, multicomponent protein machines
that initiate and sustain individual Golgi trafficking path-
ways. Probably the best studied case is the myosin II,
Rab6, Kif20A complex at the trans Golgi/TGN. This
complex forms locally and promotes the extension of
Golgi derived tubules and the eventual release of
vesicles;53,54). In the depth study of this complex holds
great promise of answering the question of how local,
context sensitive Rab action can occur. This is an impor-
tant and general problem in both secretory and endo-
cytic pathways as Rab protein in general have many
effectors.

Considering the numerous roles of Rab6 in Golgi
associated trafficking events, one might expect that Rab6
depletion or alteration of its functional state would pro-
duce little net effect on Golgi morphological organization
as the various individual effects would cancel one
another out. In the case of Rab6 inactivation, GDP-
locked Rab6 T27N overexpression36,48,85,98 or Rab6
depletion through siRNA treatment,84,97 the effects seen
by light microscopy appear slight. There is a slight com-
paction of the juxtanuclear Golgi ribbon and a delay, but
no strong inhibition, in anterograde and retrograde
transport through the organelle (e.g.84). The length of
cisternae however increases by about 2x fold in si-RNA
depleted cells and in MEFs derived from Rab6 knock-out
mice.6,84 In HeLa cells, Rab6 depletion also leads to an
increase in the number of Golgi stacks.84 Considering
the wide variety of trafficking pathways supported by
Rab6, this outcome might well be considered to be the
expected result. Both anterograde and retrograde traf-
ficking pathways should be slowed. In net, the balance
between trafficking pathways appears to be roughly
maintained. However, in striking contrast, overexpres-
sion of wild type Rab6 or GTP-locked Rab6 results in a
BFA-like Golgi phenotype; Golgi resident proteins redis-
tribute to the endoplasmic reticulum,36,49 a result that
strongly indicates a preferential biasing of Golgi traffick-
ing pathways towards retrograde trafficking to the ER.
How might this outcome be explained? We propose that
the most plausible explanation is that the binding con-
stants of various Rab6 effectors varies significantly and
hence as the expression of wild-type or GTP-locked
Rab6 is increased the importance of relatively weak or
minor pathways is over emphasized. If so, this would
suggest that the effector(s) prompting retrograde traf-
ficking to the ER have comparatively low binding con-
stants. To date the determination of effector has been a
qualitative, yes or no, experiment. Comparative quantita-
tive data on effector binding might well make possible a

systems biology approach to the prediction of the various
pathways as Rab6 is titered.

- Conclusions and perspectives

The roughly 20 Rab GTPases discussed here relative to
the regulation and maintenance of Golgi complex struc-
ture all share certain common features such as the
underlying biochemistry of the GTPase cycle and shared
protein sequence and folding features (Fig. 1A). Initially,
these common features were very helpful in the search
for new family members, an important stage in the
development of the field. However, as should be apparent
from our enumeration of the roles and functions of var-
ied Golgi-associated Rab proteins, the challenge today is
different. A major aspect is to understand how individual
Rab proteins modulate the activity of distinct and con-
text-sensitive protein machines while at the same time
giving attention to how multiple machines can be inte-
grated to give functionality within the cell, for example,
to determine Golgi complex structure. To understand
the even simplified individuality apparent and summa-
rized in Fig. 1B-C, we suggest that research efforts must
go to both “drilling down” at the level of individual pro-
cess and biochemistry and integrating through a systems
biology approach quantification determinations and
modeling to reveal patterns of action and how they
change with increased or decreased Rab protein levels.
Hence, we suggest in the previous section of this review
that Rab6 and an individual context sensitive process
such as myosin II dependent vesicle formation may be
an attractive example for the drill down approach. On
the other hand, the question of how Rab6 overexpression
leads to Golgi protein redistribution to the ER rather
than transport to the plasma membrane, endosomes or
lysosomes likely will require an integrative systems biol-
ogy approach. We suggest in this case that weaker inter-
actions are “ratched up” and determinative. This
preferential ratching up then leads to redistribution to
Golgi proteins to the ER. We note that today that there
is no quantitative data to indicate the existence of weaker
or stronger interactions that might be preferentially
modulation in the overexpression case.

In sum, today we can only give the reader the qualita-
tive answer that the role of Rab proteins in Golgi struc-
ture relies on their role in trafficking. We project that an
understanding of specific, locality-sensitive roles of
Golgi-associated Rabs will be a step towards transform-
ing this situation. We suggest that the Rab6/myosin II
interaction at the trans-Golgi/TGN is apt to be an illus-
trative example. Furthermore, an integrated understand-
ing of the relative role of Rabs and in particular Rab
effectors is likely in comparison to require quantitative
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data from which model(s) of predictive value regarding
Golgi phenotype could be made. Again, this would be a
transformative step. In conclusion, we predict in 10 years
that a review such as this will be a quantitative statement
of how an individual Rab protein through multiple effec-
tors produces an integrated Golgi phenotype. Consider-
ing the magnitude of the task, that outcome will likely
require the effort of multiple laboratories.
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