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ABSTRACT
Isocitrate dehydrogenase 1 (IDH1) is a metabolic enzyme implicated in cancer cell metabolic
reprogramming. This is underscored by the detection of functional, somatic IDH1 mutations frequently
found in secondary glioblastoma. To our knowledge, there has never been a reported, validated case of an
IDH1 mutation in a pancreatic ductal adenocarcinoma (PDA). Herein, we present a case of a patient with
metastatic PDA that harbored a potentially actionable, albeit rare, IDH1 mutation. As part of the Know
Your Tumor project (Pancreatic Cancer Action Network), a 48-year-old female was diagnosed with
metastatic PDA and subsequently started on standard of care chemotherapy, during which her hepatic
lesions progressed. Detailed molecular profiling was performed on a biopsy from a liver lesion that
demonstrated an IDH1 mutation, R132H. This mutation was confirmed by an independent sequencing
reaction from the tumor sample, and by immunohistochemistry using an antibody specific for the IDH1
R132H mutation. The patient subsequently received a mutant IDH1 inhibitor (AG-120, Agios
Pharmaceuticals, Cambridge, MA), but with no response. IDH1 mutations are common in certain cancer
types, but have not been reported in PDA. We report the first case of an IDH1 mutation in this tumor type,
perhaps providing a rare opportunity for a targeted therapy as a treatment option for PDA.

KEYWORDS
IDH1; IDH1 mutation;
multimodal treatment;
pancreatic cancer; pancreatic
ductal adenocarcinoma;
personalized medicine;
targeted therapy

Introduction

Isocitrate dehydrogenase 1 (IDH1) is the most commonly
mutated metabolic enzyme in human cancer.1,2 The recent dis-
covery of somatic IDH1 mutations in diverse cancer types
emphasizes the importance of metabolic pathways in cancer
biology. Moreover, the discovery of small compounds that
selectively target this enzyme (but spare the wild type isoen-
zyme) has ushered in a wave of optimism for the treatment of
IDH1 mutant tumors.3 Despite widespread molecular profiling
for the purposes of targeted therapy, the FDA has approved
therapies against just 12 genetic mutations,4-18 underscoring
the infrequency of this type of discovery. Overall 25,000 new
cancer diagnoses per year are associated with an IDH1 muta-
tion, including: secondary glioblastoma, low grade gliomas,
anaplastic gliomas, central chondrosarcomas, intrahepatic chol-
angiocarcinomas, melanoma, and anaplastic thyroid cancer. To
our knowledge, there has not been a reported IDH1 mutation
in pancreatic ductal adenocarcinoma (PDA).19-21

Functionally, IDH1 is a cytoplasmic enzyme that catalyzes the
reversible interconversion of isocitrate and a-ketoglutarate.
NADP is a cofactor for this reaction, and is either oxidized (with

isocitrate formation) or reduced (with a-ketoglutarate forma-
tion).22 The mutant isoenzyme typically contains a heterozygous
missense substitution at arginine 132. The wild type amino acid
is most commonly replaced by a histidine, but may also be
replaced by a serine, cysteine, or glycine.23,24 The mutated
enzyme diverts a-ketoglutarate into an alternative reductive
pathway that produces an oncometabolite, 2-hydroxyglutarate
(D-2HG).25 The accumulation of D-2HG leads to increased
DNA and histone methylation, which in turn drives cancer cell
dedifferentiation.26-28 Previous studies suggest that IDH1mutant
tumors have a more favorable prognosis compared to IDH1 wild
type tumors, and they are more vascularized. In addition, IDH1
mutant tumors are more sensitive to both harsh metabolic con-
ditions and chemotherapy than their wild type counterparts.29,30

Since PDA is characterized by a harsh and nutrient deprived
microenvironment (similar to primary glioblastomas which con-
tain wild type IDH1),31-33 it stands to reason that IDH1 muta-
tions may in fact be deleterious for PDA and selected against,
which could account for the absence of any reported IDH1muta-
tions to date. Herein, we report for the first time, a case of PDA
with a bona fide and validated IDH1 R132Hmutation.
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Clinical case report

A 48-year-old woman presented with stage IV PDA, and was
noted to have a 7 cm liver mass, enlarged retroperitoneal lymph-
adenopathy, a 1.8 £ 1.4 cm lesion in the uncinate process of the
pancreas (likely the primary), and a 5£ 4 mm right middle lobe
lung lesion. Notably, the details of her clinical presentation were
not known to the study authors, since her care was performed at
another institution and we were privy to just clinical informa-
tion provided with biopsy material obtained for molecular pro-
filing. The patient had a family history of prostate cancer in her
father, and breast cancer in her maternal grandmother. A percu-
taneous biopsy of the liver lesion was presumed to be metastatic
adenocarcinoma of pancreatic origin by histology.

As first line therapy, the patient received a standard combi-
nation of 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin
(FOLFIRINOX).34 This regimen temporarily controlled the dis-
ease until progression was observed after 9 months. As second
line therapy, a course of gemcitabine, nab-paclitaxel, and pem-
brolizumab (a PD-1 inhibitor) was given, as part of a clinical
trial.35 The patient had stable disease for an additional
5 months on this regimen. Upon progression, a second biopsy
of the liver lesion was performed with repeat molecular profil-
ing. Histologic evaluation revealed foci of both well and poorly
differentiated tumor, including features consistent with a high
grade histologic phenotype, as shown in Figs. 1A and 1C.

The biopsy specimen was sent for molecular profiling
(Foundation Medicine, Cambridge, MA), which identified
mutations in KRAS, CDKN2A, CDKN2B, PLCG2, and IDH1.
Sanger sequencing and next-generation sequencing (NGS)
were used to confirm the IDH1 mutation (R132H) (Figs. 2A

and 2B) at Thomas Jefferson University (Department of
Pathology). Immunohistochemistry with a mutant-IDH1 spe-
cific antibody (Dianova, Hamburg, Germany) provided addi-
tional confirmation36 (Fig. 1B and 1D). A Catalog of Somatic
Mutations in Cancer (COSMIC, http://www.sanger.ac.uk/
genetics/CGP/cosmic/) database search of IDH1 mutations
demonstrates the high prevalence of this mutation in central
nervous system malignancies, as opposed to the rare occurrence
in pancreatic cancers (Table 1).

The patient enrolled in a Phase I trial of an inhibitor tar-
geted to mutant IDH1 (AG-120, Agios Pharmaceuticals,
Cambridge, MA) for advanced solid tumors,37 but progressed
after just 1 cycle of therapy. The patient’s current clinical status
is unknown.

Discussion

Somatic mutations in IDH1 (R132H, R132G) have been
reported in intraductal papillary mucinous neoplasms of the
pancreas.38 However, this report provides the first evidence of
an intragenic IDH1 R132Hmutation in PDA.20,21 A close exami-
nation of the mutant and wild type IDH1 literature hints at why
IDH1mutations may be a rare event in PDA.While IDH1muta-
tions are considered a gain of function mutation that leads to the
generation of 2-hydroxyglutarate, there is also a clear element of
functional loss, due to haploinsufficiency of the wild type allele.
For instance, mutant IDH1 isoenzymes are less efficient at cata-
lyzing the reductive carboxylation of a-ketoglutarate (into isoci-
trate), they are more sensitive to chemotherapy, and they are
more susceptible to the ill effects of hypoxia.1,2,29,30 Moreover, in

Figure 1. Histologic review of the second biopsy showed high grade pancreatic ductal adenocarcinoma (PDA), metastatic to the liver throughout the tissue cores (original
magnification 400X). (A) Areas of undifferentiated tumor cells containing markedly pleomorphic nuclei were arranged in highly cellular nests and clusters of malignant
cells (arrows) within a relatively scarce fibrotic stroma. (B) These undifferentiated tumor cells were positive by immunohistochemistry for IDH1 (R132H) mutation. (C) Dis-
tinct areas of the tumor biopsy demonstrated less tumor pleomorphism that was more characteristic of conventionally tubular morphology (arrows). (D) In contrast to
high grade foci, the well-differentiated foci were negative by immunohistochemical stain for IDH1 (R132H) mutation, consistent with IDH1 wild type status of tumor cells
in these areas.
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glioblastoma multiforme, tumors with biallelic wild type IDH1
are more aggressive and associated with worse outcomes than
their mutant counterparts.1 Thus, PDA may in fact be mal-
adapted for IDH1mutations due to the harsh tumor microenvi-
ronment that is a hallmark of the disease.31

This particular example of PDA reported herein was notable
for having a mixed histology of both differentiated and undif-
ferentiated components (Fig. 1). A prior study of noncohesive
PDA (defined as tumors having any foci lacking infiltrating
glands, including anaplastic and undifferentiated PDA)
revealed that this phenotype is a common finding at autopsy,
but rare in resected specimens. This finding suggests that an
epithelial-to-mesenchymal transition (EMT) occurs at a very
late stage in many PDAs.39 The authors noted a hypermethyla-
tion phenotype in some tumors with undifferentiated foci, and
frequent loss of E-cadherin associated with high grade mor-
phology. It is notable that IDH1 mutations result in a hyperme-
thylation phenotype due to enhanced 2-HG, and are believed

to drive neomorphic dedifferentiation in affected tumors.40,41

Based on this connection, we tested the index tumor for E-cad-
herin expression and observed that the differentiated foci
lacked expression, while high grade foci paradoxically had
intact expression (data not shown). Thus, E-cadherin loss can-
not explain the dedifferentiated phenotype in this sample. Still,
the labeling pattern observed in this metastatic lesion leaves
open the possibility that a late IDH1 mutation is responsible
for the observed morphologic findings and a driver of EMT in
at least this case of advanced PDA.

In conclusion, we describe the first validated case of an
IDH1-mutant PDA. The mutant IDH1 inhibitor proved to be
ineffective in this patient. It is not known if the lack of inactiv-
ity was due to polyclonality and heterogeneity of the tumor
(e.g., the IDH1 mutation was likely a late event), the advanced
stage of the cancer, poor performance status of the patient, or
some other reason. As noted, at the time of submission the
KYT program identified the same IDH1 mutation in a PDA
patient (data not shown), we are hopeful this patient identified
earlier in the disease process may have a better chance to
respond to targeted therapy. These case studies were identified
under the auspices of the “Know Your Tumor” program led by
the Pancreatic Cancer Action Network (PanCAN) wherein
multi-omic broad-scale molecular profiling is performed for all
eligible pancreatic cancer patients. To date, 285 patients in this
program have undergone NGS analysis. Such systematic molec-
ular screening initiatives are extremely useful to identify
patients with rare or infrequent molecular alterations that
would be eligible for targeted therapy-based clinical trials and/

Figure 2. (A) NGS results, and (B) chromatogram from Sanger sequencing confirming the IDH1 mutation (R132H) in the pancreatic tumor sample.

Table 1. COSMIC database search of IDH1 mutation frequencies in various
malignancies.

Tissue
Overall IDH1

Mutation Frequency
Frequency of

IDH1 R132 Mutations

Central nervous system 6,975/20,299 (34.4%) 6,956/6,975 (99.7%)
Bone 357/1,775 (20.1%) 340/357 (95.2%)
Biliary tract 93/1,097 (8.48%) 91/93 (97.8%)
Pancreas 4/1,712 (0.23%) 2/4� (50%)

�The 2 R132 mutations were in intraductal papillary neoplasms, while the 2 non-
R132 mutations were synonymous variants.
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or off-label therapy for existing FDA approved therapies.
Future studies are required to better understand the role of
IDH1 mutations in this small subset of PDAs, and the suscepti-
bility of these tumors to “metabolic” targeted therapy.
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