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Abstract

Improving lateral resolution for cross-sectional optical coherence tomography (OCT) imaging is 

difficult due to the rapid divergence of light once it is focused to a small spot. To overcome this 

obstacle, we introduce a fiber optics system that generates a coaxially focused multimode (CAFM) 

beam for depth of focus (DOF) extension. We fabricated a CAFM beam OCT probe and show that 

the DOF is more than fivefold that of a conventional Gaussian beam, enabling cross-sectional 

imaging of biological tissues with clearly resolved cellular and subcellular structures over more 

than a 400 μm depth range. The compact and straightforward design and high-resolution extended 

DOF imaging capabilities of this technique suggests that it will be very useful for endoscopic 

cross-sectional imaging of human internal organs in vivo.

1. INTRODUCTION

Optical coherence tomography (OCT) [1] has been a successful story in the field of 

biophotonics, owing to its capacity to obtain cross-sectional 10 μm resolution images of 

human tissues. One major advantage of OCT that has accelerated its adoption for many 

clinical applications is that it can be implemented using a simple, small-diameter, flexible 

probe that scans a focused beam along an organ inside the body. Application of OCT for in 
vivo pathology, however, has been hampered by the inability to improve the lateral 

resolution of these probes so that they are capable of distinguishing finer tissue structures. 

While beams can be readily focused to small spots using lenses with high numerical 

apertures, the divergence of tightly focused light prevents cross-sectional imaging at high 

resolution and over large depths. As such, there has been great interest in developing 

methods for significantly extending the depth of focus (DOF) of OCT probes without 

compromising size, simplicity, and image quality.
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Various techniques have been proposed for DOF extension of microscopic imaging systems, 

which we divide into two broad categories: “active” and “passive”. Active methods use a 

conventionally diffracting beam to acquire one or more images, and then correct the out-of-

focus data to reconstruct an in-focus image according to wave propagation theory [2–4]. 

These techniques are relatively complex to implement as millimeter-diameter endoscopic 

probes, and usually require intensive computation for image postprocessing, and can be 

challenged by acquisition stability [5,6]. Passive approaches introduce a nondiffracting (e.g., 

Bessel) beam (beam with a tight concentration of energy over an extended axial focal 

region) [7,8] to directly acquire an extended DOF image [9,10]. Such passive methods 

require unconventional optical elements (e.g., axicon) that are difficult to reliably 

manufacture [11] or phase/ amplitude modification of the imaging system’s pupil [12], 

similarly suffering from complexity, and challenging the alignment and fabrication [13]. 

Recently, we observed nearly an order of magnitude DOF extension [resolution 

characterized in terms of full width-at half-maximum (FWHM) of the point spread function 

(PSF)] in a scattering phantom image using a very simple optical system comprising a 

cylindrical waveguide in front of a lens that retains the small size and simplicity of 

conventional endoscopic OCT imaging probes [14]. This self-imaging wavefront division 

optical system generates a coaxially focused multimode (CAFM) beam to acquire a cross-

sectional image. In this paper, we formulate the propagation properties of the CAFM beam 

as a generic solution for DOF extension of a point-scanning microscopic system. By 

comparison with conventional optical systems of similar numerical aperture (NA), we 

demonstrate the capability of the CAFM beam to acquire excellent quality high resolution 

OCT images of biological tissue with a significantly extended DOF and an improved 

penetration depth.

2. MATERIALS AND METHODS

A conventional fiber-based point-scanning optical system for coherent imaging consists of a 

single-mode fiber that transmits light and a lens that focuses the light onto a sample [Fig. 

1(a)]. For simplicity’s sake, for the optical configuration depicted in Fig. 1(a), we assume 

that the fiber propagates the fundamental transverse Gaussian mode with a resultant 

Gaussian beam focused on the sample. In the self-imaging wavefront division optical system 

shown in Fig. 1(b), light from the fiber is transmitted through a cylindrical waveguide (e.g., 

multimode optical fiber) before it propagates through the lens. The cylindrical waveguide 

generates multiple propagation modes with orders m corresponding to the number of 

reflections at the core-cladding interface [Figs. 1(c)–1(e)]; each high-order mode can be 

considered as being emitted by a ring-shaped mirror image created by a discrete range of 

angular k-vectors [Eq. (S1) in Supplement 1] from the field emitted from the fiber’s core 

[15]. According to Eq. (S8) in Supplement 1, in addition to a 0th-order Gaussian beam field 

(m = 0), multiple coaxially focused pseudo-Bessel [16] fields are also generated by the self-

imaging wavefront division optical system. Hereafter, we term the summation of pseudo-

Bessel fields a pseudo-Bessel focusing region, and the summation of the Gaussian and 

pseudo-Bessel focusing regions generated by the optical configuration of Fig. 1(b) a CAFM 

beam.

Yin et al. Page 2

Optica. Author manuscript; available in PMC 2018 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To understand the axial and lateral field distributions of the Gaussian and CAFM beams in 

the sample space, conventional [Fig. 1(a)] and self-imaging wavefront division [Fig. 1(b)] 

fiber optic probes were simulated by the beam propagation method (BPM) [17,18]. 

Simulations showed that the conventional fiber optic probe [Fig. 2(a)] should generate a 

focused Gaussian beam with a FWHM of about 2.5 μm in tissue spanning a depth range of 

100 μm (a 3 dB on-axis intensity roll-off range of 50 μm). In comparison, the self-imaging 

wavefront division fiber optic probe [Fig. 2(b)] generates 4 propagation modes: the 0th-order 

mode provides a Gaussian focusing region like that of the conventional fiber optic probe, 

and higher-order modes generate a pseudo-Bessel focusing region that is comprised of 

multiple coaxially focused pseudo-Bessel fields with a finest FWHM of about 1.6 μm. The 

sum of all focused modes for the CAFM beam creates a focused beam field that spans 

approximately 450 μm (a 3 dB on-axis intensity roll-off range of 200 μm). The simulation 

suggests that the CAFM beam with a better average lateral resolution also maintains an in-

focus beam profile over a depth range that is 4–5 times that of a conventional Gaussian 

beam. Small diameter optical probes corresponding to the simulations were then fabricated 

[Figs. 2(c) and 2(d)]. The far-field output beam profiles in the transverse plane for the two 

probes are shown in Figs. 2(e) and 2(f), demonstrating the Gaussian beam profile for the 

conventional fiber optic probe [Fig. 2(e)] and the ringed pattern for the self-imaging 

wavefront division fiber optic probe [Fig. 2(f)]. The conventional fiber optic probe consisted 

of a single-mode fiber (630 HP, Nufern, Connecticut, USA), a spacer of a length of 1.5 mm, 

and a 500 μm diameter graded-index (GRIN) lens (GT-LFRL-050, GRINTECH GmbH, 

Germany) with an NA of approximately 0.5. The self-imaging wavefront division fiber optic 

probe was comprised of a single-mode fiber, a segment of multimode fiber (FG050UGA, 

Thorlabs Inc., New Jersey, USA) of a length of 1.2 mm, a spacer of a length of 1.7 mm, and 

a GRIN lens with a similar NA to that of the GRIN lens used in the conventional fiber optic 

probe. The multimode fiber was directly spliced to the single-mode fiber using a laser fusion 

splicer (LZM-100, AFL, South Carolina, USA). A common-path interferometry 

configuration was realized for both probes by using the backreflection from the distal 

surface of the GRIN lens as reference light. The single-pass transmission loss for the two 

fiber optic probes was 1–1.5 dB, and the backreflection including the reference signal was 

−31 dB.

Fiber probes were connected to an OCT system (Fig. 3) with an axial resolution of 

approximately 1 μm (μOCT) [19] for imaging, and lateral scans were performed by moving 

the probes via translational stages. A supercontinuum laser (SuperK Extreme EXR-15, NKT 

Photonics, Denmark) was used as the light source for the system. After the light passed 

through a dichroic mirror and a spectral shaping filter, the beam was split by a 90/10 beam 

splitter, where 10% of the light was transmitted and coupled into the common-path fiber 

optic probe. The light backscattered from the sample was interfered with the reference light 

and coupled into a custom-designed spectrometer detection module consisting of a telescope 

system, grating, focusing lens set, and a line scan camera (SPL8192, Basler, Germany). The 

depth-resolved image was reconstructed from the interferogram using standard OCT image 

reconstruction methods [linear phase interpolation, fast Fourier transform (FFT) and fixed 

pattern noise removal] [20]. The OCT imaging system has an axial PSF with a FWHM of 1 

μm in tissue medium, and a sensitivity of 105 dB with 40 mW sample arm power at a 

Yin et al. Page 3

Optica. Author manuscript; available in PMC 2018 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



maximum A-scan (depth-resolved reflectivity profile) acquisition rate of 35 kHz (26 μs 

integration time for each A-scan). The 6 dB depth-dependent sensitivity roll-off was 1.5 mm.

3. RESULTS

A. Lateral Resolution and DOF Characterization

A commercially available OCT phantom (APL-OP01, Arden Photonics, UK) was used to 

characterize the lateral resolutions as a function of depth. The phantom consists of 8 

resolution target pattern layers, where each layer was separated by 75 μm in depth. The bars 

in each target pattern layer had a spacing ranging from 1 to 10 μm laterally, as illustrated in 

Fig. 4(a). Using this phantom, within one single B-scan, the lateral resolution of the probe at 

different imaging depths can be determined. A volumetric scan was performed with the 

scanning direction slightly tilted (~10 deg) with respect to the orientation of the bars so that 

the resolution target pattern could be imaged over the entire depth range. The phantom was 

placed at an equal distance from the two fiber optic probes. Figures 4(b) and 4(c) are the 

three-dimensional (3D) images of the OCT phantom acquired by the Gaussian and the 

CAFM beams, respectively. To compensate for the signal degradation over depth caused by 

sensitivity roll-off and beam penetration loss, a depth normalization was applied to the 

images (the B-scan image signal intensity at each depth was normalized by the mean of the 

signal intensity at the corresponding depth). The images were displayed with the same 

brightness and contrast.

The results from Fig. 4 show that the finest phantom spacing that the Gaussian beam could 

resolve unambiguously was 4 μm while the CAFM beam could resolve a spacing of 3 μm 

(the difference between the simulated and the measured resolution was mainly because the 

phantom characterizes resolution in integers). Taking the ability to resolve bars with a 5 μm 

spacing as the out-of-focus threshold, results from the phantom images demonstrate that the 

in-focus range for the CAFM beam was more than 420 μm, compared to about 90 μm for the 

Gaussian beam, approximately a fivefold DOF improvement. Thus, the resolution and the 

focusing range shown in Figs. 4(b) and 4(c) were in a good agreement with the simulated 

beam profile in Figs. 2(a) and 2(b). While it is possible that the CAFM beam could have had 

a superior resolution due to its incorporation of pseudo-Bessel beams, another factor that 

contributes to its slightly higher resolution was its larger effective NA due to beam 

expansion over a longer distance through the multimode waveguide, which suggests that 

when comparing the ratio of the DOF to the lateral resolution, the CAFM beam has a DOF 

extension of more than fivefold. The significantly extended DOF of the CAFM beam could 

be clearly observed throughout the 3D images, while the Gaussian beam image had higher 

signal intensity due in part to the higher energy density at its more depth-confined focus. A 

deeper penetration depth for the CAFM beam was also realized owing to the self-healing 

property of the pseudo-Bessel focusing region of the CAFM beam [21]. This phenomenon 

can be observed in Fig. 4(c); the bar structures in the last two layers of the resolution target 

pattern can be seen in images obtained by the CAFM beam, while they are significantly 

blurred in the Gaussian beam image of Fig. 4(b).
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B. Extended DOF Cross-Sectional Biological Tissue Imaging

One unique feature of OCT is its capability to acquire cross-sectional images of internal 

organs in vivo through small-diameter, flexible scanning fiber optic probes [22,23]. 

Previously, in vivo endoscopic, cross-sectional OCT imaging at cellular-level resolution has 

been hindered by the limited DOF of conventional probe designs. The significantly extended 

DOF of the CAFM beam generated by the compact and miniaturized self-imaging wave-

front division fiber optic probe guarantees a high-resolution OCT image over a much greater 

depth range. To demonstrate the potential of the CAFM beam to be utilized for endoscopic, 

cellular-level resolution imaging, images of a freshly excised swine esophagus were 

acquired. Figure 5 shows a comparison of the cross-sectional μOCT images of a swine 

esophagus specimen acquired by the conventional fiber optic probe and the self-imaging 

wavefront division fiber optic probe. The individual glycogenated squamous cells residing 

within the superficial epithelial layer can be clearly resolved by the CAFM beam over a 

slanted surface that spanned a depth of approximately 400 μm (in air) [Fig. 5(b)]. In 

contrast, the in-focus depth range for Gaussian beam [Fig. 5(a)] was approximately 100 μm 

(in air). Magnified portions of the images in Fig. 5(b) demonstrate a nearly non-degrading 

lateral resolution of the CAFM beam over the entire depth range. In addition to the extended 

DOF, the CAFM beam exhibited a more uniform axial intensity distribution attributed to the 

well-managed energy distribution between modes. The self-healing property of the CAFM 

beam also increased the penetration depth in tissue that contributed, for example, to a better-

defined boundary between the epithelium and the lamina propria.

C. 3D Biological Tissue Imaging

Volumetric images of biological tissue can be constructed by scanning the imaging probe in 

two dimensions. Figure 6(a) depicts a 3D image of a swine coronary artery acquired by the 

self-imaging wavefront division fiber optic probe ex vivo. The extended DOF provided by 

the CAFM beam enabled cellular-resolution imaging over a curved surface that varied by 

more than 150 μm in depth for the image shown here. The closely spaced bumps or 

elevations on the surface of the 3D rendering [Fig. 6(a)] are consistent with endothelial cells 

that one might observe using scanning electron microscopy [24]. Small, highly reflecting 

foci are seen on the surfaces of these cells that correspond to regions where the scattering 

from endothelial cell membranes were directed back toward the probing optics. Figure 6(b) 

is a cross-sectional image from the same specimen that also demonstrates elevations 

consistent with endothelial cells. Histology [Fig. 6(c)] confirms the presence of endothelial 

cells in this specimen.

4. DISCUSSION AND CONCLUSION

Previously, endoscopic OCT has been limited by using conventional optics, and, as a result, 

the inherent trade-off between the lateral resolution and DOF has prohibited high-lateral-

resolution imaging. With the self-imaging wavefront division configuration reported here, 

we demonstrate that a multimode propagation scheme with a properly managed pathlength 

delay and a well-controlled mode-field interaction can also be adopted for OCT imaging, 

producing a high lateral resolution with a greatly ex-tended DOF. By incorporating a rigid 

segment of multimode fiber of millimeter length into a conventional optical system, the 
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focused beam field is dramatically modified, producing a CAFM beam that leads to a 

substantial improvement in the DOF while maintaining high quality imaging throughout. 

This advance was realized by: (1) the pathlength delay between modes introduced by the 

circular waveguide was minimized and stabilized to ensure a steady propagation of modes 

with minimal modal dispersion; (2) the focal zones of the modes were distributed uniformly 

in the axial direction for a smooth transition between modes; and (3) higher-order modes 

were designed to contain higher energy to compensate for the depth-dependent attenuation 

and signal roll-off. A longer penetration depth was also likely observed owing to the self-

healing property of the CAFM beam. Like Bessel beams, the CAFM beam distributed 

energy into multiple propagation modes, and the high-order modes transported energy in 

discrete rings that contributed to a propagating field that was less disturbed by the scattering 

medium [21].

Modal dispersion is one important factor that prevents utilizing multimode fibers in 

conventional OCT systems, but in this study we demonstrate that with a properly designed 

single-mode-multimode transmission scheme, the multimode fiber could be utilized to 

enhance the image quality without causing perceptible imaging artifacts. Modal dispersion is 

noticed in Eq. (S7) in Supplement 1; the two terms preceding the Bessel function have 

phases with mode (m) dependence that are caused by additional optical pathlengths for the 

high-order modes. Since the series of foci are created by different modes, this extra 

pathlength will introduce a “gap” between the OCT images constructed by the foci of 

neighboring modes. But when the diameter (d), the length (L) of the multimode fiber, the 

length of the spacer (s), and the focal length of the objective (f) are designed carefully to 

ensure that this extra pathlength is close to or below the axial resolution of the OCT system, 

this “gap” is negligible in the image. As in the design presented, the pathlength differences 

between neighboring modes are on the same order of the system’s axial resolution; 

therefore, no imaging artifacts associated with modal dispersion are observed. Given the fact 

that conventional OCT has an axial PSF that is one order of magnitude broader than that of 

μOCT, we believe this technique could be applied for conventional 10 μm resolution OCT as 

well, with more relaxed constraints.

In conclusion, we have introduced a CAFM beam for depth-resolved point-scanning 

microscopic imaging with an extended DOF. The CAFM beam was generated by a self-

imaging wave-front division optical system implemented as a fiber optic probe. The 

capability to miniaturize this optical design and its simplicity make it suitable for 

incorporation in endoscope/catheter devices for real-time in vivo 3D imaging, with 

applications that include intravascular imaging of coronary arteries [25], endomicroscopy of 

the gastrointestinal [26] and pulmonary tracts, among other luminal organs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) Schematic of a conventional fiber-based point-scanning optical system, demonstrating a 

single spatial mode and focus. (b) The schematic of a self-imaging wavefront division 

optical system, showing multiple spatial modes focused at different distances from the lens. 

(c) The marginal ray tracing for the 0th-order mode of the CAFM beam. (d) The marginal 

ray tracing for the 1st-order mode of the CAFM beam. (e) The marginal ray tracing for the 

2nd-order mode of the CAFM beam. SMF, single-mode fiber; MMF, Multimode fiber; 

GRIN, graded index lens; CW, circular waveguide; FL, focusing lens.
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Fig. 2. 
(a) Simulated, depth-dependent field intensity distribution of the Gaussian beam in a tissue 

medium (an aqueous environment, n = 1.34). The intensity was normalized by the peak 

intensity, and displayed in a log scale with a dynamic range of 15 dB. (b) The simulated, 

depth-dependent field intensity distribution of the CAFM beam in a tissue medium (an 

aqueous environment, n = 1.34). The intensity was normalized by the peak intensity, and 

displayed in a log scale with a dynamic range of 15 dB. (c) The conventional fiber optic 

probe. (d) The self-imaging wavefront division fiber optic probe. MMF, multimode fiber. (e) 

The transverse beam profile of the Gaussian beam with the probe ~5 cm from the surface. (f) 

The transverse beam profile of the CAFM beam with the probe ~5 cm from the surface, 

showing multiple rings corresponding to each spatial mode induced by the MMF wave-

guide. The beam patterns were projected onto a screen and the images were acquired by a 

camera in the far field. x and z in (a) and (b) represent the lateral distance and depth, 

respectively; G and PB in (a) and (b) indicate the Gaussian focusing region and the pseudo-

Bessel focusing region, respectively; the scale bars in (c) and (d): 500 μm; the scale bars in 

(e) and (f): 1 cm.
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Fig. 3. 
μOCT system. The dashed arrows indicate the lateral scanning of the fiber probe. SC, 

supercontinuum laser; DM, dichroic mirror; BD, beam dump; SSF, spectral shape filter; BS, 

beam splitter; M, mirror; G, grating; LSC, line scan camera.
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Fig. 4. 
(a) 3D schematic drawing of the OCT phantom that has 8 resolution target pattern layers at 

different depths, spaced by 75 μm. The spacing between bars starts at 10 μm and decrements 

to 1 μm. (b) A 3D image of the OCT phantom acquired by the conventional fiber optic 

probe, showing clear resolution of bars over a narrow depth range. A1, A2, and A3 

correspond to the depth of 273 μm, 314 μm, and 362 μm, respectively. (c) A 3D image of the 

OCT phantom acquired by the self-imaging wavefront division fiber optic probe, 

demonstrating a visualization of bars over the entire phantom. B1, B2, and B3 correspond to 

the depth of 38 μm, 288 μm, and 463 μm, respectively. G, Gaussian focusing region; PB, 

pseudo-Bessel focusing region.
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Fig. 5. 
(a) Cross-sectional μOCT image of a swine esophagus, obtained with the conventional fiber 

optic probe ex vivo. The three insets on the right are the magnified images that correspond to 

the rectangular regions labeled in the image. These insets show that the cells can be clearly 

visualized in the infocus region, but when it is out of focus, images are consistent with cells 

but significantly blurred. (b) A cross-sectional μOCT image of the same swine esophagus 

specimen acquired by the self-imaging wavefront division fiber optic probe ex vivo. The 

specimen was tilted to introduce a more than 400 μm depth offset for demonstration of the 

extended DOF. The three insets on the bottom are the magnified images corresponding to the 

rectangular regions labeled in the image. The insets show that the cells are visualized with 

high contrast and resolution throughout the extended focal range. (c) The histology of the 

specimen (H&E). μOCT images were three-frame averaged and spatially filtered by a 

median filter with a radius of 1.5 μm. Scale bars: 50 μm.
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Fig. 6. 
(a) 3D μOCT image of a swine coronary artery acquired by the self-imaging wavefront 

division fiber optic probe, showing elevations or bumps that likely correspond to individual 

endothelial cells. (b) A cross-sectional image from the location delineated by the dotted line 

in (a). The red arrows highlight elevations that likely correspond to endothelial cells. (c) The 

histology of the specimen (H&E), demonstrating endothelial cells (red arrows). μOCT 

images were processed by a 3D median filter with a radius of 1.5 μm. Scale bar: 50 μm.
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