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Abstract

Models of the representation of numerosity information used in discrimination tasks are integrated 

with a diffusion decision model. The representation models assume distributions of numerosity 

either with means and standard deviation that increase linearly with numerosity or with means that 

increase logarithmically with constant standard deviation. The models produce coefficients that are 

applied to differences between two numerosities to produce drift rates and these drive the decision 

process. The linear and log models make differential predictions about how response time (RT) 

distributions and accuracy change with numerosity and which model is successful depends on the 

task. When the task is to decide which of two side-by-side arrays of dots has more dots, the log 

model fits decreasing accuracy and increasing RT as numerosity increases. When the task is to 

decide, for dots of two colors mixed in a single array, which color has more dots, the linear model 

fits decreasing accuracy and decreasing RT as numerosity increases. For both tasks, variables such 

as the areas covered by the dots affect performance, but if the task is changed to one in which the 

subject has to decide whether the number of dots in a single array is more or less than a standard, 

the variables have little effect on performance. Model parameters correlate across tasks suggesting 

commonalities in the abilities to perform them. Overall, results show that the representation used 

depends on the task and no single representation can account for the data from the different 

paradigms.
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What is the mental representation of numerosity? This is a classic question in psychophysics 

and also a topical one because it has been claimed that scores on simple, non-symbolic 

numerosity tasks are predictive of math development in childhood and math achievement 

later in life (Halberda et al., 2008; Park & Brannon, 2013). For instance, for a large internet 

sample, Halberda et al. (2012) found that performance on a nonsymbolic task was related to 

numeracy ability across the life span (to age 85). Currently, numerosity knowledge is said to 

be represented in an Approximate Number System (ANS) in which numerosities are 

represented by distributions around their central values (Dehaene, 2003), a system which 
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might be present in animals as well as humans (Gallistel & Gelman, 1992). There is also a 

body of work in which research using animals and human neurophysiological measurements 

has been used to identify neural structures that are involved in numerosity judgments (e.g., 

Hyde & Spelke, 2008, Nieder & Miller, 2003; Piazza et al., 2004). We review these in the 

discussion.

It has also been asserted that the ability to perform non-symbolic tasks forms a scaffold on 

which symbolic mathematical skills are built (Gallistel & Gelman, 1992, 2000). This was 

expressed explicitly by Park and Brannon (2013): “Humans and nonhuman animals share an 

approximate number system (ANS) that permits estimation and rough calculation of 

quantities without symbols. Recent studies show a correlation between the acuity of the 

ANS and performance in symbolic math throughout development and into adulthood, which 

suggests that the ANS may serve as a cognitive foundation for the uniquely human capacity 

for symbolic math.” In accord with this, Park and Brannon (2013, 2014; also Hyde, 

Khanum, & Spelke, 2014) found that repeated training on nonsymbolic arithmetic improved 

symbolic arithmetic, but repeated training on other tasks (a visuo-spatial short-term memory 

task and a numerical ordering task) did not. However, it has also been argued that symbolic 

and nonsymbolic magnitude knowledge have separate effects on mathematics achievement 

(Fazio et al., 2014) and that the relation between nonsymbolic performance and achievement 

is currently not clear (De Smedt et al., 2013).

There are currently two, competing, ANS models that have roots in Weber and Fechner’s 

work in the 1800’s. In one, numerosity in the ANS is represented on a linear scale and 

variability around numerosities increases as numerosity increases. In the other, numerosity 

in the ANS is represented on a decreasing logarithmic scale with equal variability around all 

numerosities (Figure 1). In both, the distributions of variability are Gaussian (Dehaene & 

Changeux, 1993; Gallistel & Gelman, 1992; see Zorzi et al., 2005, for a review). Both 

models explain two standard findings (cf., Weber’s law) - why it is easier to discriminate 10 

from 20 objects than 18 from 20 (accuracy decreases as the difference in two numerosities 

decreases, the distance effect) and why it is easier to discriminate 20 objects from 30 than 60 

objects from 70 (accuracy decreases as numerosities increase; the size effect). It has been 

claimed that the two models are not discriminable (Dehaene, 2003) but that argument is 

based solely on the accuracy with which numerosity tasks are performed. Here we show that 

they are, in fact, discriminable when response times (RTs) are considered.

In this article, we present a model for numerosity discrimination, a fundamental numeracy 

skill. Typical tasks include deciding whether the number of blue dots in a display is greater 

or less than some specified number, deciding whether there are more blue dots in a display 

than yellow dots, and deciding whether there are more dots in one versus another array that 

are spatially separated. We model RTs and their full distributions for both correct responses 

and errors jointly with accuracy. We test the representations of numerosity that the ANS 

models predict by mapping them to accuracy and RT data via the diffusion decision-making 

model (Ratcliff, 1978; Ratcliff & McKoon, 2008). When the ANS models are integrated 

with the diffusion model, they make strong differential predictions because they must 

account for RTs as well as accuracy.
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One reason an approach that explains the decision-making process is needed is that the field 

of numerical cognition has been unable to settle on empirical measures to be used in 

individual-difference analyses. Considerable controversy has arisen about the presence or 

absence of correlations among dependent variables and between them and individual 

differences such as IQ and math ability. In the diffusion model and other sequential-

sampling models (Ratcliff & McKoon, 2008; Ratcliff & Smith, 2004), accuracy and RTs 

arise from the same underlying components of processing but in the numeracy literature, 

some hypotheses have been based on RTs, some on accuracy, and some on the slope of a 

function that relates accuracy or RTs to the difficulty of a test item. Many studies in 

numeracy have used RTs alone and many have used accuracy alone, and this has led to 

inconsistent findings about how individual differences affect performance. For example, 

sometimes correlations are found between symbolic tasks (“is 5 greater than 2”) and 

nonsymbolic tasks (“is the number of dots in one array greater than in another array”), and 

sometimes not (e.g., Price, et al., 2012; Sasanguie, et al., 2011; Maloney et al., 2010; 

Holloway & Ansari, 2009; De Smedt et al., 2009). Sometimes correlations are found 

between non-symbolic number tasks and math ability, and sometimes not (e.g., Lyons & 

Beilock, 2011; Libertus et al., 2011; Gilmore et al., 2010; Halberda et al., 2008, 2012; Inglis, 

et al., 2011; Holloway & Ansari, 2009; Mundy & Gilmore, 2009; Price, et al., 2012).

In a comprehensive study, Gilmore et al. (2011) found little correlation between all 

combinations of accuracy and RT across a range of symbolic and nonsymbolic tasks. A 

recent meta-analysis by Chen and Li (2014) further illustrated the extent of the problem. For 

36 recent studies, they found 21 used overall accuracy, 9 used mean RT, 17 used the Weber 

fraction (an accuracy-based measure), and 8 used a numerical distance effect based on RT. 

Other analyses of individual differences confirm this diversity by reviewing studies that use 

a range of different dependent variables (De Smedt at al., 2013; Fazio et al., 2014). In the 

face of such inconsistencies, and their finding that RTs and Weber fractions were largely 

uncorrelated in an experiment they conducted, Halberda et al. (2012, p. 11116) suggested 

that the two dependent variables might index independent abilities. Price et al. (2012, p. 54) 

concurred, saying that “the relationship between RT slope and the Weber fraction is not very 

strong, which might be explained by the fact that one is a measure of RT while the other is a 

measure of accuracy.”

In many numeracy studies, including most of those just cited and the studies we present in 

this article, the response required of a subject is a decision between two alternatives. 

Whatever the quality of a subject’s numerosity information, a response must be chosen and 

the choice will take some amount of time. Accuracy and speed can trade off, and the trade-

off is under a subject’s control. A subject might decide to respond as quickly as possible, 

sacrificing accuracy, or as accurately as possible, sacrificing speed. In consequence, the 

quality of the numeracy information on which an individual bases his or her decision can be 

obscured by the speed/accuracy setting he or she chooses. This means that neither accuracy 

by itself nor RTs by themselves can provide a direct measure of an individual’s numeracy 

knowledge.

In the diffusion model (and other sequential sampling models, Ratcliff & Smith, 2004), joint 

consideration of accuracy and RTs allows an individual’s speed/accuracy setting to be 
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separated from the quality of the information upon which decisions are based. The central 

mechanism in the model (Ratcliff, 1978; Ratcliff & McKoon, 2008) is the noisy 

accumulation of information from a stimulus representation over time. A response is made 

when the amount of accumulated information reaches one or the other of two criteria, or 

boundaries, one for each of the two possible choices (e.g., deciding whether the number of 

dots in a display is larger or smaller than 25). The rate of accumulation, called drift rate, is 

determined by the quality of the information encoded from a stimulus. The distance between 

the two boundaries is determined by the speed/accuracy setting-- faster, less accurate 

responses if the distance is small, slower, more accurate responses if the distance is large. 

The independence of drift rate and the distances to the boundaries means that information 

quality is separated from speed/accuracy settings and so can be independently observed.

In the diffusion model, accuracy and RTs must be explained by the same mechanism. This is 

required in order to account for the locations of RT distributions (longer RTs for more 

difficult decisions than easier ones) and the characteristic, right-skewed, shape of the 

distributions. It is also required to account for the inverted U-shaped function that typically 

results when RTs are plotted against accuracy (a latency-probability function, Ratcliff, 

Smith, & McKoon, 2015, which is discussed in detail later.)

For all the experiments in this article we compared the two ANS models, each integrated 

with the diffusion model. Recently there has been concern about the lack of replicability of 

studies in psychology. Less prominently, there has been concern that models or empirical 

results apply only to the specific design of a single experiment. We addressed these concerns 

with 11 experiments and 5 tasks. Each major empirical and modeling result was replicated at 

least once. In three experiments, subjects were tested on more than one task to examine 

correlations among an individual’s numeracy abilities across tasks.

Three tasks used displays of dots. Two are common in numeracy research, one in which blue 

and yellow dots are intermingled in a single array and subjects decide whether there are 

more blue dots or more yellow dots, and one in which there are two side-by-side arrays of 

dots all of the same color and subjects decide which of them has more dots. For the third 

task, subjects decided whether the number of dots of one of two colors, intermingled in a 

single array, is larger or smaller than a criterion number (e.g., 25). The fourth task used X’s 

and O’s in a single array and subjects decided which had the greater number. The fifth task 

used asterisks in a single array and subjects decided whether the number of asterisks was 

larger or smaller than a criterion number.

There were five independent variables, all replicated in at least two experiments, and 

numerosity (number of dots, X’s and O’s, or asterisks) was manipulated in all 11 

experiments. In most of the experiments with dots, either the summed areas of the two sets 

of dots (e.g., the blue and yellow ones) were the same or they were proportional to their 

number (i.e., a larger total area for a larger numerosity). In some experiments, the dots were 

all relatively large, averaging about 13 pixels in diameter, or small, averaging about 4.5 

pixels in diameter. When subjects decided whether the number of dots of one color was 

larger or smaller than a criterion number, the number of dots of the other color was 

manipulated.
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Preview

To preview the results, we summarize the most salient of them here. The first was highly 

counter-intuitive. As mentioned above, it is almost always found that as decisions become 

more difficult and accuracy goes down, responses become slower. This is the pattern that 

was obtained with two of the tasks we used, deciding which of two side by side arrays has 

the greater number of dots and deciding whether the number of dots in a single array is 

larger or smaller than a standard. However, when the task was to decide which of two colors 

of dots in a single array had the greater number, we found a highly unusual and counter-

intuitive pattern: as difficulty increased and accuracy decreased, responses became faster.

The second result was that, when the linear and log ANS models were integrated with the 

diffusion model, they could be discriminated (because accuracy and RT data must be 

explained jointly), something that has not been possible in the past, as we pointed out above.

The third result was that which model could account for the data was different for different 

tasks. The linear ANS-diffusion model did well for the first pattern of data (the counter-

intuitive one) but the log ANS-model failed in clear qualitative ways. The log ANS-diffusion 

model did well for the second pattern of data (the usual one) but the linear model failed in 

clear qualitative ways.

Fourth, whichever ANS-diffusion model was successful for a given task, it fit the data well. 

It captured the data for accuracy, mean RTs for correct responses and errors, the shapes and 

locations of the RT distributions, and the ways these all changed across experimental 

conditions that varied in difficulty.

Fifth, we found large correlations among the tasks in drift rates, which suggests that 

individuals bring similar numeracy skills to all the tasks we used.

The sixth result was a solution for an issue that has bedeviled research on numerosity 

discrimination-- it has been difficult to divorce confounding variables from judgments of 

numerosity (DeWind et al., 2015; DeWind & Brannon, 2012; Feigenson et al., 2002; Gebuis 

& Gevers, 2011; Gebius & Reynvoet, 2012a, 2012b, 2013; Mix et al., 2002). For example, if 

all the dots in an array of dots of two colors have the same size, then the total area of the 

dots of the larger-numerosity color will be larger than the total area of the dots of the 

smaller-numerosity color. But if the totals are equated, then the totals of the circumferences 

of the dots will be larger for the larger-numerosity color. With any manipulations designed to 

control one variable, some other variable will be confounded with numerosity. With the 

ANS-diffusion models, the contributions of individual variables can be measured.

The seventh result was that, when we examined the effects of confounding variables on our 

tasks, we found variables that affected performance on some numerosity tasks but not others.

The Two-Choice Diffusion Model

The model is designed to explain the cognitive processes that make simple two-choice 

decisions that take place in under a second or two. The model has been applied in a wide 
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range of domains including clinical applications and applications in neuroeconomics and 

neuroscience in humans, monkeys, rodents, and even insect swarms (Forstmann, Ratcliff, & 

Wagenmakers, 2016; Ratcliff, Smith, Brown, & McKoon, 2016). Figure 2A illustrates the 

model. Information is accumulated from a starting point, z, toward one or the other of two 

boundaries, a or 0. The zig-zag lines indicate noise in the accumulation process. For the 

example in the figure, the mean rate of accumulation, drift rate (v), is positive. Drift rate is 

determined by the quality of the information extracted from the stimulus in perceptual tasks 

and the quality of the match between a test item and memory in, for example, lexical 

decision and memory tasks. Processes outside the decision process such as stimulus 

encoding and response execution are combined into one component of the model, 

nondecision time, with mean Ter. Total RT (Figure 2B) is the sum of the time to reach a 

boundary and nondecision time. The noise in the accumulation of information (Gaussian 

distributed) results in decision processes with the same mean drift rate terminating at 

different times, producing RT distributions, and sometimes at the wrong boundary, 

producing errors.

The values of the components of processing are assumed to vary from trial to trial, under the 

assumption that subjects cannot accurately set the same parameter values from one trial to 

another (e.g., Laming, 1968; Ratcliff, 1978). Across-trial variability in drift rate is normally 

distributed with SD η, across-trial variability in starting point (equivalent to across-trial 

variability in the boundaries) is uniformly distributed with range sz, and across-trial 

variability in the nondecision component is uniformly distributed with range st. In signal 

detection theory, which deals only with accuracy, all sources of across-trial variability are 

collapsed into one parameter, the variability in information across trials. In contrast, with the 

diffusion model, the separate sources of across-trial variability are identified (Ratcliff & 

Tuerlinckx, 2002; Ratcliff & Childers, 2015).

For experiments in which subjects compare a stimulus to a standard, there is one more 

component of processing, the drift-rate criterion (Ratcliff, 1985). For example, when asked 

to decide whether the number of dots in an array is more or less than 25, then drift rates 

should be such that their mean is toward the “large” boundary when there are more than 25 

dots and toward the “small” value when there are fewer than 25. That is, the drift-rate 

criterion should be set at 25. However, subjects do not always behave in this way. They may 

set their criterion at 24 or 26 or some other number. It is to accommodate shifts like this that 

the drift-rate criterion is a free parameter when a discrimination task involves comparison to 

a standard.

Boundary settings, nondecision time, starting point, drift rates for each condition in an 

experiment that varies in difficulty, the drift-rate criterion, and the across-trial variabilities in 

drift rate, nondecision time, and starting point are all identifiable. When data are simulated 

from the model (with numbers of observations approximately equal to those that would be 

obtained in real experiments) and the model is fit to the simulated data, the parameters used 

to generate the data are well recovered (Ratcliff & Tuerlinckx, 2002). The success of 

parameter identifiability comes in part from the tight constraint that the model account for 

the full distributions of RTs for correct and error responses (Ratcliff, 2002).

Ratcliff and McKoon Page 6

Psychol Rev. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Integrating the Diffusion Model and the ANS Models

When the diffusion model is combined with a model for how information is represented in 

cognitive structures, the representation model must produce a value, drift rate (and in some 

models, SD in drift rate across trials), that when taken through the decision process accounts 

for all the data. In other words, the diffusion model provides a meeting point between data 

and models of representation.

The ANS linear and log models (Figure 1) have their roots in research tracing back to 

Weber’s and Fechner’s research in the 1800’s (e.g., Woodworth, 1938). Weber’s law states 

that as stimulus intensity increases, the size of the just-noticeable difference between stimuli 

increases so that the ratio of the difference in intensity to intensity (ΔS/S) remains constant. 

Fechner derived a logarithmic representation from this: the intensity of a stimulus is 

proportional to the logarithm of the physical intensity and the psychological difference 

between two stimulus intensities is the difference in the logarithms of their intensities. Thus 

as intensity grows, the psychological difference between equally spaced stimuli decreases 

(e.g., log(10)-log(5) = 0.69 while log(20)-log(15) = 0.29). In this model, the SD around 

mean numerosity values has to be constant as intensity grows to explain Weber’s law. 

Weber’s law can also be explained by the linear model: the psychological difference 

between two intensities is linear with the intensity values and the SD in the psychological 

representation also increases linearly thus leading to decreasing discriminability as intensity 

grows. These alternatives have had extensive discussion in numerosity research (e.g., 

Gallistel & Gelman, 1992; Dehaene & Changeux, 1993) with the conclusion mentioned 

above, that they cannot be discriminated (Dehaene, 2003). ROGER

In the integrated models, drift rate and the SD in drift rate are both provided by the ANS 

representation model, and boundary settings, nondecision times, and the ranges in starting 

point and nondecision time come from the diffusion model. Figure 2C shows how drift rate 

for the two models is computed. For the linear model, drift rate (v) is the difference between 

the two numerosities multiplied by a coefficient (v1) and for the log model, drift rate is the 

difference in the logs of two numerosities multiplied by a coefficient (v1). It is the 

coefficient of drift rate that separates individuals; a larger coefficient gives better 

performance.

Figure 2C also shows how across-trial variability (the SD, η in the models) in drift rate is 

computed. For the linear model, (η) is a constant (η0) plus a coefficient (σ1) multiplied by 

the square root of the sum of squares of the two numerosities (the square root of the sum of 

squares is how standard deviations are combined - variances are added). For the log model, 

we might assume that η remains constant as numerosity increases, just as for traditional 

models based on accuracy measures. However, there is no guarantee that a diffusion model 

will behave in the same way and so we gave our log model the same flexibility in accounting 

for data as the linear model: η could either stay constant as numerosity increases or increase 

with numerosity with the same expression for η as for the linear model. This also has the 

advantage of giving the linear and log models the same number of parameters which makes 

model selection less ambiguous because different measures such as AIC and BIC give the 
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same results. Thus, the only difference between the linear and log models was that the drift 

rate assumption was different: linear versus log.

The integrated models are severely constrained. Without a representation (i.e., ANS) model, 

drift rates are usually estimated separately for each condition of an experiment when the 

diffusion model is applied to data. Instead, for the integrated models, drift rates are set by 

the representation model and cannot be adjusted to, for example, produce a better fit for one 

data point without affecting predictions for all the other data. There is only one coefficient 

for drift rates for all values of numerosity for each condition (e.g., a condition with large 

dots or one with small dots) and only two coefficients for η for all conditions of the 

experiment. If the model failed to fit even one value of accuracy or one RT distribution from 

the numerosity conditions, modifying the parameters to accommodate that one miss would 

make the fit worse for all the other conditions.

When the linear and log models are integrated with the diffusion model, there are no more 

than eight free parameters plus one drift-rate coefficient for each independent variable 

(excluding numerosity). From the diffusion model, there are always the distance between the 

boundaries, nondecision time, and the ranges in the starting point and nondecision time. 

When the task is to compare stimuli against a standard there is also the drift-rate criterion. 

For some tasks, the starting point is a free parameter. For others, it can be set to half the 

distance between the boundaries and so is not a free parameter; this occurs when the RT 

distributions at one of the two boundaries are symmetric with those at the other. From the 

ANS models, there are the drift-rate coefficients for each independent variable except 

numerosity, the constant component of SD across-trials, and the coefficient for SD. (If the 

SD coefficient is close to zero, the model is one with constant SD in drift rate.)

For the experiments in which the task was to compare the number of dots of a color or the 

number of asterisks to a standard value, there was only one value of numerosity, so we set 

N1 in the computation of drift rate and its SD (Figure 2C) to that numerosity value and N2 to 

the standard (e.g., 25).

Fitting the Integrated Diffusion Models to Data

The values of all the parameters are estimated together by fitting the model to the data from 

all the conditions in an experiment simultaneously using a standard method of fitting. The 

data for each subject is fit individually and the model parameters presented in the tables are 

the means across subjects. RT distributions are represented by 5 quantiles, the .1, .3, .5, .7, 

and .9 quantiles. The quantiles and the response proportions for each condition are entered 

into a minimization routine and the diffusion model is used to generate the predicted 

cumulative probability of a response occurring by that quantile RT. Subtracting the 

cumulative probabilities for each successive quantile from the next higher quantile gives the 

proportion of responses between adjacent quantiles. For a G-square computation, these are 

the expected proportions, to be compared to the observed proportions of responses between 

the quantiles (i.e., the proportions between 0, .1, .3, .5, .7, .9, and 1.0, which are .1, .2, .2, .

2, .2, and .1). The proportions for the observed (po) and expected (pe) frequencies and 
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summing over 2Npolog(po/pe) for all conditions gives a single G-square (log multinomial 

likelihood) value to be minimized (where N is the number of observations for the condition).

The number of degrees of freedom in the data is computed as follows: there are 6 

proportions (bins) between the quantiles and outside the .1 and .9 quantiles. These 

proportions are multiplied by the proportion of responses for that condition and across 

correct and error responses; these 12 proportions must add to 1 so there are 11 degrees of 

freedom in the data for each condition of the experiment. For example, if there were 10 

numerosity conditions crossed with a variable that has two levels, then there would be 220 

degrees of freedom in the data. When the models are fit to data, the number of degrees of 

freedom is the number in the data minus the number of the model’s free parameters.

Usually in fits of the diffusion model to data, there are no models of stimulus representation 

like those the ANS models provide and so there is a separate drift rate for each condition of 

an experiment. For Experiment 1, for example, this would lead to a model with 26 

parameters whereas for the ANS-diffusion models, the number of parameters is greatly 

reduced, to only eight.

The model was fit to the data using the G-square statistic in the same way as fitting the chi-

square method described by Ratcliff and Tuerlinckx (2002; see also Ratcliff & Childers, 

2015; Ratcliff & Smith, 2004). G-square statistics are asymptotically chi-square and so 

critical chi-square values can be used to assess goodness of fit. In many applications we have 

found that if the value of the chi-square (or G-square) is below 2 times the critical value, the 

fit is good (Ratcliff, Thapar, Gomez, & McKoon, 2004; Ratcliff, Thapar, & McKoon, 2010) 

even in the less constrained case in which the diffusion model is applied without a 

representation model and so each condition has its own drift rate.

In the results sections for the experiments, the mean values of the model parameters and the 

G-square statistic across subjects are reported. For the plots in the figures for the 

experiments, the quantile RTs and response proportions in the data are averaged across 

subjects. The predictions from the models are generated from the best-fitting parameters for 

each subject and then these predictions are averaged across subjects in exactly the same way 

as the data are averaged.

Because the fits are presented as averages over subjects, it may be that there are some very 

bad fits for some individuals. Appendix A shows plots of the experimental and predicted 

response proportions and 0.1, 0.5, and 0.9 quantile RTs plotted against each other for 

Experiments 1 and 2. These show a visual representation of the quality of the fits for each 

condition for each subject and so allow an assessment of how good or bad fits are for each 

condition and subject.

The difference in G-square values between the log and linear models provides a numerical 

goodness of fit measure from which the models can be compared. As noted above, because 

the number of parameters for the two models was the same, G-squares provide the same 

results for comparisons of models as do the AIC and BIC values (because these measures 

are G-square plus a penalty term based on the number of parameters - which is the same for 

the pairs of models). However, in our view, small numerical differences are not enough to be 
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sure that one model should be preferred over another. We prefer to see qualitative differences 

in predictions between the models as well as numerical differences that are not small. 

Furthermore, for each experiment we report the number of subjects that favor each model 

from the G-square value. By a binomial test, if 22 (or more) out of 32 subjects or 12 (or 

more) out of 16 subjects support one model over the other model, then the result is 

significant. This provides another measure of support at an individual subject level for one 

model over the other model.

Displaying the match between data and model

The match can be displayed in latency-probability functions and quantile-probability 

functions (Ratcliff, 2001; Ratcliff, Van Zandt, & McKoon, 1999). To illustrate latency 

probability functions (termed a parametric plot), data from a numerosity discrimination task 

(Ratcliff, Thapar, & McKoon, 2010) are plotted in Figures 3A–3C. The stimuli were arrays 

of asterisks mixed with empty spaces and subjects decided whether the number of asterisks 

was larger or small than 50. Figure 3A shows mean RTs (in ms) for “small” responses as a 

function of the number of asterisks for eight conditions that vary in difficulty (responses 

were grouped: 30–34, 35–39, 40–44, …, 65–69, for means 32, 37, 42, ..., 67). “Small” is the 

correct response for numbers smaller than 50 (on the left side of the function) and the 

incorrect response for numbers larger than 50 (on the right side of the function). RTs are 

shorter for the easier conditions for both correct and incorrect responses (the outer data 

points) and longer for the more difficult conditions (the nearer-center data points). Figure 3B 

shows the probabilities of “small” responses, fewer of them as the number of asterisks 

increases. The bottom panel shows the inverted U-shaped latency-probability function 

derived from plotting the RTs against the response probabilities. As the probability of a 

correct response decreases from right to left, RTs first increase and then decrease (and for 

“large” responses, the functions are similar). Predictions from the model can be plotted in 

the same way (e.g., Ratcliff & McKoon, 2008, Figure 6). Often in experiments with 

symmetric responses for the two choices, conditions are combined, for example, in Figure 

3A, mean RT for “large” responses might be the left to right mirror image of those for 

“small” responses. Then correct “small” responses to the 32 asterisk condition would be 

combined with correct “large” responses to the 67 asterisk condition to produce one of four 

levels of difficulty from the eight conditions. Errors would be combined in the same way so 

that the four levels of difficulty would produce eight data points as in Figure 3F (the error 

RTs on the left correspond to the symmetric correct responses on the right).

For most of the experiments described in this article, we display the data and model 

predictions in quantile probability plots. Figure 3D shows how they are constructed. The top 

panel shows a histogram of the data (thin narrow bars and red line) overlaid with rectangles 

derived from the 0.1, 0.3, 0.5, 0.7, and 0.9 RT quantiles. The rectangles represent equal areas 

of 0.2 probability mass between each pair of middle quantiles and 0.1 probability mass 

outside of the 0.1 and 0.9 quantiles. The quantile rectangles capture the main features of the 

RT distribution (as can be seen in the figure) and therefore provide a reasonable summary of 

the overall distribution shape. Figure 3E shows a quantile-probability plot. Quantile RTs for 

the 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles (stacked vertically) are plotted against the proportions 

of responses that were made for each condition for four experimental conditions different in 
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difficulty. Correct responses for two conditions are on the right, errors for two conditions are 

on the left. For the more difficult condition, the proportion of correct responses is 0.7 and for 

the easier condition, the proportion of correct responses is 0.95. Errors for the other two 

conditions are plotted on the left with error probabilities 0.1 and 0.35. Figure 3F shows an 

example of the fit between model and data for an experiment with four conditions, with the 

numbers representing the data for the five quantiles and the x’s and lines representing the 

model predictions (from Ratcliff & Smith, 2010, Experiment 2). The latency-probability 

function for the median RT instead of the mean RT is the middle line in Figure 3F.

Quantile-probability plots make it easy to see changes in RT distribution locations and 

spread as a function of response probabilities and how model and data compare. In Figure 

3F, as response probability changes from about 0.6 (the most difficult condition) to near 1.0 

(the easiest condition), the 0.1 quantile (leading edge) changes little, but the 0.9 quantile 

changes by as much as 400 ms. Thus, the change in mean RT is mainly in the tail; the whole 

distribution does not shift. Also, error responses are slower than correct responses mainly 

because of their spread, not the location of the leading edge. In these ways, quantile-

probability plots allow all the important aspects of both the accuracy and RT data to be read 

from a single plot.

Experiments: Stimuli, Subjects, and Procedures

Figure 4 illustrates the displays that were used in the experiments. We list all of them here to 

provide a summary and then describe them again in the discussion of each experiment. In 

Figure 4A, blue and yellow dots are intermingled in a single array and the question was for 

which color is the number of dots larger. In Figure 4B, there are two arrays side by side with 

dots all of the same color and the question was which array has more dots.

In many of the experiments, there was an area manipulation, equal versus proportional. For 

blue and yellow dots mixed in a single array, the summed areas of the dots of the two colors 

were either equal or proportional (larger summed area for the larger numerosity color). At 

the same time, the summed areas of dots of different numerosities were either equal or 

proportional. For example, consider two conditions: 10 blue dots intermingled with 15 

yellow dots and 35 blue dots intermingled with 40 yellow dots. For equal area, the sum of 

the areas of the 10 blue dots would be the same as the sum of the areas of the 15 yellow dots, 

the 35 blue dots, and the 40 yellow dots. For proportional area, the sums would be larger for 

larger numerosities than smaller ones. For dots of the same color in two arrays, the area 

manipulation is the same: the sums of the areas of the dots in the two arrays were equal or 

proportional and the sums were equal from one numerosity to another, or they were all 

proportional to their number. Figures 4A and 4B illustrate the area manipulation.

In Figure 4C, blue and yellow dots are intermingled in a single array and the question was 

whether the number of dots of one of the colors was greater or less than 25. In Figure 4D, 

asterisks are intermingled with white spaces and the question was whether the number of 

asterisks was greater or less than 50. In Figure 4E, X’s and O’s are intermingled and the 

question was whether there were more X’s or more O’s. In Figure 4F, there was one array of 

dots presented and for some of the displays, the dots were positioned randomly (the left 
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example) or positioned on a grid (the right example); in both cases, the question was 

whether the number of dots was greater or less than 25. Finally, Figure 4G shows small dots 

which were tested along with regular-size dots in different stimulus arrays. These 

experiments used single arrays of intermingled blue and yellow dots; in Experiment 4, the 

question was for which color is the number of dots greater, and in Experiment 5, it was 

whether the number of dots of one of the colors is greater or less than 25.

For the single-array stimuli with dots (Figures 4A, 4C, 4G, and 4F), the dots were displayed 

on a 17-inch diagonal CRT monitor with a width of 32 cm and a height of 24 cm and with a 

4×3 screen set to 1280×960 pixels (with 256 colors). The background was gray to control 

luminance (Halberda et al., 2008). The dots were presented in a 640×640 gray array in the 

middle of the screen that was 17.3 × 17.3 degrees of visual angle when viewed from a 

distance of 53 cm. For all but Experiments 4 and 5, the dots had radii of 6, 8, 10, 12, 14, or 

16 pixels subtending angles of 0.324, 0.432, 0.540, 0.648, 0.756, and 0.864 degrees in 

diameter, respectively. For Experiments 4 and 5, the smaller dots’ radii were 2, 3, 4, 5, 6, or 

7 pixels.

For each trial of a single-array experiment, either dot sizes were selected randomly but 

constrained so that the summed areas of the two colors of dots in an array (and the areas 

across all the numerosities, as described above) were equal, or they were selected randomly 

without any other constraint and so the areas were proportional to the number of dots. We 

constrained the positions of the dots so that the maximum horizontal/vertical distance dot 

centers could be separated by was 360 pixels (10.58 degrees) and the minimum spacing 

between dot edges was 5 pixels (0.135 degrees).

For the stimuli with two side-by-side arrays of dots, the same CRTs were used with the same 

settings as for the single-array experiments. The gray background within which the two 

arrays of dots were presented was 640 pixels high x 1160 pixels wide which is 17.3 by 31.3 

degrees of visual angle. The minimum spacing between dot edges was 5 pixels and between 

the two arrays, there was an 80 pixel separation between dot centers. There was a thin 

vertical line between the two arrays (Figure 4B) within which stimulus arrays were 

presented. There was also a small fixation cross between the two arrays and subjects were 

instructed to look at that on the beginning of each trial. The radii of the dots were the same 

as the larger ones listed above.

Stimuli in most of the experiments with dots were presented for 250 or 300 ms and then the 

screen returned to the background color. This was done to reduce the possibility that subjects 

used slow strategic search processes to perform the task. Subjects were instructed to respond 

as quickly and accurately as possible. Responses were collected by key presses on a PC 

keyboard, usually the/and z keys, one for each choice. For all the tasks, there were several 

practice trials (e.g., 4) and for these, the correct response was given on each trial so that 

subjects would be certain to understand the instructions (e.g., it would say “an example of 

more blue dots” when the decision was about which color had the more dots). Subjects 

initiated each block by pressing the space bar on the keyboard.
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For most of the experiments, the subjects were students in an introductory psychology class 

who participated for class credit. As is typical in our pool, some of them were not 

cooperative and began, from the beginning or in the middle of the experiment, to respond 

with fast guesses. For this reason, about 20% of the subjects were eliminated in each 

experiment. We identified the non-cooperative subjects by placing an upper cutoff at 300 ms 

and lower cutoff at 0 and examining the proportion of responses in this range and their 

accuracy. If there were more than 5% and accuracy was at or near chance for these 

responses, we eliminated the subject (based only on these aspects of the data, without 

examining other results). We also eliminated one or two subjects from a few of the 

experiments who were not fast guessing but responded with chance accuracy. For data 

analyses for all the experiments, we placed a lower RT cutoff at 300 ms and an upper cutoff 

at 2000 ms. This eliminated less than 5% of the responses in each experiment.

For experiments with one task, there were typically 20 blocks of 96 or 100 trials giving 

about 2000 observations per subject and for experiments with two or more tasks, two tasks 

were tested per session with about 1000 trials per session. We aimed for 16 subjects in the 

experiments with one task and 32 for the experiments with two or more tasks. Because of 

the fast-guessing subjects, we usually tested a few extra subjects and this led to larger 

numbers in some of the experiments. Experiments 1–5 had 16 subjects, Experiment 6 had 

35, Experiments 7, 8, and 9 had 32, Experiment 10 had 15 (because classes ended before we 

could get the 16th), and Experiment 11 had 18.

Experiment 1

The stimuli in Experiment 1 were blue and yellow dots intermingled in a single array 

(Figure 4A) and subjects decided whether there were more blue or more yellow dots. We 

label this task the B/Y task. It is in this experiment that we first found the counter-intuitive 

result that as accuracy decreases, responses speed up.

To manipulate numerosity, the numbers of the blue and yellow dots differed in their 

numerosities and the differences between their numerosities. There were 10 combinations of 

the numbers of blue and yellow dots; 15/10, 20/15, 25/20, 30/25, and 40/35 for differences 

of 5; 20/10, 30/20, and 40/30 for differences of 10; and 30/10 and 40/20 for differences of 

20. The sums of the dot areas were equal or proportional.

Accuracy and RT Results—The data for “blue” and “yellow” responses were symmetric 

so correct responses for blue and yellow dots were combined and errors for blue and yellow 

dots were combined. Table 1 shows accuracy and mean correct RTs as a function of the area 

manipulation with the data averaged over the 10 proportional-area and 10 equal-area 

conditions. The left panel of Figure 5 shows mean RTs plotted against accuracy with the x’s 

for equal-area conditions and the o’s for proportional-area conditions. Lines were drawn 

between conditions with the same numerosity difference (5, 10, and 20) for the two area 

conditions separately.

As expected, accuracy decreased as the difficulty of the discrimination increased. 

Specifically, accuracy decreased both as the numerosity of the dots increased and as the 

difference between the numerosities of the dots of the two colors decreased, the standard 

Ratcliff and McKoon Page 13

Psychol Rev. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



result with these manipulations. Also as expected, equal-area discriminations were more 

difficult than proportional-area discriminations, with accuracy higher and RTs shorter with 

proportional areas.

The RT data show the unexpected finding and demonstrate why RTs must be considered in 

data analyses. For numerosity differences of 5 and 10, as accuracy decreased, RTs also 

decreased (for differences of 20, RTs changed little). For example, for the top function in the 

figure, as the probability of a correct response decreases from around 0.68 to around 0.55, 

RTs speed up from around 660 ms to around 600 ms. It is this joint consideration of 

accuracy and RTs that gives the counter-intuitive result.

Analyses of variance with two factors, the two area conditions and the 10 combinations of 

numbers of blue and yellow dots, showed significant effects on accuracy (F(1,15)=203.6, p<.

05; F(9,135)=116.7, p<.05) and on mean RTs (F(1,15)=68.1, p<.05; F(9,135)=27.6, p<.05, 

respectively). The interaction was not significant for accuracy (F(9,135)=1.6, p>.05) but it 

was for RTs (F(9,135)=5.5, p<.05). We were not concerned with power in the statistical tests 

because it is qualitative patterns along with model fits to the sizes of the effects that are most 

relevant, not the size relative to the variability in the data. While a 2% effect on accuracy, for 

example, might be significant and have a high effect size, it might have no practical effect on 

performance in the context of the modeling.

Experiment 2

In Experiment 1, accuracy decreased as difficulty increased and RTs decreased. In 

Experiment 2, accuracy decreased as difficulty increased and RTs increased (as opposed to 

decreasing as occurred in Experiment 1). The stimuli were side-by-side arrays (Figure 4B) 

and the dots were always yellow for both arrays. Subjects decided which of the two arrays 

had more dots, the left or the right. We call this the L/R task. Summed areas were either 

equal or proportional. There were the same 10 combinations of numbers of dots as for 

Experiment 1.

Accuracy and RT Results—The data for “left” and “right” responses were symmetric so 

correct responses for left and right dots were grouped and errors for left and right dots were 

grouped as for Experiment 1. Table 1 shows the accuracy and mean correct RT results as a 

function of the area manipulation with the data averaged over the 10 proportional-area and 

10 equal-area conditions. The right panel of Figure 5 shows plots constructed like those of 

Experiment 1. Accuracy decreased as the difference in numerosity between the two arrays 

decreased and as the numerosity of the two arrays increased, and it was lower for the equal-

area conditions than the proportional-area ones. The result for RTs was the typical one, that 

RTs increased as accuracy decreased. Unlike Experiment 1, the data from all the equal-area 

conditions and all the proportional-area conditions fell on a single parametric plot.

Analyses of variance showed significant differences in accuracy among the 10 combinations 

of numerosity and the two area conditions, F(9,135)=151.7, p<.05, and F(1,15)=68.2, p<.05, 

respectively, and their interaction was significant, F(9,135)=8.0, p<.05. There were also 

significant differences in RTs among the numerosity conditions and the area conditions, 

F(9,135)=25.7, p<.05 and F(1,15)=38.7, p<.05, and their interaction was not significant, 

Ratcliff and McKoon Page 14

Psychol Rev. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



F(9,135)=1.3. These results show that both the area and numerosity manipulations affected 

performance on this task. In following analyses for later experiments, we average over the 

numerosity conditions (because the numerosity effect is always large) to simplify the 

ANOVAs and t-tests.

Fitting the Integrated Models to the Results of Experiments 1 and 2—Quantile-

probability plots (Figures 6 and 7) show accuracy and the full distributions of RTs for 

correct and error responses and how these change across conditions. As illustrated in Figure 

3, the 0.1, 0.3, 0.5 (median), 0.7, and 0.9 quantiles of the RT distribution for each condition 

are plotted vertically on the y-axis and the proportions of responses are plotted on the x-axis. 

Because the probability of a correct response is larger than .5, quantiles for correct responses 

are on the right of .5 and quantiles for errors on the left (the two probabilities sum to 1.0). 

The difficulty of the stimuli in each condition determines the probabilities of correct and 

error responses, that is, the location of the stacks of quantiles on the x-axis.

For the models, nondecision time determines the placement of the functions vertically. The 

shapes of the functions are determined by just three values (Ratcliff & McKoon, 2008): the 

distance between the boundaries, the range across trials in the starting point (which is 

equivalent to across-trial variability in the settings of the boundaries), and the SD across 

trials in drift rates (η). The drift rates for the different levels of difficulty (i.e., the different 

conditions) sweep out functions across response probabilities.

Figures 6 and 7 show the quantile probability functions for Experiments 1 and 2, 

respectively, and the fits of the models to them. The x’s are the data and the o’s and lines 

joining them are the predictions of the models. The proportional-area conditions are farther 

to the left and right because they have higher accuracy than the equal-area conditions, which 

are nearer the center. The horizontal lines that connect correct and error responses across 0.5 

are not meaningful; they are there only to show which correct responses correspond to which 

error responses.

The quantile-probability functions for Experiment 1 (Figure 6) show the unexpected result 

for the five quantiles. They decrease sharply from their left and right ends (error responses 

and correct responses, respectively) toward the center, showing the decrease in RTs as 

accuracy decreases. This is true for the equal-area conditions and the proportional-area 

conditions. In contrast, the functions for Experiment 2 (Figure 7) show the typical inverted U 

shaped functions bending up from their left and right ends with RTs increasing as accuracy 

decreases.

To fit the models to the data, there were four parameters from the diffusion model: the 

distance between the boundaries, across-trial range in the starting point and across-trial 

range in nondecision time. There were four parameters from the ANS models: a drift-rate 

coefficient (v1) for the equal-area conditions, a drift-rate coefficient for the proportional-area 

conditions (v2), the SD coefficient (σ1), and the constant component of the across-trial SD in 

drift rate (η0). The number of degrees of freedom was 212: the number of conditions 

multiplied by the 11 degrees of freedom for the proportions of responses between and 
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outside the .1, .3, .5, .7, and .9 bins for correct and error responses minus 1 because the 

proportions add to 1 and minus the number of parameters.

The results for the linear model for Experiment 1 show a remarkable qualitative and 

quantitative match between theory and data. The model produces the decreases in RT 

quantiles as accuracy decreases, the larger and sharper decreases for the equal-area 

conditions than the proportional-area conditions, and the larger decreases for the higher than 

the lower quantiles. It also produces the flattening of the functions as the difference in 

numerosities between the blue and yellow dots increases (from 5 to 10 to 20). (Accuracy for 

the easiest condition, 15/10 dots, was a little higher than the model’s predictions but this 

could be accommodated by allowing drift rate to increase a little more quickly than linearly 

as numerosities decrease.)

The critical difference in the predictions between the linear and log models is the 

counterintuitive result that for the linear model, for a constant numerosity difference, as the 

total number of dots increases, RT decreases. In our data, this effect is largest for differences 

in numerosity of 5. In order to provide another measure of which qualitative pattern of 

results was obtained for individual subjects, we fit median RTs as a function of the number 

of dots for differences of 5 with linear regression. We examined this qualitative effect in the 

data from the experiments with the B/Y task and the L/R task and we report how many 

subjects had a slope less than zero. For the counterintuitive result (decreasing RT with 

decreasing accuracy), the slope is less than zero, and for the standard result and log model, 

the slope is greater than zero.

Tables 2 and 3 show the parameter values of the linear model that best fit the data. The mean 

G-square value for the linear model was 261 and the critical value of the chi-square for 212 

degrees of freedom is 246.0. The mean G-square over subjects is just above the critical 

value, which indicates a good fit of the model to data. For individuals, G-square values were 

lower for the linear model for 13 out of 16 subjects and the slope of the median RT versus 

overall numerosity function for differences of 5 was less than 0 for 28 out of 32 comparisons 

(equal and proportional area for 16 subjects). Both of these support the linear model for 

individual subject data.

The proportional-area and equal-area drift-rate coefficients were significantly different, 

0.037 and 0.016, a difference of over a factor of 2 (t(15)=8.1, p<.05). We discuss these 

coefficients below.

The fit of the linear model to the data is impressive for several reasons. First, there is only 

one drift-rate coefficient for the 10 equal-area conditions and only one for the 10 

proportional-area conditions-- drift rate is determined by the coefficient and the two 

numerosities being compared. Second, the values of the four parameters from the diffusion 

model and the constant component of the across-trial SD in drift rate are fixed across all 20 

conditions. There is no model freedom with which to alter a single parameter to 

accommodate, for example, a miss in one data point.

The fit is also impressive in relation to the number of parameters that would usually be used 

to fit the diffusion model to data, as mentioned above. For Experiments 1 and 2, there would 
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be 20 drift-rate parameters and possibly 20 parameters for across-trial SD in drift rates 

(because the SD in drift rates increases with numerosity in order to fit the data). Integrating 

the linear model with the diffusion model reduces this to 2 drift-rate coefficients and 2 SD 

coefficients, the constant SD coefficient i(η0) and the one that specifies how the SD changes 

with numerosity (σ1).

The log model completely and qualitatively misses the decreases in RTs with decreasing 

accuracy. It does, however, produce predictions that go through the middles of the quantile-

probability functions and so the G-square value is not markedly different from that for the 

linear model.

For Experiment 2, the results were the opposite: The log model fit the data well, the linear 

model did not, and the functions in Figure 7 show the result that would be expected 

intuitively: as accuracy decreased, RTs increased. The results are also different from 

Experiment 1 in that the quantile data from the equal-area and proportional-area conditions 

fall on the same function (if they were plotted together) as they do for the means in Figure 5. 

The fit of the log model to the data was good: It produced predicted values that match the 

quantile-probability functions with the mean G-square value a little above the critical value, 

246.0. The number of parameters, the number of conditions, and the number of degrees of 

freedom were the same as for Experiment 1. There was one drift-rate coefficient for the 10 

equal-area conditions, one for the 10 proportional-area conditions, the four diffusion-model 

parameters, the constant component of the SD in drift-rate across trials, and two parameters 

for the SD coefficients. The linear model missed the data qualitatively but its predictions go 

through the middles of the quantile-probability functions and so its G-square value is not a 

great deal larger than that of the log model. For individuals, G-square values were lower for 

the log model for 10 out of 16 subjects and the slope of the RT versus overall numerosity 

function for differences of 5 was greater than 0 for 21 out of 32 comparisons (equal and 

proportional area for 32 subjects). Both of these support the log model for individual subject 

data, but not as strongly as the linear model is supported for Experiment 1. The results for 

Experiment 2 are consistent with those obtained for a side-by-side task by Park and Starns 

(2015). They found that, for constant differences in numerosity, as overall numerosity 

increased (12/9 vs. 21/18 and 14/12 vs. 20/18), mean RT increased (12 ms and 5 ms effects, 

respectively, supporting the log model.

In fits of the standard model to other experimental paradigms, across-trial variability in drift 

rate has been a free parameter that is equated across conditions and its value typically varies 

between .08 and .3. We report SD coefficient values (σ1) and the constant values (η0). The 

values of across-trial SD in drift rate can be computed from these using the equation in 

Figure 2C. For comparison with other fits of the model to data in other articles, we present 

values of η for Experiments 1 and 2 below. (Note that the SD coefficients are labeled 10σ1 

because the values in the table are multiplied by 10). For Experiment 1, the smallest and 

largest values of η are 0.13 and 0.36 (for the 15/10 and 40/35 numerosity conditions) and for 

Experiment 2, the smallest and largest values of η are 0.16 and 0.18. Thus, there are large 

differences in η for Experiment 1 across conditions while for Experiment 2, the values of η 
are almost constant across conditions.
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Estimating the Contributions of Confounding Variables—As mentioned above, 

research on numeracy has been concerned with whether experimental results can be 

explained by numerosity alone, without some confounding variable such as area, the length 

of a line drawn around the dots, or their density (e.g., DeWind et al., 2015; DeWind & 

Brannon, 2012; Feigenson et al., 2002; Gebuis, Cohen Kadosh, & Gevers, 2016; Gebuis & 

Gevers, 2011; Gebius & Reynvoet, 2012a, 2012b, 2013; Leibovich, Katzin, Harel, Henik, 

2016; Mix et al., 2002). Efforts to control for such variables face the problem that 

controlling for one leaves another confounded with numerosity.

Our results show that the ANS-diffusion models can provide a way of measuring the effects 

of these variables. As Experiments 1 and 2 versus Experiment 3 (presented next) 

demonstrate, some confounded variables affect performance for some tasks but not others. In 

Experiments 1 and 2, the summed areas of the dots were either equal or proportional to the 

number. To the extent that area contributed to decisions, the drift-rate coefficient should be 

larger for proportional-area conditions and, if it is, then the difference in the equal- and 

proportional-area coefficients provides an estimate of the relative contributions of area and 

numerosity. In Experiment 1, the difference in the drift-rate coefficients from the linear 

model was 0.21 (means 0.37 minus 0.16), i.e., the effect of area was over double that for the 

equal-area condition. In Experiment 2, the difference in the coefficients from the log model 

was 0.29 (1.07 minus 0.78) and so the effect of area was about 35% over the value for the 

equal-area condition.

Our results argue against the notion that effects that have been attributed to representations 

of numerosity can be explained instead completely by non-numerical cues (Gebius, Gevers, 

& Cohen-Kadosh, 2014; Tibber et al., 2013). For example, Gebius and Reynvoet (2013) 

argued that numerosity information is not extracted automatically from visual stimuli in 

either an active task (subjects had to monitor numerosity and occasionally make a judgment) 

or a passive task (subjects viewed sequences of arrays of dots and neurophysiological 

measures were collected).

DeWind et al. (2015) have recently proposed a different method for measuring the effects of 

confounding variables. They used a linear combination of the logs of the ratios of the 

differences in independent variables between two sets of stimuli (e.g., their areas, 

numerosities, etc.) to produce a decision variable (cf., signal strength in signal detection 

theory). The inverse z-transformation of this combination was used to predict accuracy and 

the coefficients of the linear combination were used as estimates of the contributions of the 

independent variables. However, this method is only about accuracy, not RTs. Ratcliff (2014) 

found that z-transforms of accuracy can sometimes match drift rates, but whether that 

applies with DeWind et al.’s method and for numerosity discrimination tasks will require 

further research.

Why Does the Linear Model Produce Shorter RTs as Accuracy Decreases?—
To illustrate, we use the simple case for which the boundaries of the diffusion process are 

equidistant from the starting point (although the logic is the same if they are not equidistant). 

Incidentally, with equidistant boundaries (Figure 8A), the correct and error RT distributions 
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for a single drift rate (i.e., no trial-to-trial variability in starting point or drift rate) are 

identical except that there is lower probability mass in the error distribution.

Figure 8B shows trial-to-trial variability in drift rate with two normal distributions both 

centered on a drift rate of 0.1. The red solid function represents a larger numerosity, which 

has a larger SD, and the blue dashed function represents a smaller numerosity, which has a 

smaller SD. For illustration, two values of drift rate were selected from each function, at 

about plus and minus one SD, −0.05 and 0.25 for the larger numerosity and 0.05 and 0.15 

for the smaller.

Figures 8C and 8D show the RT distributions for correct and error responses from 8A, with 

the two values of v for the smaller numerosity (7C) and the two values for the larger 

numerosity (7D). For the smaller numerosity, the 0.15 and 0.05 drift rates produce accuracy 

values of 0.86 and 0.65, respectively, which average to 0.76, and they produce RTs of 685 

ms and 748 ms for correct responses which, when weighted by their probabilities (0.86 and 

0.65), average to 717 ms. For the larger numerosity, the 0.25 and −0.05 drift rates produce 

accuracy values of 0.95 and 0.35, which average to 0.65. They produce RTs of 616 ms and 

748 ms for correct responses which, when weighted by their probabilities (0.95 and 0.35), 

average to 652 ms. Thus, accuracy is lower for the larger numerosity, 0.65, than the smaller, 

0.76, and-- the counterintuitive result-- RTs are shorter, 652 ms and 717 ms. The 

computations for RTs for errors are shown at the bottom boundary in the figures.

To explain this more generally: when the distribution of drift rates has a large SD, then drift 

rates in the left tail are negative. They are slower than responses in the right tail but they 

have lower probabilities of correct responses (because their drift rate is toward the error 

boundary). This means that fast correct responses in the right tail are weighted more heavily 

(there are more of them) than slower responses in the left tail, which leads to overall faster 

responses. As numerosity increases, the SD increases which leads to the lower probability 

and faster responses.

There is an alternative hypothesis that has been suggested to explain counter-intuitive results 

similar to those obtained in Experiment 1 but in different perceptual tasks. The assumption 

is that within-trial variability increases with stimulus strength, or in our case, numerosity 

(e.g., Donkin, Brown, & Heathcote, 2009; Smith & Ratcliff, 2009; Teodorescu, Moran, & 

Usher, 2016; Teodorescu & Usher, 2013). In the diffusion model, usually the variability in 

the accumulation of information from the starting point to the boundaries is constant across 

levels of difficulty. If within-trial variability increases with numerosity, processes hit the 

boundaries faster because of increased variability, which leads to the decrease in RTs with 

decreasing accuracy. However, there is a major problem with this within-trial variability 

account: it cannot explain why the decrease in RT with decreasing accuracy only occurs for 

intermingled blue/yellow dot displays and not side-by-side displays (and in the experiments 

described below, not for single arrays matched against a standard). An increase in within-

trial variability with numerosity would be expected to be a general property of numerosity 

decisions, not a property of a particular stimulus configuration and task.
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Experiment 3

In Experiment 1, accuracy decreased as difficulty increased and RTs decreased. In this 

experiment, like Experiment 2, accuracy decreased as difficulty increased and RTs 

increased. In Experiments 1 and 2, the proportional-area conditions were easier than the 

equal-area ones; in this experiment, performance was about the same.

The stimuli were single arrays of intermingled blue and yellow dots (Figure 4A). Subjects 

decided whether the number of yellow dots (or the number of blue dots) was larger or 

smaller than 25; we call this the Y25 task. There were three variables: the number of dots for 

the target color (the dots to be compared to 25) was 10, 15, 20, 30, 35, or 40, there were 

either 15 or 35 dots of the other color, and areas were either equal or proportional, for a total 

of 24 conditions, collapsing over whether the target color was blue or yellow. The target 

color alternated from one block to the next.

Results—Table 4 shows accuracy and mean RTs. Correct responses for 10, 15, and 20 dots 

were combined with correct responses for 30, 35, and 40 dots and then averaged. The data 

show the standard result that RTs increase as accuracy decreases. The data were not 

collapsed over “larger” responses to larger-than-25 stimuli and “smaller” responses to 

smaller-than-25 stimuli because the two sets of data were not symmetric.

Analyses of variance were conducted with two factors, area and the number of non-target 

dots. The data were averaged over the numerosity conditions for these analyses. The 

difference in accuracy between the equal- and proportional-area conditions was only 0.2% 

and the difference in correct mean RTs was only 1 ms and neither was significant, 

F(1,15)=1.0 for accuracy and F(1,15)=0.4 for RTs. The differences in accuracy and correct 

mean RTs between the two numbers of non-target dots were small, 1.8% in accuracy and 8 

ms in RTs, but they were significant, F(1,15)=12.7, p<.05 for accuracy and F(1,15)=12.7, 

p<.05 for RTs. The interactions were not significant, F(1,15)=0.1 and F(1,15)=1.2 for 

accuracy and RTs, respectively.

To fit the models, drift rates were calculated with the drift-rate coefficient multiplying the 

difference between the number of target dots and 25 for the linear model and the difference 

between the logs of the number of target dots and 25 for the log model. The SD coefficient 

was also calculated using the number of target dots and 25.

Figure 9 shows the quantile-probability plots for the data and the models’ predictions, with 

the x’s for the data and the o’s and lines that connect them for the predictions. The top two 

panels are for “larger” responses and the bottom two are for “smaller” responses. For each 

plot, there are 12 sets of quantile data points for correct responses and 12 for errors, where 

the 12 are made up of the combinations of the area variable, the number of non-target dots, 

and three numerosities, 10, 15, and 20 target dots for “smaller” stimuli or 30, 35, and 40 dots 

for “larger” stimuli. The best-fitting values of the parameters and mean G-square measures 

are shown in Tables 2 and 3.

There were six numerosity values, two area conditions, and two numbers of non-target dots, 

giving 264 (24 times 11) degrees of freedom in the data. There were twelve parameters, so 
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the number of degrees of freedom for fitting the models was 252. The twelve parameters 

were the usual four for the diffusion model, the starting point of the diffusion process, a 

drift-rate criterion, a drift-rate coefficient for each of the four combinations of area and 

number of non-targets, and 2 SD coefficients (one constant and one specifying how the SD 

changes with numerosity). A drift-rate criterion (this was subtracted from all the drift rates 

produced from the expressions for drift rates in Figure 2C) was needed because some of the 

subjects did not set the zero point of drift rate exactly at 25.

The mean G-square value was a little lower for the linear model than for the log model and 

13 out 16 G-square values for individual subjects were smaller for the linear as opposed to 

the log model, thus supporting the linear model. However, the linear and log models fit the 

data qualitatively about equally well. There were larger differences in accuracy for small 

stimuli than large stimuli and both models predict this. Both models miss slightly the leading 

edges of the RT distributions for “smaller” responses to small stimuli.

We conducted analyses of variance on the drift-rate coefficients. The effect of the area 

variable was not significant for either model, F(1,15)=1.5 and F(1,15)=1.2 for the linear and 

log models, respectively; the effect of the number of non-targets was significant, 

F(1,15)=27.1, p<.05, and F(1,15)=12.5, p<.05, respectively; and the interactions were not 

significant (F(1,15)=1.3 and F(1,15)=0.1). The area variable had less than a 2% effect and 

the difference between 15 and 35 non-target dots was only about 10%, notably small relative 

to the 100% and 30% effects of the area variable on the drift rate coefficient in Experiments 

1 and 2, respectively.

Comparison of Parameter Values for Experiments 1, 2, and 3—There were no 

large or systematic differences across the experiments in the best-fitting values for the 

parameters of the diffusion model. The distance between the boundaries was about the same 

for the three experiments and nondecision time was a modest 50 ms longer for Experiment 1 

than for Experiments 2 and 3. The across-trial ranges in nondecision time and starting point 

were similar across the experiments (note that they are estimated less well than the other 

parameters with larger SD’s in their estimates, Ratcliff & Tuerklinckx, 2002; Ratcliff & 

Chiilders, 2015).

Drift-rate coefficients can be compared within the linear or within the log model across 

conditions of an experiment, but not between them because the log and linear models place 

numerosity on different scales. However, drift rates track difficulty in both models and the 

relative sizes of the differences among conditions can be used to understand how 

manipulations affected the quality of encoded representations of stimuli. The main results 

were that the area manipulation affected the drift-rate coefficients most in the B/Y task, next 

in the L/R task, and almost not at all in the Y25 task. Proportional-area stimuli increased 

drift-rate coefficients by 100% for the B/Y task, 30% for the L/R task, and less than 10% for 

the Y25 task.

SD coefficients can be also be compared. For Experiments 1 and 3, the SD coefficients for 

the linear model were 2.5 times larger for the B/Y task than the Y25 task (t(28.5)=4.4, p<.
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05). This suggests that there is a lot more variability in extracting numerosity information 

from two intermixed stimuli than extracting numerosity information from one stimulus.

When the linear model was successful, the SDs in drift rate η (derived from the SD 

coefficients) should have increased with numerosity and they did, although only modestly: 

the minimum and maximum values of η were 0.10 and 0.15 (compared with 0.13 and 0.36 

for Experiment 1). When the log model was successful, the SDs should have been 

approximately constant and they were: constant at 0.03 (compared with 0.16 and 0.18 for 

Experiment 2).

Experiment 4

Experiments 4 and 5 are two of the experiments we conducted to replicate results from the 

context of one set of independent variables to another set. The task for Experiment 4 was the 

B/Y task from Experiment 1: the arrays were intermingled blue and yellow dots and subjects 

decided which had the greater number. The new variable was dot size: the dots were either 

about the same sizes as for Experiments 1, 2, and 3 or they were very small (Figure 4G). The 

results replicated those of Experiment 1 for both sizes: RTs decreased as accuracy decreased, 

the area variable affected performance, and the linear model fit the data better than the log 

model.

The stimuli for Experiment 4 were constructed in the same way as for Experiment 1 except 

for the manipulation of dot size. The manipulation of area was the same as for Experiment 1 

and the numeracy conditions were the same, 15/10, 20/15, 25/20, 30/25, 40/35, 20/10, 30/20, 

40/30, 30/10, and 40/20. The radii of the dots were either 8, 10, 12, 14, 16, or 18 pixels or 2, 

3, 4, 5, 6, or 7 pixels.

RT and Accuracy Results—Responses to blue dots were combined with responses to 

yellow dots in the appropriate way. The effects of size and the area variable averaged over 

numerosity are shown in Table 5. Responses were less accurate and slower for the equal-area 

conditions than the proportional-area conditions, F(1,15)=124.4, p<.05, for accuracy and 

F(1,15)=74.2, p<.05, for RTs. They were less accurate and slower for the small dots than the 

regular-sized ones, F(1,15)=45.3, p<.05, for accuracy and F(1,15)=9.1, p<.05, for RTs. The 

interactions were also significant, F(1,15)=6.9, p<.05, for accuracy and F(1,15)=13.7, p<.

05), for RTs. The effects of area on accuracy and RTs were larger than those of dot size, 

11% and 4%, respectively, for accuracy and 29 ms and 15 ms, respectively, for RTs.

Figure 10 shows quantile-probability plots for small dot sizes on the left panel and the larger 

ones on the right, x’s the data and o’s the predictions of the linear model. Difficulty 

increased from the ends of the functions toward the middle and accuracy and RTs decreased, 

replicating Experiment 1. Fits of the models to the data are described after Experiment 5.

Experiment 5

This experiment was a replication of the Y25 task from Experiment 3 with the added 

manipulation of dot size. Blue and yellow dots were intermingled in single arrays and 

subjects decided whether the number of dots of one of the colors was larger or smaller than 

25. There were 10, 15, 20, 30, 35, or 40 of the target-color dots in each array, 15 or 35 dots 
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of the other color, and the summed areas of the dots were equal or proportional. The sizes of 

the small and regular-sized dots were the same as for Experiment 4.

Results—Table 6 shows the data for correct responses collapsed over the three numbers of 

dots smaller than 25 and the three numbers of dots larger than 25. As difficulty increased 

from the ends of the functions toward the middle, accuracy decreased and RTs increased, 

replicating Experiment 3.

The areas of the dots did not significantly affect accuracy or mean correct RTs (F’s less than 

0.8). The number of non-target dots did not significantly affect accuracy, F(1,15)=0.8, but it 

did significantly affect RTs, F(1,15)=8.9, p<.05, although the effect was only 7 ms. The size 

of the dots had a significant effect on accuracy, about 2%, F(1,15)=16.6, p<.05, and on RTs, 

about 10 ms, F(1,15)=20.7. The interactions were not significant; F’s were less than 2.4 for 

accuracy and less than 2.2 for RTs.

Figure 10 shows quantile-probability plots for the larger and smaller dot sizes all in the same 

plot, x’s the data and o’s the predictions of the linear model (the log model predictions were 

indistinguishable). As difficulty increased from the ends of the functions toward the middle, 

accuracy and RTs decreased, replicating Experiment 3.

Fitting the Models to the Data for Experiments 4 and 5—Tables 2 and 3 show the 

best-fitting parameter and mean G-square values and Figure 10 shows the quantile-

probability plots with predictions from the linear model. The shapes of the plots are the 

same as those for Experiments 1 and Experiment 3. The log model failed to fit the data for 

Experiment 4, as it did for Experiment 1, and it fit the data about as well as the linear model 

for Experiment 5, as it did for Experiment 3.

For Experiment 4, as difficulty increased and accuracy decreased, RTs decreased for 

differences in numerosity of 5, the effect was smaller for differences of 10, and the functions 

flattened out for differences of 20, the same pattern as for Experiment 1.

To fit the linear model to the data, there were the usual four parameters for the diffusion 

model plus the constant component of the across-trial SD in drift rate, four drift-rate 

coefficients, one for each of the area by dot-size conditions, and the SD coefficient. There 

were 430 degrees of freedom (11 times 40 conditions minus the ten parameters) for a critical 

chi-square of 479.3. The mean G-square value was 474, a little below the critical value.

The linear model separated the effects of confounded variables, as it did for Experiments 1, 

2, and 3, by estimating the relative sizes of them in the drift-rate coefficients. For 

Experiment 4, for the linear model, the area manipulation doubled the drift-rate coefficient, 

from 0.018 for equal areas to 0.035 for proportional areas (F(1,15)=101.8, p<.05) and the 

dot-size manipulation had a 30% effect, the drift-rate coefficient was 0.023 for small dots 

and 0.030 for regular-size dots (F(1,15)=61.2, p<.05). The interaction was also significant 

(F(1,15)=10.2, p<.05). These drift-rate coefficients provide measures of the effects of the 

manipulations and dot size on numerosity discrimination. Although there is an interaction, 

the effects of the two variables appear to be proportional or multiplicative rather than 

additive (see Table 3).
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For individuals, G-square values were lower for the linear model for 11 out of 16 subjects 

and the slope of the RT versus overall numerosity function for differences of 5 was less than 

0 for 56 out of 64 comparisons (equal and proportional area crossed with dot size for 16 

subjects). Both of these support the linear model for individual subject data.

For Experiment 5, dividing the data by the two area conditions, the number of non-target 

dots and dot size gave too few errors for many of the high-accuracy conditions (i.e., less than 

the 5 needed to produce error RT quantiles). Furthermore, the differences between the equal- 

and proportional-area conditions was only 0.2% in accuracy and 2 ms in mean RT, so we 

combined the two conditions. This reduced the number of conditions to 24. There were the 

usual four parameters for the diffusion model, the constant component of the across-trial SD 

in drift rate, the coefficient for across-trial SD in drift rate, a drift-rate criterion (because 

subjects did not set the zero point of drift exactly at 25), the starting point of the diffusion 

process, and four drift-rate coefficients. Note that the drift-rate criterion for the linear model 

in Experiment 5 seems large relative to the drift-rate coefficients, but the drift rates are 

derived from the coefficients by multiplying them by the number of dots minus 25 (so the 

drift rates for the coefficient 0.032 in Table 3 are 0.16, 0.32, and 0.48 which are larger than 

the drift rate criterion of −0.032). There were 252 degrees of freedom (11 times 24 

conditions minus 12 parameters) and the critical value was 290.0. The mean G-square from 

the fits to the data was a little larger than this, 328, showing a good fit to the data. For 

individuals, G-square values were lower for the linear model for 12 out of 16 subjects which 

supports the linear model for individual subject data.

The effects of the confounded variables were small. The effect of the number of non-target 

dots, 0.035 vs. 0.033 for 15 non-target dots compared to 35, was significant (F(1,15)=4.2, 

p<.05) but the size was only 6%, which is comparable to the 10% effect in Experiment 3. 

The effect of the size of the dots was also significant (F(1,15)=28.8, p<.05), but the effect 

was not large, about a 15% effect, with the drift-rate coefficient for large stimuli 0.036 and 

the coefficient for small stimuli 0.031. The interaction was not significant (F(1,15)=0.6).

The results of the area manipulation for Experiments 4 and 5 replicated the effects of the 

confounded variables in Experiments 1 and 3. For the B/Y task (Experiment 4), the area 

conditions had large effects on accuracy, RTs, and drift-rate coefficients but for the Y25 task 

(Experiment 5), area had non-measurable effects.

The SD coefficients differed significantly between the two experiments, with the coefficient 

for Experiment 4 larger than the one for Experiment 5 (t(23.4)=3.4, p<.05). As for 

Experiments 1 and 3, this is likely because extracting information about the relative number 

of two stimuli from an intermingled array produces more variability than comparing one 

array to a standard. The SD coefficients are used to produce across-trial SDs in drift rate (η) 

using the numerosity values for each condition in the experiments (using the equation in 

Figure 2C). For linear models, for Experiment 4, the smallest value was 0.17 and the largest 

0.44 and for Experiment 5, the smallest was 0.13 and the largest 0.21. These results are 

similar to those from Experiments 1 and 3.
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The other model parameters were similar to those from Experiments 1 and 3, respectively. 

The values of boundary separation and nondecision time differed little between Experiments 

4 and 5 and, although the differences in the range of starting point and the range in 

nondecision time appear larger, the large variability associated with those parameters means 

that they do not differ in a meaningful way.

Correlational/Individual Differences Analyses—Experiments 1 through 5 have 

shown that numerosity discriminations are not based on exactly the same aspects of stimuli 

across tasks. When the task was to compare the numerosity of blue and yellow dots 

intermingled in a single array (the B/Y task) or dots of the same color in two side-by-side 

arrays (the L/R task), area and dot size had large effects on performance; discrimination was 

easier for proportional- than equal-areas and easier for larger dots than smaller ones. But 

when the task was to compare the numerosity of one array of dots against a standard (the 

Y25 task), area and dot size had small or nonexistent effects.

The findings just enumerated are complex and this brings up two questions: are the 

numerosity skills an individual brings to a numerosity discrimination task the same from one 

level of a dimension to another and are they the same from one task to another?

Within a task, for Experiments 1 and 2, there were two levels of the area variable. The 

correlations between subjects’ drift-rate coefficients for the equal- and proportional-area 

conditions were high, 0.83 in Experiment 1 and 0.85 in Experiment 2. For Experiment 3, 

there were two dimensions, area and number of non-target dots, each with two levels, giving 

six correlations; the average of them was 0.93. For Experiment 4, the dimensions were area 

and dot size and the average of the six correlations was 0.97. For Experiment 5, the 

dimensions were area, dot size, and number of non-target dots. Collapsing over area, the 

average of the six pairs of correlations was 0.88. Altogether, these correlations show that 

subjects who were good at one level of a dimension or combination of dimensions were 

good at the others, indicating that the numerosity skills that a subject used were about the 

same for all the conditions in the experiments.

The second question was whether the B/Y, L/R, and Y25 tasks assess the same numerosity 

abilities? In other words, are drift-rate coefficients highly correlated across tasks? These are 

critical questions for research in numerical cognition; if the skills an individual brings to one 

numerosity discrimination task are not correlated with those of another task, then choices 

about what tasks to use to measure and investigate the abilities that might underlie math 

achievement are compromised. It would be difficult to argue that numerosity in general is 

predictive of or related to achievement. We addressed this issue with Experiments 6 through 

9, for which subjects were each tested on two or more tasks.

Experiment 6

Subjects were tested on the B/Y task, deciding whether there were more blue or yellow dots 

in a single array and the Y25 task, deciding whether the number of blue dots or the number 

of yellow dots in a single array was larger or smaller than 25. The two tasks were tested in a 

single 50-min. session so in order to keep the number of observations per condition large, 

only equal-area arrays were used.
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For the B/Y task, there were the same ten numerosity conditions as for Experiment 1, which 

varied levels of numerosity and differences between the levels. For the Y25 task, there were 

the same six levels of numerosity and the same two numbers of non-target dots, 15 and 35 as 

for Experiment 3. Which task was presented first alternated across subjects.

Results—Responses to blue dots were combined with responses to yellow dots in the 

appropriate way for the B/Y task. For analyses for the Y25 task, there was only a 2.5% 

difference in accuracy and only a 3 ms difference in correct mean RTs between the 15 and 

35 numbers of non-target dots, so the data were averaged over them to give more 

observations (because in many of the conditions there were too few errors to provide 

quantile RTs for fitting).

Figure 11, left panel, shows the quantile-probability plots for the B/Y task and the 

predictions of the linear model: RTs decrease as accuracy decreases for constant differences 

in numerosity just as in Experiments 1 and 4. The right panel shows the quantile-probability 

plots for the Y25 task and the predictions of the linear model: RTs increase as accuracy 

decreases, just as in Experiments 3 and 5. The best-fitting parameter values and the mean G-

square values are shown in Tables 2 and 3.

The linear model fit the data reasonably well for both tasks. For the B/Y task, the number of 

degrees of freedom was 103 (10 conditions and seven model parameters, boundary distance, 

across-trial range in starting point, nondecision time, across-trial range in nondecision time, 

the constant component of the SD coefficient, the SD coefficient, and a drift-rate coefficient, 

Tables 2 and 3). The critical chi-square value was 132.1 and the mean G-square value was a 

little larger than this, showing a good fit to the data. For the Y25 task, the number of degrees 

of freedom was 57 (six conditions and nine parameters, the same six parameters that were 

listed first for the B/Y task plus a drift-rate criterion, the starting point of the diffusion 

process, z, and one drift-rate coefficient). The critical chi-square value was 75.6. The mean 

G-square value was a little larger than the critical value, showing reasonable fits.

The log model also fit both tasks reasonably well, and the numerical mean G-square value 

was only a little larger for the log model than the linear model. For the B/Y task, G-square 

values were lower for the linear model than the log model for 21 out of 35 subjects and the 

slope of the RT versus overall numerosity function for differences of 5 was less than 0 for 32 

out of 35 comparisons. This shows that the overall fit was quite similar for the two models, 

but the qualitative pattern of data (decreasing RT with increasing numerosity function for 

differences of 5) clearly supported the linear model. For the Y25 task, G-square values were 

lower for the linear model for 15 out of 35 subjects, which shows similar amounts of support 

for both models.

Figure 12 shows scatter plots and correlations among the distance between the boundaries, a, 

nondecision time, Ter, the SD coefficient, σ1, and the drift-rate coefficient v1 for the two 

tasks. The critical value of the correlation coefficient for 32 observations (32 subjects) is 

0.35 with 30 degrees of freedom.
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The main aim of this experiment was to examine whether a subject brought the same 

numerosity skills to the two tasks. Skill is measured by the drift-rate coefficient, v1, and it 

was significantly correlated between the two tasks (top left panel of Figure 12). The SD 

coefficients were also significantly correlated (top right panel). The distances between the 

boundaries correlated strongly (bottom left panel); subjects who responded more slowly and 

more carefully in one task also did so in the other task. Nondecision times were significantly 

correlated but less strongly (Figure 12, bottom right panel), although the small correlation 

might be due to outliers (the correlation was larger in Experiments 7, 8, and 9).

Experiment 7

Subjects were tested on two tasks. One was the B/Y task from Experiments 1, 4, and 6. The 

other was new: the stimuli were 5×5 arrays of X’s and O’s and subjects decided whether 

there were more X’s or O’s (we call this the X/O task). The total number of X’s and O’s was 

always 25 (Figure 4E). To make the two tasks as similar as possible, we made the number of 

dots in the B/Y task sum to 25 and we made the combinations of the numbers of blue and 

yellow dots match the combinations of X’s and O’s. The combinations were 18/7 and 7/18 

for the easiest conditions, 16/9 and 9/16 for the medium difficulty conditions, and 14/11 and 

11/14 for the most difficult conditions. For the dots, the areas were either equal or 

proportional.

In this experiment, the differences in numerosity were not constant as numerosity increased 

as they were in Experiment 1 (for example, the differences between 10 and 15, 15 and 20, 

and 20 and 25 were all 5). This excluded the conditions that led to Experiment 1’s counter-

intuitive result. Thus, the linear and log models both fit the data reasonably well and so we 

examined correlations between model parameters for the two tasks for both models.

The two tasks were tested in a single 50-min. session. All the blocks of one task were 

completed before all the blocks of the other task and the order was switched for successive 

subjects. The X’s and O’s were white characters on a black background (the inverse of 

Figure 4E), presented in a square that was 235 pixels per side (6.3 degrees of visual angle) in 

the center of the screen. The X’s were 30 pixels wide and 35 pixels high and the O’s were 33 

pixels wide and 35 pixels high (subtending angles of 0.81 by 0.95 degrees and 0.89 by 0.95 

degrees, respectively). The X’s and O’s were spaced 50 pixels apart vertically and 

horizontally.

Results—The data for “blue” and “yellow” responses were symmetric and so were “X” 

and “O” responses, so they were each combined in the appropriate way (e.g., correct 

responses for X’s for the easy condition were combined with correct responses for O’s for 

the easy condition, error responses for X’s for the easy condition were combined with error 

responses for O’s for the easy condition, and so on for the other conditions). The linear and 

log models both fit the data well and we plot results only for the linear one (parameter values 

for both are shown in Tables 2 and 3). The quantile-probability plots for the linear model are 

shown in Figure 13. They show that the quantile RTs for all the conditions for each 

experiment fall on a single quantile-probability function.
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For the B/Y task, accuracy averaged over the numerosity conditions was better with 

proportional than equal areas, 0.83 and 0.74 correct responses, and mean RT for correct 

responses was shorter (569 ms and 604 ms). The differences were significant, t(31)=13.4, 

p<.05, for accuracy and t(31)=8.7, p<.05, for mean RT. For the X/O task, accuracy averaged 

over the numerosity conditions was 0.77 correct responses and correct mean RT averaged 

over the numerosity conditions was 585 ms, thus the two tasks showed comparable 

performance. (Median RTs and accuracy values can be read off the quantile probability plots 

in Figure 13 - median RTs are the middle one of the five horizontal lines).

There were 58 degrees of freedom for the B/Y task (six conditions and eight parameters, 

boundary separation, across-trial range in starting point, nondecision time, across-trial range 

in nondecision time, the constant component of the SD coefficient, the SD coefficient, and 

two drift-rate coefficients, one for the equal-area conditions and one for the proportional-

area ones. Because the data were symmetric, the starting points in the models could be set to 

half the distance between the boundaries. Similarly, there were 26 degrees of freedom for the 

X/O task (three conditions and seven parameters). The critical chi-square value was 76.8 for 

the B/Y task and 38.0 for the X/O task. The mean G-square values for both tasks were a 

little higher than their critical values, showing reasonably good fits, and the G-square values 

for the B/Y task supported the linear model, but the G-square values for the linear and log 

models for the X/O task were close to the same (Table 3). The two drift-rate coefficients for 

the B/Y task were significantly different, t(31)=15.1, p<.05, for the linear model and 

t(31)=13.1, p<.05, for the log model (as for Experiment 1).

For the B/Y task for individuals, G-square values were lower for the linear model for 24 out 

of 32 subjects while for the X/O task, there were equal numbers for each model (16 out of 

32). These provide support for the linear model for individual subject data but no differential 

support for the X/O task.

The correlations between the model parameters for the two tasks are shown in Table 7. The 

critical value for the correlation coefficient is 0.35 with 30 degrees of freedom. The drift-rate 

coefficients were significantly correlated between the two tasks, indicating that common 

numerosity skills are used. The distance between the boundaries and nondecision time were 

also significantly correlated (as in Experiment 6).

The SD coefficient σ1 was not significantly correlated between the tasks (unlike Experiment 

6). This is because the value of the across-trial SD in drift rate differed little across 

numerosity conditions and so produced little constraint on the value of σ1. The SD 

coefficient produces the values of the SD in drift rate across trials, η, for each condition in 

an experiment using the coefficients and the numerosities for the two stimuli as in the 

bottom equation in Figure 2C. The numbers of blue and yellow dots and of X’s and O’s 

were 18 and 7, 16 and 9, or 14 and 11. The values of η for the linear model for the X/O task 

were 0.101, 0.103, and 0.106 and for the B/Y task they were 0.131, 0.134, and 0.141. These 

are indistinguishable from constant values which, along with high estimation variability 

(Ratcliff & Tuerlinckx, 2002), means that they are relatively poorly estimated and this 

explains why they do not correlate significantly across the tasks.
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The most important result from this is that the drift coefficients, boundary settings, and 

nondecision time parameters correlate across these two tasks. This suggests that processes 

and representation are related across tasks and especially that the two tasks are tapping into 

the same numerosity aptitude. Later we discuss a way of manipulating many possible 

confounding variables and estimating drift rate coefficients for each variable to see which 

ones carry discriminative power.

Experiment 8

One of the tasks for this experiment was an X/O task like that used in Experiment 7, with 

subjects deciding whether there were more X’s or O’s in a 5×5 display. The other task was 

an asterisks task, with subjects deciding whether the number of asterisks in a 10×10 array 

was larger than 50 or not.

We have used this asterisks task in a number of other studies because it provides a way to 

map accuracy from near chance to near ceiling. This range of accuracy and RT distributions 

for correct and error responses provides significant constraints with which to test the 

diffusion model (Leite & Ratcliff, 2011; Ratcliff, 2006, 2014; Ratcliff et al., 1999, 2001, 

2007, 2010, 2012, 2015, 2016). Drift rates for this task correlate positively with drift rates 

for recognition memory and lexical decision tasks (Ratcliff et al., 2010), suggesting future 

research to investigate whether other numerosity discrimination tasks produce correlations 

with those tasks. Significant correlations have also been found with symbolic number 

discrimination and memory for numbers (Ratcliff, Thompson, and McKoon, 2015; 

Thompson, Ratcliff, & McKoon, 2016).

When the diffusion model has been fit to the data for this asterisks task, there has been no 

representation model and so drift rates are estimated from the data with a different drift rate 

for each level of numerosity (e.g., Ratcliff, 2014; Ratcliff, Thompson, & McKoon, 2015). In 

these earlier applications, it has been assumed that the SD in drift rate across trials (η) is 

constant. When drift rates were plotted against number of asterisks, the functions appeared 

linear (Ratcliff, 2014, Figure 2). This is a puzzle because in ANS models, the difference in 

drift rates between 15 and 20 asterisks would be expected to be larger than the difference 

between 80 and 85, just as the difference between 15 and 20 dots was larger than the 

difference between 30 and 35 dots in the Y25 task in Experiment 3. For the Y25 task, the 

linear model fit well, but it required that η increase with numerosity.

There are two possible resolutions to this puzzle. One is that subjects treat the asterisks task 

not as one in which the number of asterisks is compared to a standard (50), but instead as 

one in which the number of asterisks in a display is compared to the number of blank spaces. 

This makes the task like the B/Y and L/R tasks. The second is that the arrangement of 

asterisks in a regular grid with all characters of the same size may allow a much better 

assessment of numerosity relative to a criterion than dots of random sizes in random 

positions. The difference between these two schemes is what enters the calculation of η. In 

the first scheme, N2=100-N1 whereas in the second N2=50.

When the range of asterisks is 31–70, the means of the extreme bins are 33 and 68. For 

N1=33, 50, and 68 asterisks, the value of sqrt(N1
2+N2

2) for the first scheme is 75, 71, and 
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75, while for the second it is 60, 71, and 84. If the constant η0 were half the average value of 

η, then the differences in η across conditions would be quite small and impossible to detect.

If subjects are judging whether there are more or fewer spaces or asterisks then we can use 

the linear model as implemented for the X/O task in Experiment 7. Thus we can determine 

whether the models fit in the same way for the two tasks and to determine if individual 

differences are the same across the two tasks.

The asterisks were presented in 10 × 10 arrays 4.0 cm wide by 8.8 cm high, subtending 4.3 

by 9.5 degrees of visual angle. The numbers of asterisks in the displays ranged from 31 to 70 

in steps of 1 (always adding to 100). The displays of X’s and O’s were constructed in the 

same way (not the same as in Experiment 7) such that the size and visual angles were half of 

those for the asterisks stimuli. The numbers of X’s and O’s ranged from 5 to 20 in steps of 1, 

always adding to 25. All the blocks of one task were completed before all the blocks of the 

other task and the order of the tasks was switched for successive subjects.

Results—We grouped the number of asterisks into eight conditions, 31–35, 36–40, .. 66–

70 and the number of X’s and O’s into eight conditions, 5–6 X’s and 19–20 O’s, 7–8 X’s 

and 17–18 O’s, and so on. Responses were symmetric for both experiments, so the data were 

also grouped over above or below 50 and above or below 12.5 in the appropriate way to 

form four conditions. (For the asterisks task, the accuracy values for the four groups for 

small stimuli were 0.93, 0.88, 0.80, and 0.58 and for large responses, the values were 0.92, 

0.88, 0.81, and 0.61 which shows no accuracy compression for large numbers of asterisks 

and shows why combining small and large numbers is valid). Full psychometric functions 

for this task are examined in Experiment 9 and the Weber fraction analysis later.

To compare the tasks, for the asterisks task we assumed that subjects were deciding whether 

an array of asterisks contained more asterisks or more blank spaces (i.e., not comparing the 

number of asterisks to 50), just the same as deciding whether there were more X’s or O’s. 

This means that N1/N2 were 32/68, 37/63, 42/58, and 47/53. (We also fit the scheme in 

which N2=50 and found fits and parameter values that were almost identical.)

The linear and log models were applied in the same way as in Experiment 7 with the same 

parameters (shown in Tables 2 and 3) and they fit the data indistinguishably well, as in 

Experiment 7. The quantile-probability plots are shown in Figure 8 (middle) with the 

predictions of the linear model. There were 44 degrees of freedom (four conditions and the 

same seven parameters as for Experiment 6) with a critical chi-square value of 52.5 for both 

tasks. The mean G-square from the fits were below the critical value for each model and 

task, showing good fits. There was support for the linear model in individual fits with 24/32 

subjects better fit by the linear model by G-square (the mean G-squares were quite similar 

for the log and linear models, Table 3).

The application of the models used the assumption that the numbers of asterisks and spaces 

(just like the numbers of X’s and O’s in the X/O task) enter the computation for the SD in 

drift rate across trials. We can compute how much η changes across conditions using the 

expression in Figure 2C. For the middle and the most extreme numbers of asterisks, 50 and 
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70, η is 0.20 and 0.21, which means that the SD in drift rate across trials in the model for the 

hardest to the easiest condition was essentially constant. This is consistent with all the prior 

applications of the diffusion model to this task for which it was always assumed that η was a 

constant across conditions.

The correlations between the tasks for the linear and log models are shown in Table 8. The 

drift-rate coefficients correlated across tasks (0.52 and 0.60), as they did for Experiments 6 

and 7. There were strong correlations between the boundary separations (0.55 and 0.54) and 

the nondecision times (0.72 and 0.67) for the linear and log models respectively. The SD 

coefficients correlated 0.56 and −0.03 for the X/O and asterisks tasks, respectively. As for 

Experiment 7 and as discussed above, the data are fit with approximately constant values of 

across-trial SD in drift rate and this explains the lack of correlation between the SD 

parameters.

As for Experiment 7, the drift coefficients, boundary settings, and nondecision time 

parameters correlated across the two tasks. This suggests that processes and representation 

are related across tasks and that the two tasks are tapping into the same numerosity aptitude.

Experiment 9

At this point, we have shown significant correlations in drift-rate coefficients from one task 

to another for three pairs of tasks. In this experiment, we confirm and extend these results by 

testing each subject on four tasks, the B/Y, Y25, L/R, and asterisks tasks. These were the 

tasks from Experiments 1, 2, 3, and 8.

There were two sessions of the experiment, each with two tasks, 25 min. each, always tested 

in the same order (B/Y, Y25, L/R, and asterisks). The independent variables for the B/Y and 

L/R tasks were the 10 numerosity combinations from Experiments 1 and 2 and for the Y25 

task they were the six numerosity conditions from Experiment 3. The areas of the dots were 

always equal (to produce more observations per condition because there was only half a 

session for each task). The asterisks task was the same as for Experiment 8 except that the 

range of the numbers of asterisks was reduced to between 36 and 65. For each experiment, 

we collapsed across conditions in the same way as for the previous experiments, giving 10 

conditions for the B/Y and L/R tasks and 6 for the Y25 and asterisks tasks.

Results—The linear and log models were fit to the data and the one that best fit the data for 

each task was the same as for the earlier experiments. These best-fitting models were used in 

the correlational analyses below.

The B/Y task showed the decrease in RT as accuracy decreased (Figure 14; Table 9) and the 

linear but not the log model fit the data well. The mean G-square value for the linear model 

(133) was close to the critical value, 127.7 for 103 degrees of freedom. The L/R 

discrimination task showed the increase in RTs as accuracy decreased. (This was less 

apparent with numerosity differences of 5 than with 10 and 20.) The log model fit the data 

better than the linear model with the mean G-square value for the log model (133) a little 

larger than the critical value of 127.7.
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For the B/Y task, there is support for the linear model over the log model with G-square 

values lower for the linear model for 29/32 subjects and slope of the median RT versus 

numerosity function less than 0 for 26/32 subjects (for a numerosity difference of 5). For the 

L/R task, the log model had 18/32 subjects with lower G-square values than for the linear 

model and 21/32 slopes of the median RT versus numerosity function greater than 0.

For the Y25 task, the number of distractors was manipulated, but we collapsed over these 

two sets of conditions to obtain more observations per condition. This is justified because 

there was less than a 1% difference in accuracy and a 10 ms difference in mean RT for few 

distractors versus many distractors. The linear model fit better than the log model. The 

critical value of G-square was 75.6 for 57 degrees of freedom and the mean G-square from 

the linear model was about a third larger than the critical value indicating a good fit of the 

model to data. The linear model fit the data better than the log model and the difference in 

goodness of fit is larger here than for Experiment 3. The critical value of G-square was 75.6 

for 57 degrees of freedom and the mean G-square from the linear model was about a third 

larger than the critical value indicating a good fit of the model to data. As before, the model 

underestimated the RT quantiles for “small” stimuli by a modest but consistent amount.

For the asterisks task, the linear model fit a little better than the log model. The mean G-

square value (76.6) was close to the critical value (75.6) which indicates a good fit. There 

appears to be compression in large stimuli relative to small stimuli, but this is mainly a bias 

in drift rate in which small stimuli for all the conditions are more likely to be called large 

and this is captured by the drift criterion (Table 9).

For the asterisks and the Y25 tasks, there is little decisive support for either the linear or log 

models from G-square values for individual subjects. The number of subjects with mean G-

square values support the linear model, for the asterisks task was 22 out of 32 and for the 

Y25 task, 17 out of 32.

As for the asterisks task in Experiment 8, we can check whether the linear model is 

consistent with a constant value of across-trial SD in drift rate. Using the equation in Figure 

2C and the parameter values from Table 9, the SD drift rate across trials for 38 and 63 

asterisks (means of the two extreme ranges) were 0.12 to 0.14 and these are not 

discriminable from a constant value of the SD. In contrast, for the Y25 discrimination task 

and the linear model, for the extreme numerosity values of 20 and 40, the SD drift rate 

across trials values were 0.17 and 0.24. For the B/Y task and linear model, for 10 vs. 15 dots 

and 35 vs. 40 dots, the SD drift rate across trials values were 0.14 and 0.32, and for the L/R 

task and the log model, the SD drift rate across trials values were 0.27 and 0.32. These 

values in the SD in drift rate across trials are consistent with constant values for the asterisks 

and L/R tasks and are consistent with the linear model with increasing SD for the B/Y task 

and Y25 task.

The correlations between all the pairs of tasks (Figure 15) for the drift-rate coefficients, the 

distances between the boundaries, and nondecision times were all significant (critical value 

of 0.34) as they were in Experiments 7 and 8. The results are consistent with the hypothesis 

that the four tasks tap into common numerosity abilities. However, the number of subjects 
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was not large for an individual differences study and the data could not be used, for example, 

to determine whether the correlation between one task and a second was larger or smaller 

than the correlation between that task and a third task.

Experiment 10

This experiment had the goal of examining two new manipulations while replicating results 

from earlier experiments. Subjects judged whether the number of dots in a display was larger 

or smaller than 25, but unlike the Y25 task used in the earlier experiments, the dots were all 

of the same color (i.e., there were no non-target dots). Second, the dots in the arrays were 

located in random positions, as in all the earlier experiments with dots, or positioned on a 

grid like that used for X’s and O’s and asterisks. Examples of the stimuli are shown in 

Figure 4F. The question was whether or not the presence of the non-target dots was in some 

way responsible for the finding that area had no effect on performance. To anticipate, results 

were just the same as for the earlier Y25 experiments.

There were six numerosity conditions, 10, 15, 20, 30, 35, or 40 dots. Areas were either equal 

or proportional. For half the trials, the dots were displayed in random positions and for the 

other half, positions on a 8 × 8 grid.

Results—Accuracy and correct mean RT were collapsed over the numerosity conditions 

and results are shown in Table 10. As for all the other Y25 experiments, area had no 

significant effect on accuracy, about 1% (F(1,14)=4.3), and its effect on RTs was 0 ms 

(F(1,14)=0.0). The effects of random vs. grid positions were also not significant. The effect 

on accuracy was about 1.5% (F(1,14)=4.6) and the effect on RTs was 3 ms, (F(1,14)=2.0).

Figure 13 (bottom) shows the quantile-probability plots and the predictions of the linear 

model (the log model’s fits to the data were not distinguishably different). The data points 

from all the conditions fell on the same quantile-probability function. There were 252 

degrees of freedom (24 conditions and 12 model parameters, the same as for Experiments 3 

and 5 except the four drift rate coefficients were for area crossed with grid vs. no grid). The 

critical chi-square value was 290.0 and the mean G-square values for the linear and log 

models were both a little larger than the critical value, showing good fits. For individual 

subjects, there was support for the linear model, with 10 out of 15 G-square values 

supporting the linear model, but little other compelling evidence for one model over the 

other. The manipulations of the area and random vs. grid variables had no more than a 6% 

effect on the drift-rate coefficients and their main effects and interaction were not significant 

(the three F values were less than 0.2).

Neither the presence of non-target dots nor the grid arrangement affected the pattern of 

results for the Y25 task and so neither was responsible for the linear model fitting data a 

little better than the log model in Experiment 3.

Experiment 11

For all the experiments in this paper, when the log or linear model fit the data well, it did so 

with across-trial variability in drift rates; that is, the value the model produced for a single 

stimulus’s drift rate was not identical from one presentation of it to another presentation of 
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it. However, it has been claimed that this is not correct, that there is no such across-trial 

variability in drift rates in applications to perceptual decision-making (Churchland et al., 

2008; Kira, Yang, & Shadlen, 2015; Ditterich, 2006a, 2006b; Drugowitsch et al., 2012; 

Kiani et al., 2014; Palmer et al., 2005; Zhang et al., 2014; see the discussion in Ratcliff, 

Smith, Brown, & McKoon, 2016). Here, we use a double-pass procedure to show that there 

is in fact across-trial variability. We do this with the B/Y task because the assumption of 

across-trial variability is most critical for this task; it is required for the linear model to 

account for the counter-intuitive pattern of data.

With the double-pass procedure, an exact copy of a stimulus is repeated from one block of 

trials to another (Burgess, & Colborne, 1988; Cabrera, Lu, & Dosher, 2015; Gold et al., 

1999; Green, 1964; Lu & Dosher, 2008). The logic is that if there is no across-trial 

variability in drift rates, then the only variability comes from variability within each trial, 

which means that the probability that the response on the second presentation is the same as 

on the first will be at chance. If instead there is across-trial variability in drift rate, then the 

probability can be greater than chance. For example, if for all stimuli, a subject tends to 

attend more to the middle of a display and a particular stimulus has more blue dots than 

yellow in the middle, the subject might be biased to respond “blue” and this bias would hold 

for the second presentation as well, making the probability of the same, “blue,” response 

greater than chance. Ratcliff, Voskuilen, & McKoon (submitted) used the double-pass 

procedure with four perceptual tasks and the asterisks task and for all of them found greater-

than-chance probabilities that responses were the same from one presentation of a stimulus 

to the second.

The numbers of blue and yellow dots in the displays were 15/10, 20/15, 25/20, 30/25, 35/30, 

and 40/35 and the areas were always proportional. There were 18 blocks of 96 trials and 

each second successive block was identical to the one before it so that there were 96 trials 

intervening between a stimulus and its exact repetition.

Results—Responses for blue and yellow dots were symmetric so the data were grouped in 

the appropriate way and the starting point for the diffusion model was set halfway between 

the boundaries. The linear model fit the data well, with both RTs and accuracy decreasing 

with increasing numerosity. The top panel of Figure 16 shows the quantile-probability plots, 

which replicate those from Experiments 1, 4, 6, and 9. The mean G-square value was 96.8 

with a critical chi-square value of 77.9 with 59 degrees of freedom (six conditions with 

seven parameters, the distance between the boundaries, across-trial range in the starting 

point, nondecision time, across-trial range in nondecision time, the constant component of 

the across-trial SD in drift rate, the SD coefficient, and one drift-rate coefficient).

The bottom panel of Figure 16 illustrates how double-pass data can be displayed. Accuracy 

is plotted against the probability that the two responses to a stimulus are the same (the 

“agreement” probability). We generated simulated data to give the eight curves in the figure. 

There were seven levels of drift rate (which gave seven levels of accuracy) and eight levels 

of across-trial SD in drift rate (η). The data were simulated using these drift rates and 

across-trial variabilities in drift rate, η (not ones derived from the drift rate coefficients), 

plus the best-fitting values of boundary separation, nondecision time, across-trial range in 
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starting point, and across-trial range in nondecision time from to fits to accuracy and RT 

data. The seven drift rates were 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, and 0.5 and the seven SDs 

varied from 0.0–0.3 in steps of 0.05.

For the first presentation of a stimulus, for each condition in the plot, that is, each drift rate 

and each across-trial SD in drift rate, a random drift rate was generated from that 

distribution. The starting point and nondecision time values were chosen randomly from 

their across-trial distributions. For the second presentation, the same value of drift rate was 

used. New values for the starting point and nondecision time were chosen from their 

distributions. For each combination of drift rate and across-trial variability in drift rate, we 

generated 20,000 simulated choices and RTs (using the random walk method for generating 

simulated choices from the diffusion model, Tuerlinckx et al., 2001) and plotted accuracy 

against agreement probability for Figure 16. Each line in the figure joins points that have the 

same value of across-trial SD in drift rate, with drift rate varying along the line.

The red squares are the mean values of agreement from the data with groupings of pairs of 

conditions (15/10 and 20/15, 25/20 and 30/25, 35/30 and 40/35). The values of probability 

and agreement fall close to the line for which η=0.15. The standard errors in the values of 

agreement are 0.019, 0.015, and 0.017 for the data groups corresponding to low, medium, 

and high numerosity values (in other words, the agreement probabilities are significantly 

different from those in the zero η line). The values of the SD in drift rate across trials 

corresponding to the same three conditions were 0.15, 0.22, and 0.29. Thus, in the 

relationship between the model and data, the SD in drift rate that is common between the 

two presentations as estimated from the double pass procedure did not appear to increase 

with numerosity. Furthermore, the value of the SD in drift rate across trials read off of 

Figure 16 was about the same size as the value of η for the lowest value of numerosity from 

fits of the linear model to data. This suggests that with larger numerosity there is more 

random variability that is added to the drift rate, variability that is not common across 

repeated presentations. The model also predicted a low correlation between RTs on the two 

trials (0.06) and the data showed such a low correlation (0.10).

The data and model predictions from this task show that there is variability in drift rate from 

trial to trial and some of this variability represents consistent differences in encoding the 

stimuli from one to another presentation. This provides direct evidence for variability from 

trial to trial in drift rate, variability that is crucial in order to fit the linear model to the data 

from this kind of task.

Weber Fraction—In perception, the Weber fraction (w) is the difference in stimulus 

intensity needed to produce a certain level of accuracy divided by the intensity; it is usually a 

constant. The Weber fraction is used extensively as an index of numerical acuity or ability 

(e.g., Halberda et al., 2012; but see Inglis & Gilmore, 2014), where it is defined as the 

amount the mean value of a numerosity, N, must be multiplied by to give the SD of the 

distribution around that numerosity, i.e., SD=N*w (i.e., the coefficient of variation). In the 

standard model, evidence is represented by normal distributions as in signal detection theory 

as in Figure 1.
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The Weber fraction is not just a measure that summarizes data like mean accuracy and mean 

RT do. Instead, it is derived from a model that is fit to data. This means that its validity can 

be assessed by a standard chi-square goodness-of-fit statistic. It is an accuracy-based model 

with numerosities represented on a linear scale and variability around numerosities 

increasing as numerosity increases, the same assumptions as for the linear model used here. 

The log model cannot provide the same estimate of the Weber fraction because if 

distributions that are normal on a log scale are transformed to a linear scale (to be consistent 

with the Weber-fraction computation), the transformed distribution would not be normally 

distributed and so the computations would not be the same as those for the linear model. 

Simple numerical methods might be used to assess whether the two models produce similar 

estimates of the Weber-fraction (which they might). But the important point is that anyone 

using or promoting the log model cannot validly use the Weber fraction without further 

investigation because the Weber fraction is computed from a different model, namely, the 

linear model with normal distributions of numerosity around their central values.

We compared the Weber-fraction model’s predictions of accuracy to the linear-diffusion 

model’s using a chi-square statistic. The linear model’s predictions came from fitting the 

model to accuracy and RT data as usual. We used the data from Experiment 9 which 

includes four of the main tasks for this article. We also used the data from the asterisks task 

in Ratcliff (2014, Experiment 1) which varied the number of asterisks across a large range 

(from 2–98) and which provided a strong test of the Weber model as well as providing a 

strong test of the linear and log models as applied to the asterisks task. To give accuracy 

predictions for each task of Experiment 9, we used whichever of the linear or log models 

gave the best fit to the data. For the asterisks task, we used the linear model because it fit the 

data better than the log model.

The Weber fraction plays a similar role to the drift-rate coefficient in the ANS-diffusion 

models because drift rate is most related to accuracy. But it is important to note that acuity in 

the Weber-fraction model is related to the SDs in the distributions whereas acuity in the 

ANS-diffusion models is measured by the drift rate coefficients (which are related to the 

means, not the SDs). We can compute correlations between them to see if they vary in the 

same ways across individuals. In terms of the fits of the models to data, we expected the 

diffusion model to fit data worse than the Weber-fraction model because the diffusion model 

is constrained by RTs as well as accuracy. Park and Starns (2015) also present a detailed 

analysis of the relationship between drift rate and Weber fraction. They showed that the 

Weber fraction is contaminated by speed-accuracy tradeoffs and that drift rate is a better 

predictor of math ability.

Table 11 shows Weber fractions, drift-rate coefficients, SD coefficients (σ1), the mean chi-

square values for the two models for accuracy, the number of subjects with non-significant 

chi-square values, and the correlations between the Weber-fraction and the appropriate linear 

or log model. The degrees of freedom for the chi-square in the data from Experiment 9 were 

10 for the B/Y and L/R tasks and 6 for the Y25 and asterisks tasks, because there were 10 or 

6 pairs of correct and error responses, respectively, and the probabilities for each pair add to 

1, giving 1 degree of freedom per condition (accuracy value).
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We subtracted 1 from the degrees of freedom for the data for the one parameter in the 

Weber-fraction model. It is difficult to perform an equivalent comparison for the diffusion 

model because it used more parameters to fit data and it is fit to quantile RTs and response 

proportions which have many more degrees of freedom. So for the comparison here, we 

computed chi-square for the model fit to accuracy data alone and we used the same critical 

value for the chi-square. For the experiment from Ratcliff (2014), the data were grouped into 

24 conditions so the degrees of freedom were 23.

Figure 17 shows plots of predictions from the appropriate ANS diffusion model and the 

Weber-fraction model averaged over subjects, the o’s the predicted values and the x’s the 

data. For the B/Y and L/R tasks, the top four panels, the probabilities of correct responses 

are plotted against the smaller of the two numbers for each condition (e.g., 10 is the smaller 

of the two numbers for the 15/10, 20/10, and 30/10 conditions so there are three points in the 

vertical line above 10). The Weber-fraction model fit these data a little better than the ANS 

diffusion model, as expected (because it was also fit to RT quantile). The number of subjects 

with non-significant chi-square values was larger for the Weber models than the diffusion 

model (Table 11).

For the Y25 task, third row in Figure 17, the proportions of responses that were “smaller” 

are plotted against the number of dots. The linear diffusion model fit the data better than the 

Weber model with chi-square values 4 times larger for the Weber model. Half the subjects 

showed non-significant chi-square values for the diffusion model and only six for the Weber 

model. For the asterisks task for Experiment 9, the diffusion model again fit the data better 

with the mean chi-square value about 5 times larger for the Weber model and 28 subjects 

with non-significant chi-square values for the diffusion model as opposed to 14 for the 

Weber model. Figure 16 (third and fourth rows) shows how the Weber model misfit the data 

for the Y25 and asterisks tasks. The data for both tasks are roughly symmetric about the mid 

point and the functions are consistent with asymptotes less extreme than 0 or 1. The Weber 

model for both tasks produces a function that approaches 1 with the lower values of 

numerosity and approaches 0 more slowly than the data (though appears about to cross over 

at the largest numerosity. In contrast, the deviations between diffusion model predictions and 

the data are much less systematic.

To do the same analysis for the asterisks task from Ratcliff (2014, Experiment 1), we fit both 

linear models to the data and found they were indistinguishable. For the linear model with 

N2=50, the value of G-square was 245 (Table 9) and values of η for N1=4, 50, and 96, were 

0.19, 0.15, and 0.19. For the scheme with N2=100-N1, the value of G-square was 243 (the 

values of the other parameters were within a few percent of each other). For this model, 

η0=0.056 and σ1=0.00082 which gave values of η for N1=4, 50, and 96 of 0.10, 0.11, and 

0.14. The values of η from both models are not distinguishable from constant values.

We then generated predictions, and compared the predicted accuracy values to those from 

the fit of the Weber-fraction model to the accuracy data. The model was fit to the RT 

quantiles and response proportions as in the earlier experiments. The mean G-square (245) 

was less than the critical value (293.2 with 255 degrees of freedom) and only 1 out of 19 

subjects had a significant value above the critical value. We also fit the log model to these 
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data and the fit was much worse than the linear model. The mean G-square was 404 and all 

subjects had G-square values larger than the critical value. The values of the parameters are 

shown in the bottom two rows of Table 9.

Table 9 and Figure 17 (bottom panels) show predictions from the Weber model, the 

predictions from the linear model, and proportion of “small” responses plotted against the 

number of asterisks. The diffusion model fits to the choice proportions missed the data 

slightly at around 60 asterisks (the thin solid/red line shows the values for the log model). 

The value of chi-square from the response proportions was 29.6 with a critical value of 36.4 

with 24 degrees of freedom and 14 out of 19 subjects had chi-square values less than the 

critical value. The Weber fraction model missed at the low numbers of asterisks; it predicted 

values that were at ceiling (approaching 1) while the data had values near 96% correct. The 

chi-square value was 54.5 and only 6 of the subjects had chi-square values less than the 

critical value. The values of the drift coefficient parameters shown in Table 9 are comparable 

with those from the fits to the asterisks task in Experiment 8 but with the drift rate and SD in 

drift coefficients about half the values of those from Experiment 8.

In the literature, the Weber fraction seems to be treated as a property of an individual rather 

than a property of a task and an individual. However, the mean values of the Weber fraction 

across individuals for the four tasks from Experiment 9 differed considerably. The values (in 

Table 11) ranged from 0.22 to 0.65 and for the asterisk task from Ratcliff (2014), the value 

was 0.21. For Experiments 1 and 3, the values were 0.643 (0.277 for the proportional-area 

condition) and 0.269 (0.165 for the proportional-area condition), respectively. These results 

show that the Weber fraction depended not only on the experimental task, but also on the 

independent variable.

The large variability in the Weber fraction as a function of tasks and variables suggests it has 

limited use as a measure of an individual’s numerical acuity. On the other hand, if Weber 

fractions correlate across tasks, then they might provide relative measures of individuals’ 

acuity. In fact, Weber fractions did correlate with each other across the four tasks; the mean 

was 0.58 for the six pairwise combinations and the range was 0.38–0.76. The analog from 

the diffusion model is the drift-rate coefficient and its mean correlation across tasks was 0.53 

(from the values in Figure 15).

We also examined the correlations between the Weber fractions and the drift-rate 

coefficients within tasks. The mean of the four correlations in Table 11 was 0.65. This 

suggests that the drift-rate coefficients and Weber fractions can provide similar measures of 

individual differences. (The correlation of the Weber fractions and the SD in drift coefficient 

was small and inconsistent, showing that this measure was not related to the Weber fraction).

These analyses suggest further exploration of the possibility that the Weber fraction model 

might, for some purposes, provide an account of accuracy data as good as that of the ANS-

diffusion models. For the two-array stimulus tasks, it gave slightly better fits than the 

diffusion model, but for the one-array tasks, the diffusion model gave fits that were several 

times better. However, the numbers of subjects in our experiments were small for individual 
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differences studies, so any conclusions that could be drawn about differences in the sizes of 

correlations among tasks would be tentative.

There are two main conceptual problems with the Weber fraction model. First, the 

numerosity distributions are normal and because the distribution spans minus to plus infinity 

(Figure 1 top), there is some probability that a number will be perceived as negative. For 

example, the large value for the Weber fraction for the B/Y task with equal-area dots (0.65) 

produces an estimate of negative values with probability 6.2% of the time for 5 dots. This 

means that the Weber fraction model should be modified to have a lower limit on the 

distributions. However, for most other empirically obtained Weber fractions, the probability 

of negative values will be small (perhaps vanishingly small), but it is still non-zero. The 

spread of the distributions into negative values is not a problem for the integrated models 

because drift rates can be negative (as in Figure 8). The second problem is that, because the 

behavior of numerosity appears to be qualitatively different for numbers less than 5 

compared with numbers higher, we might not want to apply the Weber (or any of the 

models) uniformly across all the range of non-zero numbers.

This then leads to the issue of what is the basis for estimation of numerosity in this task with 

these stimuli? The results from the B/Y task in Experiments 1 and 9 suggest that the effect 

of area cannot be separated from numerosity, in fact, in the B/Y task with intermingled dots, 

area and numerosity appear to be integral stimuli in the Garner (1974) sense. We take this up 

in the general discussion.

Discussion—A key point our results make is that measures of numerosity skills and 

abilities are context dependent. The pattern of RTs against accuracy depends on the task, the 

cognitive processes by which numerosity judgments are made depends on the task, the 

cognitive representations of numerosities on which performance is based depend on the task, 

and whether a confounding variable affects performance depends on the task. This 

represents remarkable flexibility in how the cognitive system deals with numerosity 

information. It can encode numerosities on a linear scale or a log scale; it can encode them 

with larger variability in their representations or smaller variability, and it can include 

information other than number (e.g., area) in the representations or not. Decision-making 

processes for numerosity discrimination must accommodate all of these possibilities.

These conclusions about context dependency were made possible by the integrated ANS-

diffusion models because the interpretations of data that the models give are constrained 

simultaneously by accuracy and RTs. For the tasks to which they were applied, they must, 

and did, explain data in full-- accuracy, the distributions of RTs for correct responses and for 

errors, and how these change as a function of independent variables.

The diffusion model breaks performance apart into components of decision-making 

processes. These are the information (drift rate) that drives the decision process, the criteria 

(boundaries) that determine how much information must be accumulated from a stimulus in 

order to make a decision, and processes outside the decision process itself (nondecision 

time). These components are independent of each other (or nearly so in many fits of the 

model to data) and that means that drift rates provide a direct view of the information 
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driving a decision; it is not obscured by the speed/accuracy settings an individual adopts or 

the time taken by nondecision processes.

In almost all previous applications of the diffusion model, drift rates have not been 

determined by a model of the cognitive representations of stimuli that drive decisions (but 

see Nosofsky & Palmeri, 1997; Nosofsky et al., 2011; Ratcliff, 1981; Smith & Ratcliff, 

2009; White et al., 2011, for exceptions in which diffusion and random walk models are 

matched or integrated with models of representation). In the numerical cognition domain, 

independently, Park and Starns (2015) and Reike and Schwarz (2016) implemented the log 

model. In most other earlier applications, the drift rates and the across-trial SD in them (a 

constant across drift rates) have been free parameters and as such they have been estimated 

by fitting the model to data with a different drift rate for each condition that varies in 

difficulty. Instead, the ANS models provide representations of stimuli and so provide the 

decision process with drift rates and their across-trial SDs. From the point of view of a 

representation model, the diffusion model allows it to predict accuracy and RT data, which it 

could not do on its own. From the point of view of the diffusion model, a representation 

model constrains drift rates and their SDs. The combination of the diffusion model and a 

representation model reduces the degrees of freedom for fitting data considerably, for 

example, from 44 parameters for fitting 220 degrees of freedom in the data to 8 parameters 

for the linear and log models for Experiments 1 and 2 (44 parameters are needed for the 

standard diffusion model because different drift rates and different values of SD are needed 

for each condition). One way to think about the combination is that the diffusion model 

provides a meeting ground between models of representations and RT and accuracy data.

To determine drift rates, the ANS models produce a coefficient that multiplies the difference 

between two numerosities for the linear model and the difference between the logs of the 

two numerosities for the log model. These assumptions set the means of the Gaussian 

distributions around each numerosity (Figure 2C). As we showed, the representations are 

subject to confounding variables. Equal-area stimuli were more difficult than proportional 

ones for experiments that required judgments about two stimuli and so the coefficient for 

equal areas was smaller. This made the differences between the means of the distributions 

smaller; in other words, the difference between 30 and 40 on the x axis in Figure 1 shrank 

compared to proportional-area stimuli.

The SDs in the drift rates are produced by a coefficient that multiplies the square root of the 

sum of squares of the two numerosity values (Figure 2C), plus a constant. The SD 

coefficient for the linear model must increase with numerosity in order for the model to 

explain why both accuracy and RT decrease as numerosity increases with a constant 

difference between two numerosities. The usual assumption for the log model is that the SD 

is constant but we allowed it to change with numerosity in the same way as for the linear 

model in order to give it the same flexibility as the linear model. Thus, there were four 

possible models, the linear model and the log model each with a constant SD or with 

increasing SD. Applying the linear and log models allowed us to examine whether the scale 

on drift rate (the log model) or the variability in drift rate (the linear model) is responsible 

for changes in discriminability with numerosity. The interesting result was that it depends on 

the paradigm.
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Evidence for stimulus- and decision-related signals in EEG: Philiastides et al. (2006) 

applied multivariate pattern analysis to EEG activity from an array of electrodes in a face/car 

discrimination task. The analysis produced a single regressor value for each trial that 

indicated how strongly the stimulus represented a face or a car. An early (170 ms) and a late 

(300 ms) event-related potential (ERP) component were predictive of decision accuracy. 

Ratcliff, Philiastides, and Sajda (2009) examined the data on a trial-by-trial basis and found 

that a higher late-component amplitude on a trial was associated with a higher drift rate for 

that trial; this was not true for the earlier component. Thus, for nominally identical stimuli, 

the amplitude of the late ERP component predicted the quality of information processing. 

Ratcliff, Sederberg, Smith, and Childers (2016) conducted a similar analysis of EEG data 

from a recognition memory task. They showed that higher late parietal signals were 

associated with higher drift rates, again on a trial-by-trial basis, but higher earlier frontal 

signals were not.

These results are consistent with the view that a perceptual representation is built for a 

stimulus and then decision-relevant information is extracted from it to drive the decision 

process. The EEG results are consistent with this view: amplitudes of EEG measures for the 

initial representation are not predictive of evidence used in the decision process but the 

amplitudes of later measures are.

Our results for the numerosity tasks in the experiments described here fit within this 

framework. For intermingled blue and yellow dots, a stimulus representation is built and, 

depending on the task, either relative evidence for blue versus yellow is extracted (the B/Y 

task) or evidence about one of the colors is extracted (the Y25 task). For the B/Y task, 

relative numerosity information cannot be extracted independently of other variables such as 

the areas of the two stimulus classes. This description in terms of representations does not 

require a strong commitment to the assumption of stimulus and decision representations per 

se. It is easily possible to describe this view in terms of processing and evidence extracted at 

different points in the process rather than representations and still be consistent with the 

modeling.

Speculations: One can speculate about why the log and linear models apply to the tasks that 

they do. It may be that Fechner’s log representation is restricted to whole objects and 

possibly only to comparisons between whole objects (as opposed to comparisons with a 

standard). For Experiment 2, the stimuli were two side-by-side arrays and so they could each 

be considered as wholes and so the log model applied. For Experiment 1, the stimuli were 

single arrays. If the log model applies only to whole arrays, then separate log representations 

for the two stimulus types cannot be extracted from an array with intermingled elements of 

two types and so a log representation cannot be used to decide whether there are more of one 

type than the other. For Experiment 3, the linear model fit a little better than the log model, 

but there were no qualitative differences between predictions that allowed the two to be 

unambiguously discriminated. It may be that a somewhat different representation is used in 

comparing an array to a standard, but the data show that a representation of one of the 

stimuli can be extracted from a display with two types of stimuli intermingled. One can also 

speculate about why area is sometimes relevant to decisions and sometimes not. The results 

can be re-described in terms of Garner’s (1974) integral versus separable dimensions: When 
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two arrays of dots are compared, extraneous dimensions like area are integral and so cannot 

be dissociated from numerosity, but when one array is compared with a standard, the other 

dimensions have minimal impact on performances.

Correlations among tasks: With the separation of drift rates, boundary settings, and 

nondecision times, we asked about relationships across tasks. The most important question 

was whether the numerosity skills that an individual brought to a task were generally the 

same as those for other tasks. The answer was yes. The correlations between the drift-rate 

coefficients for all the pairs of tasks that we tested had a mean of 0.55. The same was true of 

boundary settings (mean 0.56) and nondecision times (mean 0.67); if an individual was 

conservative in one task (i.e., set boundaries farther apart), he or she was conservative in the 

others; if he or she was slow on encoding and/or response execution processes, he or she was 

slow on the others. Ratcliff, Thompson, and McKoon (2015) showed further correlations 

among numerosity discrimination, symbolic number discrimination, and memory for 

numbers. All of these results suggest that the numeracy skills used for one task are strongly 

related to those used for other tasks. However, such a conclusion is somewhat premature 

because the numbers of subjects in our experiments and Ratcliff et al.’s were only around 

32. Studies with larger numbers of subjects should be conducted to investigate whether, for 

example, some pairs of tasks are less related than others. Nevertheless, our studies show the 

feasibility of correlational studies and their potential for new understandings of relationships 

among different ways of encoding and making decisions about numeracy.

Difficulties in numerosity research: Failures to replicate: The ANS-diffusion models may 

also offer opportunities for resolving the seemingly inconsistent results in numeracy 

research that we enumerated in the Introduction. First, the effect of some particular 

independent variable on performance has been different from one study to another and this 

may arise, at least in part, because the studies used different empirical measures (usually 

only one), sometimes RTs, sometimes accuracy, sometimes the Weber fraction, and so on. 

Second, the correlations among tasks have also been different from one study to another, 

with performance on symbolic tasks sometimes correlated with performance on non-

symbolic tasks and sometimes not. Again, one issue with some of the studies is the use of 

different dependent variables. Third, it has often been found that accuracy and RTs are not 

correlated, which has led to proposals that they measure different skills. The ANS-diffusion 

models explain how the two measures can rely on the same skills while being themselves 

uncorrelated. We believe that the ANS-diffusion model approach will allow some 

rationalization of the current practice whereby different researchers choose differently from 

four or five dependent variables, often based on particular laboratory traditions.

Difficulties in numerosity research: confounding variables: Another persistent problem 

has been that it has not been possible to separate whether numerosity decisions are based on 

numerosity information alone, some other confounding variable alone (e.g., area), or both. 

We showed that the ANS-diffusion models provide a way of measuring contributions from 

these different sources of information. The models translate stimulus information into 

decision-relevant drift-rate coefficients, where the coefficients may or may not reflect a 

particular aspect of a stimulus. If the coefficients are different for two equal-area sets of dots 
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than two proportional-area sets of dots, then area is decision-relevant; if there is no 

difference between the coefficients, then area is not decision-relevant. If the coefficients are 

different for mixtures of red and green dots than mixtures of blue and yellow dots, then color 

is decision-relevant; if not, it is not. If only area, not numerosity, is relevant, then coefficients 

would multiply differences in area instead of differences in numerosity. More specifically, in 

the B/Y task with proportional areas, the amounts of blueness and yellowness plus 

numerosity contribute to performance. With equal areas, only numerosity contributes and the 

drift-rate coefficient is much smaller. Thus it seems that it is not possible for the processing 

system to extract an estimate of numerosity separate from area in this task. For the L/R task, 

area still affects performance even though there are two separate arrays. For the Y25 task, 

the estimate is relative to a criterion value and area (and likely other perceptual variables) is 

not a reliable predictor and it does not affect performance.

Perhaps one way to look at this is that in tasks with mixed elements (blue and yellow dots), 

usually the number of elements and other perceptual variables are correlated and so the 

processing system has learned to use all of these variables (or it just came that way!) in 

estimates of relative numerosity. But in tasks in which the task is to judge the numerosity 

relative to standard (our Y25 task), area and other perceptual variables are not predictive of 

numerosity. For example, seeing an array of blue M&M’s close up with large visual area 

does not make it seem that there are more than if they are seen further away with a smaller 

visual area. More generally, our results show that the effects of confounding variables on the 

information used in decisions about numerosity are task dependent.

To this point, we have used the ANS models to measure the effects of possibly confounding 

variables by assuming that each level of a variable can have a different drift-rate coefficient. 

These drift-rate coefficients are defined by the ANS model, linear or log. Another way of 

estimating the contributions of variables is simply to enter them into a linear regression 

where drift rate is determined by a combination of the variables. Experimentally, stimuli 

could be generated with different combinations of variables, for example, randomly selected 

values or values that maximize the differences among them (e.g., with combinations such as 

large numerosity and small dots versus large numerosity and large dots).

Linear and log models can be implemented with drift rate a linear combination of 

measurements of the various independent (confounding) variables. For example, in the linear 

model with two arrays of dots intermingled, v1=a1(N1-N2)+a2(area1-area2)+a3(dotsize1-

dotsize2)+a4(convexhullsize1-convexhullsize2)+... In the log model for two separate arrays, 

the equation would have logs of the variables (cf. DeWind et al., 2015). The expression for 

SDs would have to be explored. The most obvious expression would be 

sqrt(b1(N1
2+N2

2)+b2(area1
2+area2

2)+...), but it might be better to have the SD a 

combination of numerosity values only.

With this regression approach it would be possible to examine correlations among the 

coefficients to see whether two factors are measuring the same property of the stimulus and 

whether the coefficients are different from zero, i.e., whether that physical property affects 

performance. In order to use this approach, a maximum likelihood fitting method would 

need to be used in which each individual RT, choice, and all the independent variables were 
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used for each response (Ratcliff & Tuerlinckx, 2002; Ratcliff & Childers, 2015). Because the 

maximum likelihood method is sensitive to outliers, care would have to be taken to use 

cooperative subjects. Ratcliff, Sederberg, Smith, and Childers (2016) used this exact 

approach with single-trial EEG regressors as the independent variables in a diffusion model 

analysis. They found coefficients different from zero which means that the EEG regressor 

measured the same evidence used in the decision process as drift rate in the diffusion model. 

This regression proposal differs from the ANS-diffusion analyses because it would not 

control some of the variables and it would require a large experiment and a detailed analysis 

of the method because it is not guaranteed to work as might be expected. If successful, it 

would be complementary to the ANS-diffusion models because it would allow the effects of 

several variables to be examined in one experiment with a random combination of the 

variables.

Replications: In the Introduction, we mentioned our concern to demonstrate the 

replicability of our results. Toward that end, we conducted several experiments that are not 

reported in this article. Four were variations of Experiment 2. The task for Experiment 2 was 

to decide which of two side-by-side arrays with dots of the same color was more numerous. 

For two variations, the dots for the two arrays were different colors (blue and yellow; which 

side was which color switched sides randomly). Either subjects decided which array had 

more dots, left or right, or they decided which color had more dots. Both patterns of results 

matched those from Experiment 2 closely. This means that the difference between 

Experiments 1 and 2 is not the result of the difference in the colors of the two arrays and not 

the result of the decision being based on left/right versus blue/yellow responses. For a third 

variation, stimuli stayed on the screen for 750 ms (Park & Starns, 2015) instead of 250 ms. 

Results showed an attenuation of RT differences relative to those in Experiment 2 (Figure 5 

right panel), which might have been due to subjects comparing the arrays sequentially with 

eye movements between them (cf., Krajbich, Armel, & Rangel, 2010). For a fourth variation, 

we masked stimuli after 250 ms and obtained the same results as in Experiment 2. All 

together, the results of Experiment 2 were robust with respect to these variations. We also 

conducted a variation of Experiment 1 in which the arrays stayed on the screen until a 

response was made, instead of a 300 ms presentation duration. The data replicated those 

from Experiment 1 and showed the results robust to the availability of stimulus information. 

The results from these experiments also illustrate a different kind of file drawer problem 

than is usually discussed, namely a file drawer full of replications instead of one full of 

failures to replicate.

Neurophysiological studies: There have been a number of neurophysiological studies of 

numeracy. The procedures and measures cannot be directly compared to the tasks we have 

used here, but they do suggest that there might be possible connections in the future.

There is evidence from single-cell recording studies in monkeys and neuroimaging studies in 

humans that numerosity is represented topographically in areas such the parietal and 

prefrontal cortex. Experiments with monkeys have used small numerosities that are in the 

range of subitizing in humans. For example, Nieder and Miller (2003; see also Roitman, 

Brannon, & Platt, 2007) used a matching task in which arrays of dots were presented 
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successively and the monkey had to release a lever if the number of dots matched. They 

found cells in the lateral prefrontal cortex that responded to different values of numerosity 

(in the range 2–6) so that their peak firing rate was at a specific numerosity and firing rates 

declined with increasing numerical distance from the preferred numerosity. Nieder and 

Merten (2007) extended this to the range 1–30 and found similar results.

In many of the studies with humans using fMRI and EEG, dots stimuli are presented in a 

sequence and viewing is often passive, requiring no overt response (except sometimes on 

catch trials). The manipulation to assess numerosity is to change stimulus properties but 

keep numerosity constant up to some point at which numerosity changes so as to separate 

numerosity from other variables. Piazza et al. (2004) measured the neural response after the 

numerosity change as a function of the numerosity of the stimulus before the change. The 

difference showed activation curves with increased activity as a function of the difference 

between the two numerosities (see also, Hyde & Spelke, 2008, 2012). Harvey et al. (2013) 

presented stimuli with 1 to 7 dots in ascending and descending order and found the peak 

BOLD signal varied over the posterior parietal cortex to form a topographical representation 

of numerosity. Park et al. (2016) presented EEG data that showed changes in activity in early 

visual processing (75 to 180 ms after stimulus presentation) as a function of changes in 

numerosity that were larger than changes in other visual properties of the stimulus. They 

argued that this provided evidence for rapid and early extraction of numerosity information 

in the visual pathways. In contrast, Gebuis and Reynvoet (2013) argued that results from 

their EEG data showed no automatic extraction of numerosity from a visual stimulus and 

that numerosity judgments are based on sensory properties of stimuli. Piazza et al. (2012) 

argued that representations of exact numbers evolved from parietal coding schemes for 

approximate numeracy.

In most of the neurophysiological studies above, the variability in the neural response 

increased with numerosity and the difference in the peak activity between adjacent 

numerosities decreased with increasing numerosity. When these were plotted on a log scale, 

the spread of the distributions of activity was about the same, which is consistent with the 

log model we used here. However, there are few if any neurophysiological studies with 

stimuli like those in Experiment 1 (intermixed arrays of dots of different colors, Halberda et 

al., 2008) and so data are not available to test the linear model. Furthermore, most of the 

studies had slow presentation of stimuli and did not require any explicit decision because 

they recorded brain activity from passive viewing. The differences between such 

neurophysiological studies and the procedures we used with fast explicit decisions are large 

enough to make it difficult to see how they could relate to each other.

Conclusions

The results of the studies we have reported have a number of implications for cognitive 

numeracy research. One is that they provide a solution, or at least the beginning of a 

solution, to the problem that it has not been possible to decide whether cognitive 

representations of numerosity are linear or logarithmic. There are two interconnected 

reasons for this, one that tests of representation models have been based only on accuracy 

and the other that the models have not been tied to a model of decision processes. With both 
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RT and accuracy data and the diffusion model for two-choice decisions, we showed 

instances for which the two models were significantly and qualitatively different in their 

accounts of experimental data.

Our results also suggest an agenda for numeracy research. Studies are needed to observe the 

effects of independent variables (possibly confounding variables) through the lens of an 

ANS-diffusion model (or some other model that uses RT and accuracy data jointly) so that 

numeracy skills, as measured by drift-rate coefficients, can be more directly observed, not 

obscured by an individual’s boundary settings or nondecision time. The same kinds of 

studies are needed to measure correlations between tasks, between independent variables, 

and between the skills employed in different tasks.

The results of the individual difference studies suggest that it might be worth considering 

using a single-stimulus task to measure numerosity skill instead of the two-stimulus tasks. 

The former has the advantage of being insensitive to the other variables such as area and 

density and so might provide a more pure measure of numerosity skill.

In two-stimulus tasks, when the effects of the other variables are measured, it might be that 

they are all correlated across individuals which means that confounding variables might be 

less of a problem (because they all tell the same story about ability). However, some 

researchers believe that numerosity discrimination is largely or totally performed with 

discrimination based on non-numeric variables. If the single-stimulus task is largely 

insensitive to these variables, it is more difficult to argue this point.

Another agenda item is to use the ANS-diffusion models to help understand the development 

of numeracy skills in children. It may or may not be that different tasks show identical 

developmental paths and which tasks do this may or may not be the same from one age to 

another or one point in development to another.

Still another agenda item is to use the ANS-diffusion models to help understand how simple 

numeracy abilities are related to performance on tests of math abilities. The models’ more 

direct measures of abilities than those used previously may lead to new research on, for 

example, whether abilities in symbolic and/or nonsymbolic discrimination tasks support 

performance on achievement tests and whether they do so in the same or different ways, 

whether non-symbolic abilities are the basis for development of symbolic abilities, and 

whether symbolic and non-symbolic abilities have the same or different developmental 

trajectories. However, we reiterate the caveat that answers to questions like these may be 

different when different tasks are used to address them.

Overall, the analyses we have presented demonstrate the power of quantitative models to 

understand data and the power of combining models for the cognitive representations of 

stimuli with decision-making models. We hope that further research with such models will 

eventually lead to advances in the ways children are taught numerosity skills and the ways 

numerosity skills can be supported for populations for which they are problematic such as 

older adults.
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Appendix A

A different way of showing the quality of fit of the models to data is to plot predicted values 

of accuracy and RT quantiles for the model predictions against data (e.g., Ratcliff et al., 

2010). Figure A1 shows these plots for each individual condition for each subject for 

Experiments 1 and 2. The plots show quite good correspondence between theory and data 

and the few points that show relatively poor fits should be considered in the context of the 

number of points in the plots (shown in the bottom right corner of each panel) and the fact 

that an eight parameter model produced all these fits.
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Figure A1. 
Plots model predictions plotted against data for response proportions and the 0.1, 0.5 

(median) and 0.9 quantile RTs for all the conditions for data from each individual subject.
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Figure 1. 
Models of numerosity representation.
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Figure 2. 
A illustrates the diffusion decision model. B shows the additional components of the 

decision model that produce the total RT. C shows the standard assumption about drift rate 

and its variability across trials. D shows equations for drift rates and across trial SD in drift 

rate for the two ANS-diffusion models.
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Figure 3. 
Construction of latency-probability functions and quantile probability functions.
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Figure 4. 
Examples of stimuli for the experiments.
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Figure 5. 
Plots of mean RT against accuracy for Experiments 1 and 2. The x’s are for equal-area 

conditions and the o’s are for proportional-area conditions. Δ represents the difference in 

numerosity between the two stimuli.
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Figure 6. 
Quantile-probability functions for Experiment 1 for the linear and log models. These plot RT 

quantiles against response proportions (correct responses to the right of 0.5 and errors to the 

left). The green/central lines are the median RTs. The number of dots in the conditions in the 

plots are shown in the top right corner and the more extreme functions are for proportional-

area conditions and the less extreme for equal-area conditions.
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Figure 7. 
Quantile-probability functions for Experiment 2.
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Figure 8. 
An illustration of how the predictions of the linear model arise. A illustrates a single 

diffusion process with a single drift rate (with no across trial variability in drift rate). RT 

distributions for correct and error responses are equal if the starting point is equidistant from 

the boundaries. B shows distributions of drift rate (across trials) for high numerosity (wide 

red solid distribution) and low numerosity (narrow blue dashed distribution). To represent 

these distributions for illustration, two drift rates are chosen (v1 and v2 and accuracy is the 

average of the two accuracy values and mean RT is a weighted sum of the two RTs. C shows 

the averages for the low-SD condition and D shows the averages for the high-SD condition 

with the averages for correct responses shown in green. For completeness, error responses 

are also shown; note that for boundaries equidistant from the starting point, for a single drift 

rate, correct and error RTs are the same.
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Figure 9. 
Quantile probability plots for Experiment 3 for the log and linear models for large and small 

responses separately.
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Figure 10. 
Quantile probability plots for Experiments 4 and 5. For Experiment 4, the inner functions 

are for equal-area conditions, the outer functions for proportional are conditions.
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Figure 11. 
Quantile probability plots for Experiment 6.
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Figure 12. 
Scatter plots and correlation coefficients for ANS-diffusion model parameters between the 

B/Y discrimination task and the Y25 task in Experiment 6.
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Figure 13. 
Quantile probability plots for Experiments 7, 8, and 10.
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Figure 14. 
Quantile probability plots for the four tasks in Experiment 9.

Ratcliff and McKoon Page 66

Psychol Rev. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 15. 
Scatter plots, histograms, and correlations for boundary separation (top panel), nondecision 

time (middle panel), and drift rate coefficient (bottom panel) for the four tasks. Each dot 

represents an individual subject. The identity of the comparison in each off-diagonal plot or 

correlation is obtained from the task labels in the corresponding horizontal and vertical 

diagonal plots. The lines in the bottom left of the plots are lowess smoothers (from the R 

package).
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Figure 16. 
Quantile probability plots for Experiment 11 (top panel) and a plot of accuracy against 

agreement between the two responses in the double pass procedure. Seven values of drift 

rate were used to produce each function (shown as the small dots on the lines) and 8 values 

of the standard deviation in drift rate across trials (η) were used to generate each function. 

The other model parameters were the means from the fits to the data. The red squares are 

values of accuracy plotted against agreement for the conditions of the experiment.
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Figure 17. 
Plot of accuracy against numerosity for the four tasks in Experiment 9 and the asterisks task 

in Ratcliff (2014, Experiment 1). The x’s are the data and the o’s are the predictions from 

the Weber fraction model (left column) and the diffusion model (right column). The red/thin 

line in the bottom right plot is from the log model fit.
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Table 1

Experiments 1 and 2: accuracy and correct mean RTs

Experiment measure proportional area equal area

1 accuracy 0.817 0.675

1 RT 601 638

2 accuracy 0.900 0.824

2 RT 495 513
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Table 4

Experiment 3: accuracy and correct mean RTs collapsed over stimulus difficulty

measure
15 non-target dots 35 non-target dots

proportional area equal area proportional area equal area

accuracy 0.856 0.858 0.837 0.841

mean RT 537 528 537 534
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Table 5

Experiment 4: accuracy and correct mean RT collapsed over stimulus difficulty

measure
small-size dots large-size dots

proportional area equal area proportional area equal area

accuracy 0.751 0.652 0.809 0.682

mean RT 578 600 557 592
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Table 10

Experiment 10: accuracy and correct mean RT collapsed over stimulus difficulty

measure
random arrangement grid arrangement

proportional area equal area proportional area equal area

accuracy 0.858 0.838 0.861 0.860

mean RT 505 507 502 500
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