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Quantitative assessment of protein activity in
orphan tissues and single cells using the
metaVIPER algorithm
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Christian Gonzalez1,10, Peter D. Canoll3, Peter A. Sims1, Mariano J. Alvarez1,4 & Andrea Califano1,4,5,6,7,8

We and others have shown that transition and maintenance of biological states is controlled

by master regulator proteins, which can be inferred by interrogating tissue-specific regulatory

models (interactomes) with transcriptional signatures, using the VIPER algorithm. Yet, some

tissues may lack molecular profiles necessary for interactome inference (orphan tissues), or,

as for single cells isolated from heterogeneous samples, their tissue context may be unde-

termined. To address this problem, we introduce metaVIPER, an algorithm designed to assess

protein activity in tissue-independent fashion by integrative analysis of multiple, non-tissue-

matched interactomes. This assumes that transcriptional targets of each protein will be

recapitulated by one or more available interactomes. We confirm the algorithm’s value in

assessing protein dysregulation induced by somatic mutations, as well as in assessing protein

activity in orphan tissues and, most critically, in single cells, thus allowing transformation of

noisy and potentially biased RNA-Seq signatures into reproducible protein-activity signatures.
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Most biological events are characterized by the transition
between two cellular states representing either two
stable physiologic conditions, such as during lineage

specification1,2 or a physiological and a pathological one, such as
during tumorigenesis3,4. In either case, cell state transitions are
initiated by a coordinated change in the activity of key regulatory
proteins, typically organized into highly interconnected and auto-
regulated modules, which are ultimately responsible for the
maintenance of a stable endpoint state. We have used the term
“master regulator” (MR) to refer to the specific proteins, whose
concerted activity is necessary and sufficient to implement a given
cell state transition5. Critically, individual MR proteins can be
systematically elucidated by computational analysis of regulatory
models (interactomes) using MARINa (Master Regulator Infer-
ence algorithm)6 and its most recent implementation supporting
individual sample analysis, VIPER (Virtual Inference of Protein
activity by Enriched Regulon)7. These algorithms prioritize the
proteins representing the most direct mechanistic regulators of a
cell state transition, by assessing the enrichment of their tran-
scriptional targets in genes that are differentially expressed. For
instance, a protein would be considered significantly activated in
a cell-state transition if its positively regulated and repressed
targets were significantly enriched in overexpressed and under-
expressed genes, respectively. The opposite would, of course, be
the case for an inactivated protein. As proposed in7, this
enrichment can be effectively quantitated as Normalized
Enrichment Score (NES) using the Kolmogorov–Smirnov statis-
tics8. We have shown that the NES can then be effectively used as
a proxy for the differential activity of a specific protein7. Criti-
cally, such an approach requires accurate and comprehensive
assessment of protein transcriptional targets. This can be
accomplished using reverse-engineering algorithms, such as
ARACNe9 (Accurate Reverse Engineering of Cellular Networks)
and others (reviewed in ref. 10), as also discussed in ref. 7.

MARINa and VIPER have helped elucidate MR proteins for a
variety of tumor related11–17, neurodegenerative18–20, stem
cell21,22, developmental6, and neurobehavioral23 phenotypes that
have been experimentally validated. The dependency of this
algorithm on availability of tissue-specific models, however,
constitutes a significant limitation because use of non-tissue-
matched interactomes severely compromises algorithm perfor-
mance11. Since ARACNe requires N ≥ 100 tissue-specific gene
expression profiles, representing statistically independent sam-
ples, some tissue contexts may lack adequate data for accurate
interactome inference. These “orphan tissues” include, for
instance, rare or poorly characterized cancers, as well as pro-
genitor states during lineage differentiation. In addition, the
specific tissue lineage of a sample may be poorly defined, thus
preventing selection of appropriate interactome models. Con-
sider, for instance, a single cell isolated from a heterogeneous
sample, such as whole brain or stroma-infiltrated tumor, where
many highly distinct and often uncharacterized cell lineages are
inextricably commingled.

To address this challenge, we reasoned that while regulatory
models are clearly lineage specific, due to the distinct epigenetic
state of the cells, the transcriptional targets of a specific protein
(i.e., its regulon) may be at least partially conserved across a small
subset of distinct lineages. Thus, once a sufficient number of
tissue-specific interactomes is available, the likelihood that one or
more of them may represent a good model for the regulon of a
specific protein increases, even though one may not know a priori
which model may represent the best match for each protein.
Indeed, the regulons of different proteins may be optimally
represented within different interactomes. This is further helped
by the fact that VIPER analysis is robust if at least 40% of a
protein’s regulon is accurately inferred7. Conversely, as shown in

Supplementary Fig. 1 when a protein regulon is incorrectly
assessed for a specific tissue, it is not consistent with the tissue-
specific gene expression signature, thus producing no significant
enrichment. Taken together, these observations constitute the
basis for the implementation of a context-independent algorithm
for protein activity assessment (metaVIPER).

MetaVIPER implements a statistical framework for evidence
integration across a large repertoire of context-specific inter-
actomes, see Methods for details. The algorithm is based on the
assumption that only regulons that accurately represent the
transcriptional targets of specific proteins in the tissue of interest
will produce statistically significant enrichment in genes that are
differentially expressed in that tissue (Fig. 1a).

To assess whether metaVIPER can effectively assess protein
activity in context-independent fashion we perform a number of
distinct benchmarks. First, we assessed whether results produced
by analysis of context-specific interactomes (e.g., inferred from
breast cancer samples) could be effectively reproduced when only
interactomes from other tissues are used in integrative fashion.
We also test whether the ability to assess dysregulation of proteins
whose encoding gene harbored a recurrent somatic alteration was
improved by metaVIPER. Finally, we assess the algorithm’s ability
to transform low-depth single cell RNA-Seq (scRNA-Seq) profiles
into highly reproducible protein activity profiles that accurately
reflect cell state, while removing technical artifacts and batch
effects, compared to state of the art gene expression based
methods. These improvements significantly increase the ability to
analyze the biological function and relevance of gene products
whose mRNAs are undetectable in low-depth, scRNA-Seq data
(dropout effect), without any a priori knowledge of the single
cell’s lineage. In particular, it allows more stringent analysis of
critical lineage markers, for which no mRNA reads may be
detectable in individual cells, either individually or as a set,
supporting a “virtual FACS” analysis.

Results
Overview of metaVIPER. Let us assume a tissue context T for
which a matched tissue-specific interactome was not available.
Furthermore, without loss of generality, let us focus on a specific
protein of interest P and on its T-specific regulon RT. Given a
sufficient number of additional tissues T1 … TN for which
accurate, context-specific interactomes are available, we hypo-
thesize that RT will be at least partially recapitulated in one or
more of them. Based on previous results7, VIPER can accurately
infer differential protein activity, as long as 40% or more of its
transcriptional targets are correctly identified. As a result, even
partial regulon overlap may suffice. Indeed, paradoxically, there
are cases where a protein’s regulon may be more accurately
represented in a non-tissue matched interactome than in the
tissue-specific one. This may occur, for instance, when expression
of the gene encoding for the protein of interest has little varia-
bility in the tissue of interest and greater variability in a distinct
tissue context where the targets are relatively well conserved. A
key challenge, however, is that one does not know a priori which
of the tissue-specific interactomes may provide reasonable vs.
poor models for RT.

To address this challenge, we leverage previous studies showing
that if an interactome-specific regulon provides poor RT

representation, approaching random selection in the limit, then
it will also not be statistically significantly enriched in genes that
are differentially expressed in a tissue-specific signature ST. Thus,
if one were to compute the enrichment of all available regulons
for the protein P in the signature ST, only those providing a good
representation will produce statistically significant enrichment, if
P is differentially active in the tissue of interest. Conversely, if the
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protein is not differentially active in T, then no regulon RT1 …
RTN should produce statistically significant enrichment. If these
assumptions were correct, given a sufficient number of tissue-
specific interactomes, this would provide an efficient way to
integrate across them to compute the differential activity of
arbitrary proteins in tissue contexts for which a suitable
interactome model may be missing.

To determine the best strategy for integrating the statistics of
the enrichment across multiple interactomes, we compared
several approaches. Specifically, for each protein, we first
computed enrichment using a tissue-matched interactome
(tissueMatch). This corresponds to the original implementation
of the VIPER algorithm. We then compared these results to those
obtained using different metrics to integrate across the regulons
of all non-tissue-matched interactomes, including (a) the NES
with the most statistically significant absolute value (maxScore),
(b) the average of all NES scores (avgScore), and (c) the weighted-
average of all NES scores, weighed by the NES absolute value
(NESScore). For these tests, we used a total of 24 interactomes
generated from TCGA cohorts, see Supplementary Table24.

To objectively evaluate the performance of these alternative
integrative methods, we considered a comprehensive set of
proteins, whose genes harbor recurrent somatic mutations, as
reported by both TCGA and COSMIC (see Methods). These
mutations drive tumorigenesis by altering the activity of key
oncogenes and tumor suppressors and have been used to identify
proteins for targeted inhibitors, based on the oncogene additional
paradigm25. We thus assessed method performance by assessing
the statistical significance of the correlation between metaVIPER-
inferred protein activity and the presence of a recurrent genetic
alterations in the corresponding gene locus (p < 0.01), under the
assumption that better methods would yield higher significance.
To produce an optimal metric across all recurrent mutational
events, we assessed correlation as a function of recurrence
(Fig. 1b). Indeed, the more recurrent a mutation is, the more
likely it is to be functionally relevant and thus affect the
corresponding protein’s activity. Recurrence is reported as the
number of samples in TCGA and COSMIC where a specific gene
locus was mutated, see Methods. As shown in Fig. 1b, there is a
clear trend showing that the more recurrently mutated a gene
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Fig. 1 Inferring protein activity with metaVIPER. a Overview of metaVIPER. The set of transcriptional targets for each regulatory protein (its regulon)
constitutes the fundamental building blocks of an interactome, which reflect its overall, context-specific regulatory control structure. MetaVIPER identifies
the regulon that best recapitulates the regulatory targets of a protein by assessing its enrichment in the tissue-specific differential expression signature. In
the example shown here, for instance, the regulon for protein CUX1 in an unknown or orphan tissue is better recapitulated by the uterine corpus
endometrial carcinoma (UCEC)-based regulon, while the transcriptional program for the androgen receptor protein (AR) is better recapitulated by the
cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) and glioblastoma (GBM)-based regulons. The numbers indicate –log10(p-
value) for enrichment of the regulons on the gene expression signature, as computed by VIPER. b Impact of recurrent coding somatic mutations on
metaVIPER-inferred protein activity. Fraction of proteins showing significant association between metaVIPER-inferred protein activity and somatic
mutations (p < 0.01) is presented. VIPER analysis was performed using the tissue-matched network (tissueMatch), metaVIPER was performed by
integrating the results from individual interactomes using maxScore, avgScore, and NESScore methods; the baseline control was computed by using
intercatomes selected at random (randomMatch). The X-axis represents the minimum number of TCGA samples presenting the specific gene mutation
required for inclusion of the encoded protein in the analysis. c Inference of protein activity for orphan tissues. MetaVIPER can effectively reproduce
differential protein activity in TCGA tissues, even when the corresponding matched interactome is removed from the analysis. The only partial exception is
represented by two tissue lineages—liver hepatocellular carcinoma (LIHC) and testicular germ cell tumors (TGCT)—which are defined by highly specific
regulatory programs. The probability density distribution for the correlation between protein activities (NES) inferred by metaVIPER using all available
interactomes vs. metaVIPER using all, but the tissue-matched interactome (Pearson’s correlation) across all samples is shown by the violin plots
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locus is, the larger the fraction of proteins showing statistically
significant correlation between metaVIPER-inferred protein
activity and mutational state. For instance, about 50% of the
genes harboring locus-specific mutations in at least 30 TCGA
samples could be detected as producing differentially active
proteins by metaVIPER analysis (p < 0.01).

Surprisingly, based on this metric, all four strategies for cross-
tissue integration (metaVIPER) significantly outperformed the
use of tissue-specific interactomes, i.e., the original VIPER
algorithm (tissueMatch). This suggests that integrating the
structure of regulatory networks across a large number of
representative tissue types provides a more informative regulon
representation on an individual protein basis. The randomMatch
method serves as a baseline negative control, in which for each
sample, protein activity was computed using VIPER with an
interactome selected at random. As discussed in the following
sections, we performed several additional benchmarks to
comprehensively and systematically assess the method’s perfor-
mance in orphan tissues, as well in single cells.

MetaVIPER-based protein activity inference in orphan tissues.
Small sample size severely undermines the performance of
ARACNe, which typically requires at least 100 independent
samples, representative of the same tissue lineage26 to perform
accurate regulon inference for VIPER analysis. This significantly
limits the ability to accurately measure protein activity in orphan
tissues, defined as rare or poorly characterized tissue types, for
which the number of available gene expression profiles is not
sufficient to produce an accurate interactome model. For
instance, considering tumor cohorts in the TCGA repository, we
identified Cholangiocarcinoma (N= 36) and Uterine Carcino-
sarcoma (N= 57) could be considered orphan tissues for which
an accurate ARACNe network could not be generated. Orphan
tissues also include a variety of normal or non-cancer, disease-
related cell states that lack appropriate gene expression profile
characterization, including many of the intermediate states of
differentiation representing multipotent or progenitor
population.

Since metaVIPER is designed to infer protein activity without
requiring a tissue-specific regulatory model, we designed an
objective benchmark to assess metaVIPER’s ability to accurately
measure protein activity in orphan tissues. We first assembled a
gold-standard set using metaVIPER to assess the activity of all
proteins for which an ARACNe regulon was generated (see
Methods), in each sample of each TCGA cohort, using all
available TCGA interactomes including the tissue-matched one.
This is preferred to using only the tissue-matched interactome
because from the objective benchmark using mutational data this
methodology has emerged as being more accurate than the
original VIPER analysis. However, for completeness, we also
report results of this analysis using the tissue-matched inter-
actomes as gold-standard, see Supplementary Fig. 2. We then
performed the same analysis using metaVIPER with all available
TCGA interactomes, except for the tissue-matched one. For
instance, consider Rectum Adenocarcinoma (READ) as a tumor
for which an ARACNe interactome could not be accurately
inferred. We would then compute the VIPER-inferred activity of
all proteins in each TCGA READ sample using either all available
TCGA interactomes (gold-standard reference) or all interactomes
except for the READ interactome, exactly as if it were not
available. We then measure overall protein activity correlation
between the two analyses as a quality metric for metaVIPER
ability to correctly infer protein activity in the absence of a tissue-
matched interactome. This benchmark was performed for each of
the all 24 tissue types in TCGA, see Supplementary Table24.

Results show extremely strong average correlation (ρ > 0.97)
between the two analyses for 22 out of 24 tissues (excluding liver
hepatocellular carcinoma (LIHC) and testicular germ cell tumors
(TGCT)). This suggests that, even in the absence of a tissue-
matched model, most tissues may be studied virtually without
loss of resolution using metaVIPER (Fig. 1c, Supplementary
Fig. 2). Thus most orphan tissues can be studied using
metaVIPER with virtually no notable result quality degradation.
Not surprisingly, the two outlier tissues have a rather unique
nature. Indeed, LIHC is originated from hepatocytes, which are
unique endoderm derived secretory cells27. Similarly, TGCT
originate from testicular germ cells, which are specialized
pluripotent cells that give rise to gametes28. Hepatocytes and
testicular germ cells are thus highly specialized tissues with no
other related tissues among the 24 in TCGA. However, as the
number of interactomes in our repertoire grows the probability of
having true outlier tissues will decrease. Note, however that,
despite their specialized nature even the two outlier tissues
presented high average correlation with the results of the tissue-
matched analysis (ρ > 0.95).

This raises the important issue of an objective metric to assess
whether metaVIPER—when used with a specific repertoire of
tissue-specific interactomes—is adequate for inferring protein
activity in tissues lacking a matched interactome (i.e., orphan
tissues). To achieve this goal, as proposed in ref.9, we will use the
Empirical Cumulative Distribution Function of the absolute value
of the VIPER NES (ECDF|NES|) of all proteins in an orphan tissue
sample or samples11. In Supplementary Fig. 7, we show violin
plots for the ECDF|NES| of each TCGA cohort, using the
corresponding tissue-matched interactome. The rightmost plot
(TCGA) shows the average of all cohort-specific probability
densities. This provides a useful reference to assess whether a
specific interactome repertoire is adequate for the metaVIPER-
based analysis of an orphan tissue. For instance, we analyzed
LAML samples using only a GBM interactome, which would be
clearly inappropriate since LAML and GBM cells belong to
epigenetically distinct lineages. The result is shown in the first-to-
last violin plot (Neg.Ctrl.). As shown this ECDF is clearly an
outlier with respect to All-TCGA. Thus, by comparing the ECDF
for a tissue of interest against the All TCGA reference, one can
effectively assess the quality of the analysis.

Single cell analysis. The last few years have seen tremendous
development of single cell profiling methodologies and in parti-
cular of scRNA-Seq. The advent of these technologies provides
new insight in understanding transition, maintenance, and
cell–cell communication processes, across cell states and at an
individual cell resolution29. However, a major challenge of these
approaches is related to the very low depth of sequencing ranging
between 10 and 200K reads per cell. While this is sufficient to
perform coarse analyses, such as multi-dimensional clustering to
identify molecularly distinct sub-populations, it is extremely
ineffective in precisely quantitating the expression of individual
genes. Indeed, the vast majority of genes lack even one mRNA
read in individual cells (dropouts) and a large number have a
single read. Due to these significant dropout effects, elucidating
biological mechanisms at the single cell level remains challenging.
In contrast, as shown in ref. 7, VIPER analysis is largely unaf-
fected by sequencing depth because differential protein activity is
assessed based on the differential expression of hundreds of
transcriptional targets. Thus, measurement and biological noise
sources are effectively averaged out, resulting in highly repro-
ducible measurements. Indeed, we have shown that VIPER-
inferred protein activity profiles from FFPE samples were extre-
mely well correlated to those from fresh-frozen samples, despite
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dramatic loss of correlation at the gene expression level7, leading
to NYS CLIA approval of two VIPER-based tests. As a result, one
would expect VIPER to be well suited to performing analysis of
single cell populations in a way that is amenable to quantitative
protein activity assessment.

Unfortunately, however, when dealing with heterogeneous
samples, the specific tissue context of each individual cell cannot
be determined a priori. Even if this were possible, it is unlikely
that context specific interactomes would be available for rare
lineages and progenitor states that are captured by single cell
profiling methodologies. MetaVIPER represents a useful alter-
native in these cases, because, while preserving the robustness of
VIPER, it is agnostic to tissue type and should thus be well suited
to analysis of single cell gene expression profiles from hetero-
geneous tissues.

To illustrate metaVIPER applicability to single cell expression
profile data, we specifically profiled 85 single cells (see Methods)
from a mouse glioblastoma (GBM) model30,31. Previous studies
have demonstrated that GBM comprises two major subtypes,
mesenchymal (MES) and Proneural (PN), which may present
different proliferation capability (Prolif)13,32–34. We inferred
protein activity at the single cell level by metaVIPER analysis
across 5 brain tumor interactomes, and 24 TCGA human cancer
tissue interactomes (see Methods and Supplementary Table).
Contrary to gene expression profile analysis, the inferred protein
activity signatures clearly captured single cells representing MES
and PN subtypes. Indeed, unsupervised metaVIPER analysis
recapitulated previously reported subtype-specific MR proteins13,
which were identified among the most dysregulated on a single
cell basis (Fig. 2a). Such level of resolution could not be
recapitulated by differential gene expression analysis, largely
due to transcript-level noise in individual cells (Fig. 2b).
Unsupervised clustering analysis of metaVIPER-inferred protein

activity efficiently separated single cells in two major groups, with
~40% of the cells recapitulating the activity pattern of previously
described MR proteins of MES (FOSL1, FOSL2, RUNX1, CEBPB,
CEBPD, MYCN, ELF4), and the remaining ~60% recapitulating
those of the PN, such as OLIG2 and ZNF217. In sharp contrast,
unsupervised, gene expression based cluster analysis could not
effectively separate individual cells in distinct clusters (Fig. 2a, b).
Indeed, ~40% of the critical subtype-related proteins were
undetectable at the gene expression level in any of the single
cells (black horizontal bars in Fig. 2a). Expression profiles from
single cells are very noisy, due to low sequencing depth, thus
reducing the ability to study their biology. Indeed, low depth of
sequencing represents a major confounding factor that can be
effectively remedied by metaVIPER analysis.

Quality of single cell gene expression profiles is generally
reflected by the number of detected genes29. Higher quality gene
expression profiles, as identified by higher transcriptome com-
plexity, tend to result in higher correlation between the profiles of
single cells in the same sub-population clusters (Supplementary
Fig. 3A, B). Once processed with metaVIPER, however, not only
intra-population correlation between individual cells increases
significantly but it also becomes virtually independent of
transcriptome complexity (Supplementary Fig. 3C). This is
because protein activity inference is based on the expression of
many target genes and is thus much more robust than estimating
gene expression from a single measurement, thus improving
resilience to low-quality data.

We further tested our methodology on single cell data from
tissue representing a complex mixture of melanoma cells and
infiltrating B and T lymphocytes35. By integrating interactomes
representative of skin cutaneous melanoma (SKCM, see Meth-
ods), B9 and T36 lymphocytes, as well as 24 TCGA human cancer
tissue24 (Supplementary Table), metaVIPER was able to infer
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Fig. 2 Inference of protein activity for single cells from GBM mouse model. a MetaVIPER-based protein activity analysis of single cells from a mouse GBM
model27,28 by unsupervised clustering using all annotated transcriptional factors, co-transcriptional factors, and signaling proteins. Two major clusters
were identified, corresponding to established mesenchymal (MES, blue) and proneural (PN, turquoise) subtypes, with varying proliferative (Prolif)
potential11. Indeed, among the top 200 transcriptional factors (i.e., with the highest inter-cluster activity variability), we found established master
regulatory transcriptional factors of the MES (FOSL1, FOSL2, RUNX1, CEBPB, CEBPD, MYCN, ELF4), PN (OLIG2, ZNF217), and Prolif (HMGB2, SMAD4, PTTG1,
E2F1, E2F8, FOXM1) subtypes13. b Subtype representation is lost when clustering is performed based on gene expression profiles

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03843-3 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1471 | DOI: 10.1038/s41467-018-03843-3 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


a

b e h

c f i

d g j

−40 0 20 40 60

−50

0

50

metaVIPER

Dim1

D
im

2

B

M

T

PAX5

EXPACT

−3

Z
sc
or
e

6

EBF1

EXPACT

−3

Z
sc
or
e

6

E2A

EXPACT

−3

Z
sc
or
e

6

MITF

EXPACT

CTNNB1

EXPACT

HMGB1

EXPACT

BCL11B

EXPACT

FOXP3

EXPACT

TBET

EXPACT

Fig. 3 Inference of protein activity for single cells profiled by Tirosh et al.35. a Annotated cell types (B: B lymphocyte, T: T lymphocyte, M: melanoma cell)
were separated by t-SNE analysis, using metaVIPER-inferred activity for all annotated transcriptional factors, co-transcriptional factors, and signaling
proteins. Boxplots show metaVIPER-inferred activity, as well as gene expression for tissue-specific lineage markers, including PAX537, EBF138, and E2A39 for
B lymphocyte (b–d), MITF40, CTNNB141, and HMGB142 for melanocyte (e–g), BCL11B43, FOXP344, and TBET45 for T lymphocyte (h–j). While these markers
are significantly differentially active in these tissues, they could not be effectively assessed at the single cell level, either because no mRNA reads were
detected or because markers were not statistically significant in terms of differential gene expression. Boxplots showed the median, lower/upper whiskers,
and hinges of z-scores

−1000 −500 0 500

−500

0

500

Synthetic bulk, expression

Dim1

D
im

2

−800 −400 0 200 400

−500

0

500

1000
Synthetic bulk, activity

Dim1

D
im

2

B
M
T

0 20 40 60 80 100

Significant markers

% Single cells

0

0.5

1

1−
E

C
D

F

p < 1e−11

0 20 40 60 80 100

Pairs among significant markers

% Pairs

0

0.5

1

1−
E

C
D

F

p < 1e−11

0 1 2 3 4 5 6

0

2

4

6

Expression of lineage markers

PAX5

F
O

X
P

3

−1 0 1 2 3 4

−2

0

2

4

Activity of lineage markers

PAX5

F
O

X
P

3

0 1 2 3 4 5 6 7

0

2

4

6

8

Expression of predicted markers

POU2F2

S
T

A
T

4

−2 −1 0 1 2 3 4

−4

−2

0

2

4

Activity of predicted markers

POU2F2

S
TA

T
4

0 2 4 6 8 10

0

2

4

6

8

Expression of cell surface markers

CD3

C
D

19

−2 0 2 4

−3

−2

−1

0

1

2

3

Activity of cell surface markers

CD3

C
D

19

B
M
T

a

b

c

d

e

f

g

h

i

j
Overexpressed genes
Activated proteins

Fig. 4 Comparative analysis of single cell metaVIPER performance compared to gene expression based methods. We identified the 100 most differentially
expressed genes and differentially active proteins based on the analysis of five synthetic bulk samples created by averaging the expression of 100 randomly
selected single cells from the melanoma, B cell, and T cell population clusters, respectively. a, b Based on t-SNE analysis, synthetic bulk samples clustered
more tightly when analyzed based on VIPER-inferred protein activity than based on gene expression. c This panel shows the percent of the top 100 most
differentially expressed genes/active proteins recapitulated as significantly differentially expressed/active in a given fraction of individual cells against the
average expression/activity in a distinct cluster (e.g., a T cell vs. the average of all B cells). The yellow and turquoise curves (1-ECDF) and boxplots
(median, lower/upper whiskers, and hinges) summarized the results of RSEM and metaVIPER-based analyses, respectively. d The same analyses were
repeated to assess reproducible differential expression/activity of a gene/protein pair, as relevant for virtual FACS analyses. e, f Virtual FACS analyses
using expression and activity of established lineage marker TFs by RSEM and metaVIPER-based analysis (see main text and Fig. 3 for details). g, h Virtual
FACS analysis using expression and activity of STAT4 and POU2F—both identified as differentially expressed and active candidate biomarkers from bulk
sample analyses—using the same methods. i, j Virtual FACS analysis based on expression and activity of CD3 and CD19 cell surface markers, as used in
standard FACS analyses, using the same methods

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03843-3

6 NATURE COMMUNICATIONS |  (2018) 9:1471 | DOI: 10.1038/s41467-018-03843-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


protein activity profiles that effectively discriminate between these
different cell types. Furthermore, it revealed differential activity of
established lineage markers that could not be detected at the gene
expression level (Fig. 3b–j). This represents a critical value of this
approach, as many important lineage markers and other
transcriptional regulators may yield no scRNA-Seq reads, due
to their relatively low transcript abundance combined with low
sequencing depth. Based on a metric assessing the dynamic range
of protein activity in different sub-clusters, metaVIPER signifi-
cantly outperformed single-regulon-based VIPER analysis on this
dataset (Supplementary Fig. 4). Most importantly, metaVIPER
correctly inferred the differential, tissue-specific activity of
established lineage determinants at the single cell level (Fig. 3b–j).
For instance, PAX537, EBF138, and E2A39 showed significantly
higher activity in B lymphocytes (one-tail, p < 10−10); MITF40,
CTNNB141, and HMGB142 showed significantly higher activity in
melanoma cells (one-tail, p < 10−10); finally, BCL11B43, FOXP344,
and TBET45 showed significantly higher activity in T lymphocytes
(one-tail, p < 10−10). Conversely, we could not detect significant
gene expression differences for most of these genes (e.g., pHMGB1

> 0.9) in melanoma cells, or expression was barely detected at all
(average transcripts per million < 1), see E2A in B lymphocytes or
FOXP3 and TBET in T lymphocytes, for instance (Fig. 3b–j).

To provide a more systematic comparison of the improvements
offered by metaVIPER analysis of single cells against approaches
based on state-of-the-art gene expression analysis algorithms,
using the same mixture of T, B, and melanoma cells described in
the previous section. Most methods designed to address the gene
dropout issue in scRNA-Seq profiles are not intended to perform
differential expression analysis of two individual cells but rather
only of single cell subsets representing molecularly distinct
clusters/subtypes46–48. To perform this analysis, we thus
quantified single cell gene expression using RSEM49, which pre-
assembles sequencing reads into transcripts, thus providing more
accurate single cell gene expression quantification50. We then
assessed the fraction of single cell pairs from two distinct clusters
(e.g., B and T cell related) that could recapitulate differentially
expressed genes and differentially active proteins, as originally
detected from their corresponding bulk cell populations. For each
cluster, we generated “synthetic bulk” expression profiles by
averaging 100 randomly selected single cells, based on which we
generated “synthetic bulk” protein activity profiles. As shown in
the corresponding t-SNE plots, synthetic bulk profiles from
metaVIPER-inferred protein activity analysis (Fig. 4b) were much
tighter than those produced by gene expression analysis (Fig. 4a),
suggesting that VIPER-inferred protein activity is more repro-
ducible across samples than mRNA expression. Finally, we
assessed the fraction of the 100 most differentially expressed
genes and differentially active proteins (as assessed from bulk
sample analysis) that could be recapitulated in a given fraction of
single cells when compared to the bulk expression of a different
cluster (e.g., a single T-cell vs. all cells in the melanoma cluster).
As shown in Fig. 4c, differential activity (turquoise curve)
significantly outperformed RSEM-based differential gene expres-
sion analysis (yellow curve). This becomes even more evident
when considering pairs of differentially expressed genes or active
proteins (e.g., gene X and Y being both differentially expressed in
a single cell if they are both differentially expressed in the bulk)
(Fig. 4d). The latter is important as it supports use of metaVIPER
to generate analyses similar to what is normally accomplished by
FACS, using two or more markers, using any of the ~6000
proteins assessed by the algorithm not limited by antibody
availability. This is shown in Fig. 4e–j, where virtual FACS plots
are shown for critical lineage markers of these populations using
gene expression (top plots) or protein activity (bottom plots). As
shown, it is virtually impossible to identify cell clusters based on

selected marker pairs at the gene expression level. Indeed, most of
the cells are found either on the x-axis (no detectable expression
of the Y-marker) or on the y-axis (no detectable expression of the
X-marker) or at the intersection of the two axes (no detectable
expression of either marker). In contrast, metaVIPER analysis
generates virtual FACS plots that are consistent with what would
be produced by an actual FACS assay. For instance, consider
CD19 and CD3, which are classic B and T cells markers,
respectively. From metaVIPER analysis (Fig. 4j), one can clearly
identify a CD19+/CD3− cluster corresponding to B cells, a CD19
−/CD3+ cluster corresponding to T cells, and a CD19−/CD3−
cluster corresponding to melanoma cells. Yet, this is not possible
when considering single cell gene expression (Fig. 4i).

Finally an additional value of the algorithm is that processes
that are not consistent with the transcriptional regulatory
architecture of the cells of interest are effectively filtered out by
the interactome analysis. This is useful, for instance, in
eliminating bias due to different chemistry of single cell profiling
or batch effects due to use of different gene expression
quantification methodologies (Supplementary Fig. 5 and 6). This
is helpful as these biases and batch effects represent a major
obstacle to the integrative analysis of gene expression data
generated in different labs or using slightly different reagent
batches.

Taken together, these data show that metaVIPER represents a
useful methodology for the analysis of single cell data and, in
particular, for the identification of lineage-specific regulatory
programs and lineage markers in samples comprising a hetero-
geneous mixture of single cells.

Discussion
We have shown that integration of multiple interactomes using
an evidence integration platform (metaVIPER) can provide
accurate assessment of protein activity independent of tissue
lineage. By systematic, we mean that activity of 6000 proteins can
be reproducibly assessed from any tissue, independent of their
gene expression; this is especially valuable in single cell analyses.
MetaVIPER can thus help infer activity of key regulators in tis-
sues lacking a matched interactome—either due to low sample
availability (orphan tissues) or to lack of tissue lineage informa-
tion—as well as in highly heterogeneous single cell populations
isolated from bulk tissue. We propose a specific metric (ECDF|
NES|) to assess whether a specific repertoire of interactomes is
adequate for the metaVIPER analysis of an unknown or orphan
tissue.

MetaVIPER is especially useful for the study of single cell
biology, as its results are largely independent of sequencing depth
and allow quantitative inference of protein activity even when the
corresponding mRNA is undetectable. Indeed, differential activity
of established lineage markers of T, B, and melanoma cells could
be clearly assessed in single cells from a complex mixture, even
though most of these markers were either not detected or could
not be identified as statistically significantly differentially
expressed at the mRNA level. The reduction in bias and batch
effects is an additional advantage, allowing integration of datasets
from multiple labs or generated at different times, thus addressing
the important issue of single cell data reproducibility.

Among the most obvious limitations of the method, metaVI-
PER cannot accurately measure activity of proteins whose reg-
ulons are not adequately represented in at least one of the
available interactomes. This includes proteins whose targets are
exceedingly tissue-specific within rare tissue types and single cell
sub-populations, for instance in LIHC and TGCT. As more
interactomes are assembled, including by ARACNe analysis of
single cell data from homogeneous sub-populations, this

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03843-3 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1471 | DOI: 10.1038/s41467-018-03843-3 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


limitation will be increasingly mitigated. This suggests that a
concerted effort toward the generation of regulatory models
representing distinct cellular compartments should be
undertaken.

It should be noted that, while we used ARACNe as a metho-
dology for interactome generation, there are many alternative/
complementary methods to accomplish the same goal, ranging
from DNA binding-site analysis51,52, to correlation-based53 and
graphical-model-based54, to literature-based approaches55.
Comparison of VIPER performance using several of these
methods was already discussed in ref. 7 and is thus not repeated
here. In terms of the VIPER algorithm, as also discussed in ref. 7,
alternative algorithms to transform a gene expression profile into
a protein activity profile are still lacking but a thorough perfor-
mance comparison can be easily performed once they become
available. In general, the metaVIPER approach is independent of
the specific algorithms used for either interactome reverse engi-
neering or analysis and should thus be still fully applicable once
VIPER alternatives emerge.

We have shown that VIPER-based elucidation of MR proteins
using tissue lineage-specific interactomes can effectively identify
reprogramming and pluripotency factors13,21,22,56, as well as
determinants of tumor states11–13 and resistance to targeted
therapy17,36. As a result, application of metaVIPER to single cell
populations identified by cluster analysis could help identify
critical determinants of lineage development, as well as distinct
dependencies within molecularly heterogeneous sub-population
in cancer tissues. For instance, it may help identify critical
dependencies in chemoresistant cell niches, including rare tumor-
initiating and tumor stem cell niches that have been shown to
have poor sensitivity to standard chemotherapy and targeted
therapy. Similarly, it could help identify drivers leading to aber-
rant reprogramming of physiologic cell states, such as recently
reported in type II diabetes57.

Methods
Regulatory networks. All regulatory networks were reverse engineered by ARA-
CNe9 and summarized in Supplementary Table. Twenty-four core TCGA RNA-
Seq derived interactomes are available in R-package aracne.networks from Bio-
conductor24. The TCGA human SKCM network was assembled from RNA-Seq
profiles. TCGA RNA-Seq level 3 data (counts per gene) were obtained from the
TCGSA data portal, and normalized by Variance Stabilization Transformation
(VST), as implemented in the DESeq package from Bioconductor58. The human B
lymphocyte interactome was reported by Basso et al.9. The human T lymphocyte
interactome was reported by Piovan et al.36. The human brain tumor regulatory
networks were assembled from four more gene expression datasets besides the
TCGA glioblastoma RNA-Seq dataset. For the Rembrandt, Phillips32, TCGA-
Agilent, and TCGA-Affymetrix, informative probe clusters were assembled with
the cleaner algorithm59 and the expression data were summarized and normalized
with the MAS5 algorithm, as implemented in the affy R-package from Bio-
conductor60. Differences in sample distributions were removed with the robust
spline normalization procedure implemented in the lumi R-package from Bio-
conductor61. In a similar way, differences in sample distribution for the TCGA-
Agilent dataset were removed by the robust spline normalization method. ARA-
CNe was run with 100 bootstrap iterations using 1813 transcription factors (genes
annotated in gene ontology molecular function database, as GO:0003700, “tran-
scription factor activity”, or as GO:0003677, “DNA binding”, and GO:0030528,
“transcription regulator activity”, or as GO:00034677 and GO: 0045449, “regulation
of transcription”), 969 transcriptional cofactors (a manually curated list, not
overlapping with the transcription factor list, built upon genes annotated as
GO:0003712, “transcription cofactor activity”, or GO:0030528 or GO:0045449),
and 3370 signaling pathway related genes (annotated in GO biological process
database as GO:0007165 “signal transduction” and in GO cellular component
database as GO:0005622, “intracellular”, or GO:0005886, “plasma membrane”).
Parameters were set to zero DPI (Data Processing Inequality) tolerance and MI
(Mutual Information) p-value (using MI computed by permuting the original
dataset as null model) threshold of 10−8.

Associating somatic mutations with metaVIPER inference. We consider
somatic mutations that happen in the same amino acid of a protein within at least
three patients as recurrent somatic mutations. Then for each protein, we did
enrichment analysis with activity profile for each patient as signature, and patient

harboring recurrent somatic mutation for that specific protein as enriching set. We
consider proteins with significant enrichment score (p < 0.01) as showing sig-
nificant association between inferred protein activity and recurrent somatic
mutations. Then we checked the fraction of proteins that can be associated with
recurrent somatic mutations, and used that as criteria in evaluating the perfor-
mance between VIPER and metaVIPER. In order to get enough mutated patient
samples for each protein, this analysis is done in a tumor type non-specific manner.

Preparation of glioblastoma mouse model. PDGFB–IRES–CRE expressing ret-
rovirus was injected into the rostral subcortical white matter of adult Pten lox/lox/
p53 lox/lox/luciferase- stop-lox transgenic mice30,31. Mice developed brain tumors with
the histopathological features of glioblastoma by 28 days post injection with
retrovirus.

Generating scRNA-Seq profiles for glioblastoma mouse model. Following
IACUC guidelines, animals were sacrificed at the first sign of morbidity. Ex vivo
gross total resection of the tumor was performed and tumor cells were isolated
using enzymatic digestion62. The isolated cells were cultured in a 2:1 ratio of basal
media (DMEM, N2, T3, 0.5% FBS, and penicillin/streptomycin/amphotericin) in
B104 conditioned media63. This media was further supplemented with PDGF–AA
(Sigma-Aldrich; St. Louis, MO) and FGFb (Gibco; Grand Island, NY) to a con-
centration of 10 ng/ml. We then obtained 85 scRNA-Seq profiles using the Flui-
digm C1 system. We loaded dissociated cells into a Fluidigm Integrated Fluidic
Circuit with capture sites designed for 10–17 μm diameter cells after staining the
single cell suspension with Calcein AM (Life Technologies). We then imaged the
cells that had been captured on-chip with both bright field and fluorescence
microscopy using an inverted Nikon Eclipse Ti–U epifluorescence microscope with
a ×20, 0.75 NA air objective (Plan Apo λ, Nikon), a 473 nm diode laser (Dragon
Lasers), and an electron multiplying charge coupled device (EMCCD) camera
(iXON3, Andor Technologies). This allowed us to identify capture sites with zero,
one, and more than one cell and also to identify capture sites containing living cells,
based on the Calcein AM fluorescence. We then lysed the cells, reverse transcribed
mRNA into cDNA, and pre-amplified full-length cDNA by PCR automatically
using the Fluidigm C1 Autoprep instrument according to the manufacturer’s
instructions. Finally, we harvested individual cDNA libraries from the microfluidic
device and converted them into indexed, Illumina sequencing libraries by in vitro
transposition, and PCR using the Nextera system (Illumina). The pooled libraries
were sequenced on a single lane of an Illumina HiSeq 2000 with single-end 100-bp
reads. After demultiplexing, the resulting raw reads were aligned to the murine
genome and transcriptome annotation (mm10, UCSC annotation from Illumina
iGenomes) with Tophat 2. Uniquely aligned, exonic reads were then quantified for
each gene using HTSeq.

Code availability. metaVIPER is implemented in viper function from Bio-
conductor R-package VIPER: https://www.bioconductor.org/packages/release/bioc/
html/viper.html. ARACNe algorithm: http://califano.c2b2.columbia.edu/aracne.
Custom scripts will be provided upon request to the corresponding authors.

Data availability. scRNA-Seq data for the mouse glioblastoma model described in
the paper have been deposited at the Gene Expression Omnibus (GEO) under
accession number GSE95157. R-package aracne.networks is available on Bio-
conductor (10.18129/B9.bioc.aracne.networks). SKCM, B, and T lymphocyte
interactomes (10.6084/m9.figshare.4833704). Brain tumor interactomes (10.6084/
m9.figshare.4648765.v1). TCGA expression and somatic mutation profile: http://
cancergenome.nih.gov/. REMBRANDT data set: https://gdoc.georgetown.edu/
gdoc/. COSMIC somatic mutation profile: http://cancer.sanger.ac.uk/cosmic. Fil-
tered PBMC scRNA-Seq expression profiles generated using 10× Genomics V2
chemistry: https://support.10xgenomics.com/single-cell-gene-expression/datasets/
2.0.1/pbmc4k. Filtered PBMC scRNA-Seq expression profiles generated using 10×
Genomics V1 chemistry: https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/pbmc3k. All relevant data are available from the authors.
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