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Abstract

Consider a statistical analysis that draws causal inferences from an observational dataset, 

inferences that are presented as being valid in the standard frequentist senses; i.e. the analysis 

produces: (1) consistent point estimates, (2) valid p-values, valid in the sense of rejecting true null 

hypotheses at the nominal level or less often, and/or (3) confidence intervals, which are presented 

as having at least their nominal coverage for their estimands. For the hypothetical validity of these 

statements, the analysis must embed the observational study in a hypothetical randomized 

experiment that created the observed data, or a subset of that hypothetical randomized data set. 

This multistage effort with thought-provoking tasks involves: (1) a purely conceptual stage that 

precisely formulate the causal question in terms of a hypothetical randomized experiment where 

the exposure is assigned to units; (2) a design stage that approximates a randomized experiment 

before any outcome data are observed, (3) a statistical analysis stage comparing the outcomes of 

interest in the exposed and non-exposed units of the hypothetical randomized experiment, and (4) 

a summary stage providing conclusions about statistical evidence for the sizes of possible causal 

effects. Stages 2 and 3 may rely on modern computing to implement the effort, whereas Stage 1 

demands careful scientific argumentation to make the embedding plausible to scientific readers of 

the proffered statistical analysis. Otherwise, the resulting analysis is vulnerable to criticism for 

being simply a presentation of scientifically meaningless arithmetic calculations. The conceptually 

most demanding tasks are often the most scientifically interesting to the dedicated researcher and 

readers of the resulting statistical analyses. This perspective is rarely implemented with any rigor, 

for example, completely eschewing the first stage. We illustrate our approach using an example 

examining the effect of parental smoking on children’s lung function collected in families living in 

East Boston in the 1970s.
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1 Introduction

The norm in many biomedical fields, especially in environmental epidemiology, is to report 

associations between exposures and health outcomes using standard regression models 

analyzing non-randomized data1–3 often because of ethical or logistic concerns about 

enforcing randomized assignment. However, causal relationships between exposures and 

outcomes characterizing human health, although more difficult to estimate than associations, 

are always the actual estimands in biomedical research, and moreover, estimates of these 

effects are expected by readers of journals interested in policy implications. Here we 

consider an approach that estimates explicitly the causal effects of parental smoking on 

children’s lung function, a causal question that is important, yet unanswered by extant 

analyses because past epidemiological studies have reported discordant estimates.4 

Providing accurate estimates of the causal effects of children’s exposure to parental smoking 

is crucial to risk assessors. Although our analytic approach does not directly address the 

effects of specific interventions to curtail parental smoking, it does implicitly suggest, in the 

fourth stage, possible interventions to reduce the consequences on health outcomes. The 

causal versus associational nature of this relationship is reflected by the assertion that no 

matter what pre-assignment background characteristics lead to children’s exposure to 

smoking parents in the observed data set, excess morbidity among the exposed would have 

been reduced if preventative interventions were implemented; the related assertion is that 

analogous results will be observed in the future.

The general framework that we consider in this paper is sometimes called the “Rubin Causal 

Model”5–8 for work done in the 1970s. This approach using potential outcomes to define 

causal effects was originally proposed by Neyman in 19239 but its use was restricted to 

randomized experiments until Rubin extended it to define causal effects in general.10 To 

address causality, the key insight is to (multiply) impute the missing potential outcomes for 

each unit, i.e. what the outcome would have been under the other (meaning, not taken) 

treatment. In contrast, most published epidemiological studies model only the observed 

outcome data (i.e. not the potential outcomes) using associational models implicitly 

assuming that “association implies some sort of causation.”11 The main focus of this 

manuscript is to illustrate how to incorporate conceptual and design stages in observational 

studies prior to any analysis stage examining outcome data, which follows previous logic 

proposed by Rubin.12,13 Our approach transports established insights from classical 

experimental design, which revolutionized many empirical fields from 1925 to 1960.14–17 

Specifically, we use design strategies that were suggested in the late 1960s and early 1970s,
18–21 and compare the results to the results obtained by the standard strategy used in 

environmental epidemiology.

2 Our suggested approach – steps towards statistical evidence

Consider the specific environmental health example to estimate the causal effect of exposure 

to one factor, parental smoking, on children’s lung function, assessed using forced 

expiratory volume in one second (FEV-1) in children using data collected in East Boston in 

the 1970s and previously analyzed decades ago22 and more recently used for pedagogical 

purposes.23 From our perspective, most reports analyzing these data lacked both a 

Bind and Rubin Page 2

Stat Methods Med Res. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conceptual stage and a design stage, and focused on the conclusions based on standard 

regressions generated from a simple analysis stage.

2.1 The standard analysis stage strategy

The standard epidemiological approach to such data has lung function as the outcome 

variable and has parental smoking and background variables as predictors in generalized 

linear or additive regression models. Association estimates are obtained, but:

i. Are these estimated effects of similar magnitude to those that would be obtained 
if the researcher had conducted a real randomized experiment? Note that the 

randomized experiment is not uniquely defined in this context.

ii. What are the assumptions underlying standard regression models and are they 

straightforward or opaque?

iii. What are the precise meanings and robustness of the reported statistical 

summaries (e.g. uncertainties, interval estimates, p-values)?

2.2 Objective and valid causal inference under stated assumptions

In contrast, we propose a strategy with four transparent, distinct, and ordered stages, 

following implicit advice in classical texts on experimental design (e.g. Fisher,14,15 

Kempthorne,16 Cochran and Cox,17 Box et al.24) and a more recent text extending this 

perspective to non-randomized studies.8

1. A conceptual stage that involves the precise formulation of the causal question 

(and related assumptions) using potential outcomes and described in terms of a 

hypothetical randomized experiment in which the exposure is randomly assigned 

to units; this description includes the timing of assignment and defines the target 

population; no computation is needed at this stage, but rather careful thought and 

argumentation.

2. A design stage that attempts to reconstruct (or approximate) the design of a 

randomized experiment before any outcome data are observed (i.e. with 

unconfounded assignment of exposure using the observed background and 

treatment assignment data); typically, heavy use of computing is needed at this 

stage, e.g. for multivariate matched sampling and extensive balance diagnostics.

3. A statistical analysis stage defined in a protocol explicated before seeing any 

outcome data, comparing the outcomes of interest in similar (e.g., hypothetically 

randomly divided) exposed and non-exposed units of the hypothetical 

randomized experiment; this stage is the one that most closely parallels the 

standard model-based analyses but uses more flexible methods. The predefined 

protocol is crucial to prevent extensive model selection based on hunting for 

significant “p-values”.

4. A summary stage providing conclusions about statistical evidence for the sizes of 

possible causal effects of the exposure; no computing is required at this stage, 

just thoughtful summarization, e.g. focusing on what actual world interventions 

could be implemented to curtail any untoward causal effects of the exposure.
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3 Our illustrative application: the effect of parental smoking on children’s 

lung function

Our data set comprises 654 children and young adults, 318 females and 336 males, with 

10% having parents who smoke. The children’s ages range between 3 and 19. Regarding the 

heights of the children, the mean is 61 inches and they range between 46 and 74 inches.

3.1 Overview of the four stages in our example

3.1.1 Conceptual stage: precise formulation of the causal question—Various 

hypothetical randomized experiments in which “enforced smoking cessation” is randomly 

assigned to parents, can be conceptualized (e.g. Bernouilli trial, completely randomized 

experiment, stratified randomized experiment, paired randomized experiment). At this initial 

stage, the plausibility of the reconstructed hypothetical randomization is important because 

we want to convince the reader of that position on which the entire analysis is formally 

predicated. Different timings of the random assignment can be imagined (e.g. before or after 

conception of the child) and different target populations from which the sample of 654 

children was drawn can be considered.

3.1.2 Design phase: reconstruction of the hypothetical experiment—To address 

causality, we start by approximating the ideal conditions of a randomized experiment, which 

demands unconfounded assignment of exposure given observed covariates. 

Unconfoundedness of the exposure’s assignment can be achieved approximately by 

matching that aims to create exchangeable groups (e.g. strata, pairs) of exposed (to parental 

smoking) and non-exposed units with randomly different values of pre-exposure 

(background) covariates. In this simplified example, such covariates include age, height, and 

sex, because these variables are recorded in the existing data set. We will see that this effort 

is not as trivial conceptually as we might hope, as discussed shortly. That is, we attempt to 

create exchangeable exposed and unexposed groups or matched pairs of children, one 

member (or part) of each group or pair is randomly assigned to smoking parents and the 

other member to non-smoking parents but matched on age, height, and sex. Some earlier 

methods and associated theory are summarized by Rubin21 and Rosenbaum,25 and more 

recent approaches are given in Sekhon26 and Hansen et al.27 If the matching strategy 

creating two such identical groups or pairs of children is entirely successful, there can be no 

confounding with respect to the background variables that we used for matching. It is 

obviously not ethical to transfer children to different parents, but perhaps it is plausible that 

non-smoking characteristics of smoking and non-smoking parents have no effect on 

children’s lung function. At least we should be explicit about such important, but typically 

implicit, assumptions.

Another important issue related to the timing of the observational data collection arises in 

this setting because children’s characteristics (such as age, height, and sex) in our data set 

are actually known only a posteriori, that is, after assignment to the exposure. If we assess 

whether children are similar with respect to variables measured after the assignment of 

exposure, we need to assume, for the validity of simple analyses, that these variables are not 

affected by the exposure. Note that this assumption implies that the height of each child with 
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smoking parents was not affecting by parental smoking exposure. Although we found no 

evidence against parental smoking influencing height in this data set after applying our 

suggested approach but considering height as an outcome with age and sex as covariates, a 

French longitudinal cohort study suggests that this assumption may not be valid.28

3.1.3 Analysis phase—We start by using computationally flexible techniques, such as 

statistical matching, to achieve balanced distributions of the background variables in the 

exposed and unexposed children. The most straightforward analysis examines the difference 

in lung function between the exposed children and the unexposed children, and these are 

then averaged over all children to obtain an estimate of the average causal effect. 

Randomization-based inference can be conducted using modern computing techniques8 to 

test the sharp null hypothesis that exposure to parental smoking has absolutely no effect, 

relative to no smoking exposure, on children’s lung function. Frequentist or Bayesian 

regression models can also be used at that stage in order to increase efficiency, by removing 

residual confounding that was not adequately addressed during the design stage, e.g. 

allowing treated and controls to have separate regression slopes and separate residual 

variances.19–21,29,30 It is critical that the analysis stage needs to be specified in a protocol 

explicated before seeing any outcome data.

3.1.4 Causal conclusion—If one observes a significant difference in average lung 

function outcome between these exchangeable groups or matched pairs (i.e. a difference that 

would be a rare event in the hypothetical randomized experiment if there were no effect of 

exposure), it is natural to attribute that difference to the differential exposures to parental 

smoking, and critically, to propose that the negative effect could be ameliorated by the 

introduction of some hypothetical intervention to curtail smoking, yet to be debated.

3.2 Details of the three first stages in our example

3.2.1 Six hypothetical experiments (first stage)—Various possible randomized 

interventions to curtail parental smoking are now discussed.

Hypothetical experiment A: One hypothetical completely randomized experiment (with 

NSmoking = 65 children with smoking parents and NNon-smoking = 589 children with non-

smoking parents) involves intervening on smoking households before they have children and 

randomizing them to stop smoking with probability 9/10, and thus with probability 1/10 to 

continue to smoke.

Formulating a hypothetical intervention can be challenging. First, it should be plausible 

enough to convince readers to continue reading. However, we believe it is one of the most 

interesting and scientifically, not mathematically, relevant steps for epidemiological 

researchers. Note that whatever hypothetical intervention you posit for the experiment 

underlying your dataset, you are assuming that you will obtain essentially the same analytic 

answer for all versions of that hypothetical experiment. That is, there is a hidden assumption 

at this stage that, whichever version of the hypothetical intervention you choose, it will lead 

to approximately the same estimated causal effect. More precisely, in our example, can you 

argue that the hypothetical intervention assuming that the population consisted of only 

smoking parents who were assigned to stop smoking with probability 9/10 (and they all 
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complied) would lead to the same conclusion as if the population consisted of only non-

smoking parents who were assigned to smoke with probability 1/10 with full compliance? 

The latter would be clearly unethical considering what we now know about smoking 

exposure. But this question emphasizes the type of question you should be willing to 

entertain and answer. Actually, we do not consider Hypothetical Experiment A plausible. 

For reason discussed shortly, perhaps discarding unexposed children with background 

characteristics that are unlike the exposed children and vice versa would improve the 

plausibility of a hypothetical experiment.

Hypothetical experiment B: Another hypothetical completely randomized experiment could 

have resulted in exposed children with background covariates that are within the range of the 

background covariates of the unexposed children, and unexposed children with background 

covariates that are within the range of the background covariates of the exposed children. 

That is, suppose we selected boundaries for the covariates age and height, and restricted the 

361 children to fall within those boundaries. This strategy led to NSmoking = 61 children with 

smoking parents and NNon-smoking = 300 children with non-smoking parents. At this point, 

an underlying hypothetical experiment that generated the data was not yet considered 

plausible; the specific reasons will be explained in section 3.2.4.

Hypothetical experiment C: Another hypothetical randomized experiment could have 

resulted in non-smoking parents with background covariates that are within certain strata 

defined by the background covariates of the smoking parents. This formulation is described 

more precisely in Section 3.2.2, part b), and led to NSmoking = 57 children with smoking 

parents and NNon-smoking = 216 children with non-smoking parents.

Other hypothetical randomized experiments would also intervene on smoking parents before 

their child’s conception; we describe two such experiments. First, Hypothetical experiment 
D.1, a completely randomized experiment with balanced groups (e.g. creating two equal-

sized groups of parents similar on background characteristics, that is, NSmoking = 

NNon-smoking = 63 children). Or second, Hypothetical experiment D.2, a rerandomized 

experiment with two equal-sized groups of similar parents (with NSmoking = NNon-smoking = 

63) for which the randomized allocations are allowed only when parents’ covariates (e.g. 

height) mean differences between smokers and non-smokers are within some a priori 
defined calipers.

Another hypothetical randomized experiment, Hypothetical experiment E, would intervene 

after the child’s conception, from the point in time for which we know the child’s sex, and 

would have a paired-randomized experiment where a coin flip determines which parents of a 

pair of two similar parents expecting a child with same sex is exposed to still-smoking 

parents, with NSmoking = NNon-smoking = 63 children).

We define the “finite population” as the population being randomized in each of the 

reconstructed hypothetical experiments. The super-population is a hypothetical “infinite 

population” from which the finite population is drawn.
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3.2.2 Several different design phase strategies (second stage)

(a) No design stage (a): The standard approach in environmental epidemiological lacks both 

a conceptual stage and a design stage and simply focuses on associations gleaned from 

observed data (Nchildren = 654).

(b) Trimming (b): A relatively naïve strategy attempts to eliminate units from one group 

(i.e. treated or control) outside the range of the other group with respect to background 

covariates by trimming “outlier” units. To restrict imbalance with respect to age and height 
in the exposed vs. non-exposed groups, we included girls with ages between 10 and 18 and 

heights between 60 and 69 inches, and included boys with ages between 9 and 18 and 

heights between 58 and 72 inches; these restrictions leave us with 361 units out of 654 (see 

Figure 1). An alternative to trimming with rectangle boundaries could involve trimming 

outside the overlap of the ellipses of the bivariate distributions of the girls with smoking 

parents vs. girls with non-smoking parents and similarly for boys (see Figure 2), which is 

another example of an “intersection” matching method,31 but we will only consider 

rectangular intersection trimming in the following sections of the paper. Note that, after the 

trimming stage, any remaining imbalance in any background variable (e.g. age) between the 

exposed and non-exposed groups still limits our ability to assert that the “hypothetically 

randomized” exposure was the sole reason for the lack of balanced background covariates 

between children with smoking parents and children with non-smoking parents.

(c) Stratified matching (c): Another approach goes beyond trimming and construct 

discretized covariates and thus strata in which these discretized background covariates are 

balanced. This strategy, essentially proposed decades ago in the context of imputing missing 

data through “hot deck” imputation,32 and then for matching in causal inference by Cochran,
18 has recently become popularized and renamed “coarsened exact matching.”33 This 

approach eliminated 381 children out of 654.

(d) Propensity score one-to-one matching after overlap assessment and discarding 
(d): A one-to-one matching strategy with calipers34 on the estimated propensity score,25 for 

instance estimated by a logistic regression that regresses parental smoking on the available 

covariates in the dataset (e.g. age, height, sex, and nonlinear functions of them), but no 

outcome variables, can also be used in the design stage. A more parsimonious (and therefore 

simpler to interpret) model including age, height, and sex rather than age, age2, height, 
height2, sex, sex×age, and sex×height was favored by us based on likelihood ratio tests, as 

suggested in Imbens and Rubin.8 We removed 156 “outlier” children (i.e. 154 with non-

smoking parents and two with smoking parents) with estimated propensity scores that did 

not overlap with the other group (see Figure 3 showing the estimated propensity score 

distributions among the children with smoking parents and non-smoking parents before and 

after removing the “outlier” children). We required covariates balance within a caliper equal 

to one standard deviation of the raw propensity score. The approach led to 63 exposed 

children and 63 unexposed children with similar background characteristics at the group 

level, not necessarily pair by pair, even though pairs were used to construct overlapping 

treatment and control groups.
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(e) Optimal pair matching after overlap assessment and discarding (e): After removing 

“outlier” children, another matching strategy creates “optimal” pairs of children, where 

optimal here means minimizing the squared Mahalanobis distances between paired exposed 

and unexposed children with respect to the covariates age, height, and sex.27 The “optimal” 

pairing matched 63 exposed children to 63 similar unexposed children. This approach may 

have the advantages of directly creating well-matched pairs with an a priori optimization 

criteria (e.g. squared Mahalanobis distance), or equivalently removing pairs not satisfying 

this criterion; thereby having some flavor of the rerandomization approach.35

3.2.3 Description of the final resulting datasets across hypothetical 
experiments/design stage methods—A summary of the characteristics of the units 

arising from each hypothetical experiment resulting from each design stage method is 

presented in Table 1. When trimming the outlying units, the dataset is reduced from 654 to 

361 children (i.e. 55% of the children remain) with an increased mean age, mean height, 

ratio of boys to girls, and ratio of smoking parents to non-smoking parents. The stratified 

matching strategy reduced the dataset further to 273 children with characteristics similar to 

the trimmed dataset. The propensity score and optimal pair matching approaches reduced the 

dataset even more to 63 pairs of children (i.e. 126 children, 20% of the original population) 

with similar age and height characteristics as in the trimmed dataset but with fewer children 

with non-smoking parents and fewer boys.

3.2.4 Initial assessment of plausibility of the reconstructed hypothetical 
randomized experiments—To assess the plausibility of each hypothesized experiment, 

we examine whether the two treatment groups are well balanced on the background 

covariates. For each hypothetical experiment, we present the mean and standard deviation of 

age, height, and of female–male proportion in the exposed and unexposed groups (Table 2).

The reconstructed hypothetical randomized experiment (A) is not plausible for our data 

because the East Boston study population did not consist of parents all of whom smoked at 

one time. The background characteristics of the study population in the original data set are 

also inconsistent with a “good” randomization because, for instance, children with smoking 

parents are significantly older, and thus, not surprisingly, taller than children with non-

smoking parents (first row of Table 2). The reconstructed hypothetical randomized 

experiment (B) is also not plausible because the background characteristics of the study 

population in the trimmed data set is inconsistent with a “good” randomization; children 

with smoking parents are still significantly older, taller than children with non-smoking 

parents (second row of Table 2). The reconstructed hypothetical randomized experiment (C) 

is also not plausible because the background characteristics of the study population of 

smoking and non-smoking parents in the described experiment is inconsistent with a “good” 

randomization; children with smoking parents are still significantly older and taller than 

children with non-smoking parents (third row of Table 2). The last three reconstructed 

hypothetical randomized experiments (e.g. D.1, D.2, and E) could be plausible because the 

background characteristics of the study population of smoking and non-smoking parents in 

the described experiments are consistent with fairly “good” randomizations; children with 
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smoking parents differ only slightly from children with non-smoking parents (fourth and 

fifth rows of Table 2).

For each reconstructed hypothetical experiment, plausible or not, we compare the estimated 

averaged causal effects (ACEs) using standard analysis strategies. However, for illustrating 

the Fisherian and Bayesian inferences, for reasons of conciseness, we chose to focus only on 

the three plausible reconstructed randomized experiments, that is, we consider only the 

matched-sampling datasets obtained via the propensity score matching (d) (corresponding to 

hypothetical completely randomized experiment (D.1) and rerandomized experiment (D.2)), 

and the optimal pair matching (e) (corresponding to hypothetical paired-randomized 

experiment (E)) approaches.

3.2.5 Additional assessment of balance in covariates—Many methods have been 

proposed to assess balance in covariates (some reviewed by Imbens and Rubin8). We also 

calculated the standardized mean differences between the exposed and unexposed children 

(before and after matching on age, height, and sex using propensity score calipers and 

optimal pairing) of the variables age, age2, height, height2, sex, sex×age, and sex×height. 
Figure 4 shows that the standardized mean differences between exposed and non-exposed 

children were reduced after propensity score matching for all variables included when 

estimating the propensity score (i.e. age, height, and sex), as well as for the variables not 

included in the propensity score (i.e. age2, height2, sex×age, and sex×height) because these 

were correlated with the estimated propensity score. Note that smaller calipers could have 

been chosen but minimal improvement was achieved with respect to overall covariate 

balance. The “Love” plot36 also suggests excellent balance achieved by the optimal 

matching strategy between the exposed and unexposed children.

Another way of assessing balance for continuous covariates, which can provide more 

detailed insights than the standard “Love” plots presented in Figure 4, is to present the 

empirical distributions of age and height for the exposed vs. non-exposed children before 

and after matching (Figures 5 and 6). For conciseness, we presented these distributions of 

the continuous variables age and height among the exposed and unexposed children before 

and after matching on age, height, and sex only for experiments 4 and 5 (i.e. for the 

propensity score caliper (d) and optimal pairing (e) approaches). As shown in Figures 5 and 

6, the balance has improved for the variables age and height after propensity score matching 

and after optimal pair matching.

We also reported Kolmogorov–Smirnov (KS) “distances” between the univariate 

distributions of the continuous background variables age and height for the exposed children 

and those distributions for the unexposed children (before and after matching using 

propensity score caliper (d) and optimal pairing (e))

KSno design = supxε{no design}‖FSmoking(x) − FNon−smoking(x)‖

KSpropensity score = supxε{propensity score}‖FSmoking(x) − FNon−smoking(x)‖
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KSoptimal pairing = supxε{optimal pairing}‖FSmoking(x) − FNon−smoking(x)‖

The KS “distances” reflect how much the univariate distributions of the variables for the 

exposed children differ from those distributions for the unexposed children (see Figures 5 

and 6).

The distributions of the squared Mahalanobis distances between propensity score (top panel) 

vs. optimal pairs (bottom panel) are presented in Figure 7. Although the range of pairwise 

squared Mahalanobis distances is between 0 and 12 for the propensity score matched pairs, 

with the optimal pair matching approach, the range of these squared distances is between 0 

and 2, which suggests better pair matching.

3.2.6 Analysis phase (third stage): various standard regression-based 
outcome analysis-phase strategies at the super-population level

(i) T-test/crude regression analysis (i.e. no covariate adjustment): An initial t-test can be 

conducted comparing the mean FEV-1 among children with smoking parents to the mean 

FEV-1 among children with non-smoking parents. This is equivalent, assuming that the 

treatment effect is constant and additive for all units and that the residual variances in both 

groups are the same, to regressing the dependent variable, FEV-1, on the indicator for 

exposure of interest “parental smoking,” and examining the size and statistical significance 

of the coefficient of the indicator.

(ii) Standard linear regression model with simple linear adjustment: The second 

analysis regresses the dependent variable FEV-1 on the exposure of interest “parental 

smoking” as in analysis (i) but also linearly “adjusts” for the three covariates available in the 

dataset, i.e. age, height, and sex, by including them in the regression model, and making the 

analogous assumptions as with the first analysis. The distributions of the outcome of interest 

FEV-1 across children with parents who smoke and not, stratified by sex, are presented in 

the Supplementary Figure 1. We also assessed the significance of interaction terms between 

parental smoking and the three covariates, and found limited evidence of interactions 

(pinteraction = 0.14 for smoking×age, pinteraction = 0.10 for smoking×height, and pinteraction = 

0.26 for smoking×sex). We also found little evidence against the linearity assumption of the 

associations between (1) age and FEV-1, and (2) height and FEV-1 (see Supplementary 

Figure 2). Other versions of this regression were investigated in the original dataset, that is, 

using all 654 units (i.e. omitting conceptual and design stages).23

3.2.7 Analysis-phase strategies (third stage) at the finite-population level

(i) Analysis using Fisherian (Fiducial) inference in the finite population: Because there 

were three plausible hypothetical randomized experiments, we perform randomization-based 

tests assuming the data arise from: (i) the complete randomization experiment (D.1), (ii) the 

rerandomized experiment (D.2), and (iii) the pairwise randomized experiment (E). That is, 

we test the Fisher null hypothesis of no effect of parental smoking on children’s FEV-1 in 

the finite population sample by performing a stochastic proof by contradiction. We first 

assume the null hypothesis of absolutely no effect of treatment versus control, so that we 
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know all potential outcomes and thus know what the value of any test statistic would be 

obtained under any treatment assignment. Then, for the completely randomized experiment 

(D.1), we permuted the treatment assignment among the 126 children such that half of them 

get exposed and obtain 126-choose-23 different treatment assignments. Similarly, for the 

hypothetical rerandomized experiment (D.2), we rerandomized the 126 children such that 

half of them get exposed but the two groups have similar background covariates’ means. 

Finally, for the paired randomized experiment, we choose one member of each of the 63 

pairs to be considered treated, and thereby obtain 263 different treatment assignments. We 

conducted 10,000 random draws of permuted (1) completely randomized (D.1), (2) 

rerandomized (D.2), and (3) pair randomized treatment assignments (E), and calculate the 

following statistic in each permuted allocation:

1. Tt-completely randomized D.1 = t-test statistic comparing the mean FEV-1 among 

exposed and unexposed children (different group variances),

2. Tt-rerandomized D.2 = t-statistic of the regression coefficient of smoking when 

regressing FEV-1 on smoking, age, height, and sex, and

3. Tt-paired randomized E = paired t-test statistic comparing the means FEV-1 among 

exposed vs. unexposed children.

We obtain Fiducial intervals by inverting the sharp null hypothesis tests for different 

constant additive effects, as described in Imbens and Rubin.8

(ii) Analysis using Bayesian inference to estimate the posterior distribution of the 
average causal effect (ACE) and its 95% probability interval in the finite 
population: We now consider the Bayesian approach initially proposed by Rubin37 and 

described in Imbens and Rubin.8 Briefly, we first specify distributions for the potential 

outcomes conditional on covariates, here for simplicity independent and identically 

distributed normal ones. Because we consider only the plausible hypothetical randomized 

experiments (D.1, D.2, and E) in this section, we assume ignorable exposure assignment (i.e. 

P(Smokingi=1 | FEV-1i
obs, FEV-1i

mis, Agei
obs, Heightiobs, Sexi

obs) = P(Smokingi=1 | 

FEV-1i
obs, Agei

obs, Heightiobs, Sexi
obs), where FEV-1i

obs and FEV-1i
mis represent the 

observed and missing FEV-1 potential outcomes for the ith unit).37 We impute the missing 

potential outcomes among the exposed and non-exposed groups separately, allowing for 

different normal models (conditional on the intercept and the three covariates available in the 

dataset, i.e. age, height, and sex), that is, different means (µi,Smoking = βSmoking Xi and 

µi,Non-smoking = βNon-smoking Xi, where Xi represents the constant, agei, heighti, and sexi) and 

different variances in the exposure groups (σSmoking
2 and σNon-smoking

2). The goal is to draw 

multiple values of FEV-1i
mis conditional on FEV-1i

obs, Smokingi
obs, Agei

obs, Heightiobs, 

Sexi
obs, and the parameters βSmoking, βNon-Smoking, σSmoking

2, σNon-smoking
2. To accomplish 

this, we need to calculate the posterior distribution for the parameters. We assume flat priors 

for the parameters β and σ2, that is

p(βSmoking, σSmoking
2 )∞σSmoking

−2   and  p(βNon−smoking, σNon−smoking
2 )∞σNon−smoking

−2
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We use two separate Gibbs samplers to impute: (1) the missing control potential outcomes 

among the treated, and (2) the missing treated potential outcomes among the controls, 

reflecting independent prior distributions for these parameters.

For instance, to impute the control missing potential outcomes, i.e. 

FEVi-1mis=FEVi-1[Smokingi=0)] among the exposed children

1. we draw σNon-smoking
2 such that:

1/σNon-smoking
2 ~ {1/ [(nNon-Smoking − 4) sNon-Smoking

2]} χ2 with nNon-Smoking 

− 4 degrees of freedom, where nNon-Smoking, sNon-Smoking
2 are the number of 

children with non-smoking parents and the FEV-1 sample variance among the 

children with non-smoking parents, respectively;

2. we then draw βNon-Smoking conditional on σNon-smoking
2, FEVi-1obs, 

Smokingi
obs, Xi

obs from a normal distribution with mean equal to 

[(XNon-Smoking
T XNon-Smoking)−1 XNon-Smoking

T FEVi-1Non-Smoking] and 

variance-covariance matrix [XNon-Smoking
T XNon-Smoking)−1 σNon-smoking

2], and 

finally,

3. we draw the missing control potential outcomes among the treated; that is, for 

unit i such Smokingi=1, we draw FEV-1i
mis conditional on FEV-1i

obs, Wi, 

βNon-Smoking, and σNon-smoking
2 independently from a normal distribution with 

mean [Xi
obs βNon-Smoking] and variance σNon-smoking

2.

At each replication, we impute the missing potential outcomes in both groups and calculate 

the average causal effect (ACE), i.e. the mean difference in FEV-1 among all children when 

having smoking parents vs. when having non-smoking parents. We repeat this procedure 

10,000 times and thereby obtain 10,000 draws from the posterior distribution of the ACE.

(iii) Combining the Bayesian and Fisherian approaches: The Bayesian approach relies on 

the model specification to be approximately correct, whereas the Fisherian procedure 

provides a non-parametric procedure to test the sharp null hypothesis. We propose to use a 

different, and possibly more interesting, statistic than Tt-completely randomized D.1, 

Tt-rerandomized D.2, and Tt-paired randomized E calculated from the approximated Bayesian 

posterior distribution of the average causal effect to test the sharp null hypothesis, Tt-Bayesian 

= | posterior mean of the ACE | / standard deviation of the ACE. The idea to use a statistic 

based on a model for the Fisher test goes back at least to Brillinger et al.38

3.3 Results from our example

3.3.1 Estimated average causal effects (ACE) and associated asymptotic 95% 
confidence intervals in the super-population (see Table 3)—The first two rows of 

Table 3 summarize the two analyses with no design stage, and both indicate a beneficial or 

uncertain effect of smoking parents on children’s FEV-1. From Table 3, the trimming 

approach provides estimated ACEs that indicate essentially slightly beneficial or uncertain 

effects of parental smoking on children’s FEV-1. From the fifth and sixth rows of Table 3, 

we see that, with the stratified matching strategy, the estimated ACEs indicate some possible 

negative effects of parental smoking on children’s FEV-1. With 126 units, but restricting the 
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data to pairs of children who are “similar” with respect to age, height, and sex, the 

propensity matched sampling approach estimates the crude and adjusted estimated effects of 

parental smoking on children’s FEV-1 to be negative. That is, the mean FEV-1 among 

children with parents who smoke was estimated to be lower than the mean FEV-1 among 

children with non-smoking parents. The squared Mahalanobis distances between propensity 

score matched pairs are greater for the negative estimated paired causal effects as shown in 

Figure 8, suggesting some “outlying” pairs. If we removed a few pairs with squared 

Mahalanobis distances between propensity score pairs greater than 8, 6, 4, or 2 (i.e. resulting 

in 60, 54, 42, and 38 pairs, respectively), the estimated crude ACEs change from −0.20 to 

−0.14, −0.11, −0.07, and 0.01, respectively. With 63 “optimal” pairs, the crude and adjusted 

estimated effects of parental smoking on children’s FEV-1 also suggest negative effects.

3.3.2 Fisherian and Bayesian inferences in the finite population

(i) Fisherian (Fiducial) inference in the finite population: The approximated null 

randomization distributions of the chosen statistics Tt-completely randomized D.1, 

Tt-rerandomized D.2, and Tt-paired randomized E (based on 10,000 draws of the permuted treatment 

assignment) are presented in Figure 9. The proportion of the equiprobable treatment 

allocations under randomized assignment that led to values of the statistics, 

Tt-completely randomized D.1, Tt-rerandomized D.2, and Tt-paired randomized E, as large or larger than 

the observed statistic Tobs
t-completely randomized D.1 = 1.57, Tobs

t-rerandomized D.2 = 1.66, and 

Tobs
t-paired randomized E = 2.12 were equal to p-valuecompletely randomized D.1 = 0.12, p-

valuererandomized D.2 = 0.10, and p-valuepaired randomized E = 0.04, respectively, all suggesting 

significant effects of parental smoking.

Inverting these sharp null hypothesis tests for different values of average causal effects 

across the three reconstructed randomized experiments led to 95% Fiducial intervals equal to 

[−0.52 to 0.06]completely randomized D.1, [−0.33 to 0.03]rerandomized D.2, and [−0.37 to 

−0.02]paired randomized E, again suggesting negative effects of parental smoking on children’s 

FEV-1.

(ii) Bayesian inference for the posterior distribution of the average causal effect (ACE) 
and its 95% probability interval in the finite population: The posterior distributions of 

the average causal effect (ACE) using the matched-sampling datasets obtained via the 

propensity score (top panel) and the optimal pair matching (bottom panel) approaches are 

presented in Figure 10. The posterior means are −0.16 and −0.18 and the 95% probability 

intervals are [−0.29 to −0.04] and [−0.30 to −0.06], respectively, suggesting fairly clear 

evidence of negative effects of parental smoking on children’s FEV-1.

(iii) Combining the Bayesian and Fisherian approaches: The approximated null 

randomization distributions of the chosen statistics Tt-completely randomized D.1 and Bayesian, 

Tt-rerandomized D.2 and Bayesian, and Tt-paired randomized E and Bayesian, respectively (based on 

10,000 draws of the permuted treatment assignment) are presented in Figure 11. The 

proportion of the equiprobable treatment allocations under randomized assignment that led 

to statistics Tt-completely randomized D.1 and Bayesian, Tt-rerandomized D.2 and Bayesian, and 

Tt-paired randomized E and Bayesian with as large or larger values than the observed statistic 
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Tobs
t-completely randomized D.1 and Bayesian = 2.39, Tobs

t-rerandomized D.2 and Bayesian = 2.31, and 

Tobs
t-paired randomized E and Bayesian = 2.84 were equal to p-

valuecompletely randomized D.1 and Bayesian = 0.09, p-valuererandomized D.2 and Bayesian = 0.10, and 

p-valuepaired randomized E and Bayesian = 0.04, respectively, again suggesting that parental 

smoking is not good for children’s FEV-1.

4 Discussion

Even though our approach uses fewer units in the analysis phase (i.e. third stage) compared 

to the standard model-based approach without conceptual or design phases, it can still reach 

relevant conclusions, arguably more credible than the standard ones. Our results contrast 

with the naive idea that more units of analysis always bring more statistical power to detect 

causal effects. Our final causal conclusion appears to not fully support the reported 

associational estimate in the Harvard Six Cities longitudinal study.39 In this well-known 

study, Wang et al. reported that each pack per day smoked by the mother was not associated 

with a significant reduction in FEV-1 among children 6–10 years old (Point estimate on the 

multiplicative scale: 0.4% and associated 95%CI: [−0.9% to 0.1%] after “adjusting/

controlling” for age, height, city of residence, and parental education).

Once causality is suspected, the next step is to acquire medical knowledge, for instance, 

trying to understand biological mechanisms explaining why exposure to parental smoking 

causes reduced lung function (e.g. via smoking-specific inflammatory biomarkers). Also, 

interventions that may curtail smoking can be explored, for instance by trying to predict the 

occurrence of smoking among parents using the background covariates to predict smoking.

Our approach with conceptual and design phases facilitates an approximation to the ideal 

conditions of a randomized experiment and has the tremendous advantages that these phases 

can be conducted blind to the outcome data and that their formulation relies on creative 

thinking by the environmental epidemiologist. Obviously, inferences are restricted to 

children who remain in the sample. Our inferential statements apply to the studied finite 

subsample. However, the causal question of interest related to a larger but still finite 

population. Extrapolation to children with covariate values beyond values observed in the 

matching children should generally be done with great caution because the data do not 

provide direct information for treated children without control matches. This is one 

advantage of classical randomization-based inference advocated here vs. the more common 

purely model-based approaches using the entire data set. Fisher randomization-based p-

values associated with explicit designs can be easily conceptualized and obtained, and no 

asymptotic distributional assumptions are used. In our approach, as in the design of 

randomized experiments, we eschew the use of outcome variables to create the matched 

pairs.40 Instead, we attempt to recreate hypothetical completely randomized, rerandomized, 

and matched pair randomized experiments. This process was implied more than a half 

century ago by Dorn’s 1952 sage advice, repeated by Cochran,41 “How would the study be 
conducted if it were possible to do it by controlled experimentation?”.

A causal investigation needs to examine the implicit assumption that the hypothetical set of 

control children is effectively stochastically identical to the set of exposed children on all 
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their observed background variables. This assumption is explicit, transparent, and readily 

assessed by simple visual diagnostics. For instance, Figure 4 shows the effect of matching 

on the standardized mean differences between exposed and non-exposed children for the 

covariates age, height, and sex (allowing for linear and quadratic relationships, as well as 

interactions). If all covariates and their nonlinear terms were as well matched, then a logical, 

although tentative, conclusion can be reached concerning the evidence that parental smoking 

was the cause of any discrepancies between the exposed and non-exposed children in lung 

function, in the sense that if we could eliminate parental smoking without any untoward 

consequences of the intervention, this difference in lung function would be found for 

experimental data. Figures 3 and 4 present the effect of matching (via propensity score and 

optimal pairing) on the distributions of the continuous covariates age and height, 
respectively, i.e. in this case, matching created almost identical age and height distributions 

for exposed and non-exposed children, which is ideal for eliminating any confounding 

arising from age and height.

We considered different methods using either stratification, propensity score intersection 

(caliper) matching, or optimal pairing using Mahalanobis distance. In our data set, the 

optimal pairing led to very well-matched children and appears to be ideal for our data as a 

design stage procedure preceding the (multiple) imputation of the missing potential 

outcomes. In settings with more than three background covariates, minimizing the squared 

Mahalanobis distance will not be as satisfactory as in settings with low-dimension covariates 

because every unit is likely to be far apart on this full-rank metric,21 so it may be better to 

minimize this distance within pairs in the same propensity score caliper only with respect to 

the continuous covariates (e.g. using the procedure proposed in Rosenbaum and Rubin25). 

Other balancing criteria could be used that may be more relevant to optimize than some 

function involving Mahalanobis distance. This optimized criterion-based rejection, which we 

call the OCBR approach, which discards units that do not satisfy the criterion may be 

attractive and flexible with respect to the choice of a criterion because it can combine several 

criteria measuring covariates’ balance. If the a priori optimization criteria would have 

combined diagnostics of covariates imbalance, such as 1) differences in covariates means 

and variances between exposed and unexposed, followed by, 2) Kolmogorov–Smirnov 

distances between continuous covariates distributions in the exposed vs. unexposed, these 

balancing diagnostics would automatically be satisfied by the procedure.

Some drawbacks of the OCBR strategy are that the approach is computationally intensive 

and currently lacks software implementation for even simple criterion and is entirely 

unexplored for even more exotic and creative criterion. The optimal matching strategy also 

selects only one matched dataset, the one with minimum total squared Mahalanobis 

distance, which may restrict pure randomization-based inference. Future work should 

consider criterion-based rejection (CBR) approaches constructing matched datasets 

satisfying a balancing criterion instead of an optimization function.

Unmatched data from exposed children that have background characteristics that differ 

markedly from the background characteristics of unexposed children are discarded in our 

approach; yet such children values are automatically included in standard model-based 

regression, and their inclusion can distort the prediction of missing potential outcomes and 
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therefore the causal conclusion. The selection of matched subgroups is with purpose and can 

be interpreted as a distillation of the sample to the units most relevant for the causal analysis 

of interest. Also, even if the point and interval estimates were to agree numerically between 

our analysis and a standard analysis, the “results and associated conclusions” are not 

necessarily the same. Not only are our conclusions explicitly limited to children represented 

by groups or pairs that are well matched, but the assumptions underlying the hypothetical 

randomized experiments are entirely transparent and accessible, as exemplified by Figures 4 

to 8 and Table 2, and therefore facilitate discussions among scientists about their veracity.

We feel that our matched-sampling strategy, based on the hypothetical randomization that 

created the sets of exposed versus non-exposed units, followed by the analysis of data by 

randomization tests, relies on powerful and modern computing to implement both (a) the 

creation and analysis of exchangeable groups or pairs, and (b) the fiducial tests themselves. 

Of particular interest, these types of analyses using (1) matched-sampling techniques, (2) 

constructing a t-statistic summarizing the Bayesian analysis, and (3) performing non-

parametric Fisherian inference, have apparently not been previously done, or even 

contemplated, in environmental epidemiology. Combining the Bayesian and Fisherian 

inference frameworks could lead better statistical properties.42

Our approach has the potential to have a broad impact on many biomedical fields, especially 

environmental epidemiology, because extensions implicitly propose a universal framework 

using classical ideas from randomized experiments to tackle causal questions examining the 

joint health effects of multi-factorial environmental exposures (e.g. mixtures of indoor and 

outdoor air pollutants, weather conditions, physical activity, etc.). Here, when facing such 

questions, we propose embedding an observational data set within the context of a 

hypothetical multi-factorial randomized experiment. It is important to emphasize that this 

proposed approach is not restricted to relatively simple settings, but it generalizes to 

situations involving complex data structures (e.g. longitudinal data; “mediators” – to 

examine putative causal pathways; and high-dimensional data – to help discover the etiology 

of complex diseases or disorders).

5 Conclusions

Causal analyses should demonstrate to the readers that it is plausible to assume that the 

estimated causal effect would be of similar magnitude to those that would be obtained had 

the researcher conducted a real randomized experiment with the same random treatment 

assignment assumed in the experiment. We propose a logically and practically transparent, 

yet mathematically precise and rigorous, approach to study the health effects of multi-
factorial exposures, including the environmental “exposome” resulting in causal inferences 

that are valid under explicitly stated assumptions. We illustrated our method using a simple 

dataset with three background covariates. However, this four-stage approach can be used 

with a larger number of covariates. This framework can also be used to study biological 

mechanisms and susceptibility to complex diseases resulting from the joint effects of 

multiple factors. Because of its conceptual links to hypothetical interventions, it can suggest 

policies for reducing environmental pollutants and thereby preventing diseases. Finally, 
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because of its logical transparency, it should promote education across, and communication 

between, researchers and policy-makers.
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Figure 1. 
Trimming approach with rectangle boundaries for age and height.

Bind and Rubin Page 19

Stat Methods Med Res. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Trimming with ellipsoidal boundaries for age and height.
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Figure 3. 
Propensity score distributions among the exposed (black curves) and non-exposed (grey 

curves) children before (top plot) and after (bottom plot) removing the outlier “units” [we 

removed “outlier” units, i.e. 154 non-exposed children had a propensity score below the 

minimum propensity score among the exposed children and two exposed children had a 

propensity score above the maximum propensity score among the unexposed children].
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Figure 4. 
Standardized mean differences for the variables age, height, sex, age2, height2, sex × age, 

and sex × height for the non-exposed vs. exposed children before matching (black dots), 

after propensity score matching (d) (darker grey triangles), and after optimal pair matching 

(e) (lighter grey diamonds) (“Love” plots).
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Figure 5. 
Empirical distributions of the variables age among non-exposed (left panels) and exposed 

(right panels) children in the original dataset (a) (top panels), after propensity score 

matching (d) (middle panels), and after optimal pair matching (e) (bottom panels) 

[Kolmogorov–Smirnov ’distances’ for: (1) the difference in age distributions of the non-

exposed vs. exposed children in the original dataset (a) = 0.56, (2) the difference in age 

distributions of the non-exposed vs. exposed children after propensity score matching (d) = 

0.10, (3) the difference in age distributions of the non-exposed vs. exposed children after 

optimal pair matching (e) = 0.06].
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Figure 6. 
Empirical distributions of the variables height among non-exposed (left panels) and exposed 

(right panels) children in the original dataset (a) (top panels), after propensity score 

matching (d) (middle panels), and after optimal pair matching (e) (bottom panels) 

[Kolmogorov–Smirnov ’distances’ for: (1) the difference in height distributions of the non-

exposed vs. exposed children in the original dataset (a) = 0.47, (2) the difference in height 

distributions of the non-exposed vs. exposed children after propensity score matching (d) = 

0.16, (3) the difference in height distributions of the non-exposed vs. exposed children after 

optimal pair matching (e) = 0.05].
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Figure 7. 
Distribution of the squared Mahalanobis distances between propensity score (d) and optimal 

(e) matched pairs.

Bind and Rubin Page 25

Stat Methods Med Res. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Pairwise squared Mahalanobis distances between propensity score matched pairs (d) versus 

the estimated paired causal effects (d).
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Figure 9. 
Approximate null randomization distributions of t-statistics under the reconstructed 

randomized experiments (Tt-completely randomized D.1, Tt-rerandomized D.2, and 

Tt-paired-randomized E) and observed t-statistics (Tobs
t-completely randomized D.1, 

Tobs
t-rerandomized D.2, and Tobs

t-paired-randomized E) [Randomization-based p-

valuecompletely randomized D.1 = 0.12, Tobs
t-completely randomized D.1 = 1.57, and 95% Fiducial 

interval completely randomized D.1 = −0.52 to 0.06, Randomization-based p-valuererandomized D.2 

= 0.10, Tobs
t-rerandomized D.2 = 1.66, and 95% Fiducial intervalrerandomized D.2 = −0.33 to 0.03, 
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and Randomization-based p-valuepaired randomized E = 0.04, Tobs
t-paired-randomized E = 2.12, 

and 95% Fiducial intervalpaired randomized E = −0.37 to −0.02].
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Figure 10. 
Estimated distributions and posterior means of the average causal effect (ACE) in the 

propensity score matched (d) [mean: −0.16 and 95% posterior interval: −0.29; −0.03] and 

optimal paired (e) [mean: −0.18 and 95% posterior interval: −0.30; −0.06] data sets.
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Figure 11. 
Approximate null randomization distributions of t-statistics under the reconstructed 

randomized experiments (Tt-completely randomized D.1 and Bayesian, Tt-rerandomized D.

2 and Bayesian, and Tt-paired-randomized E and Bayesian) and observed tstatistics (Tobs t-

completely randomized D.1 and Bayesian, Tobs t-rerandomized D.2 and Bayesian, and Tobs 

t-paired-randomized E and Bayesian) [Randomization-based p-valuecompletely randomized 

D.1 and Bayesian = 0.09, Tobs t-completely randomized D.1 and Bayesian = 2.39, 

Randomization-based p-valuererandomized D.2 = 0.10, Tobs t-rerandomized D.2 = 2.31, 
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Randomization-based p-valuepaired randomized E = 0.04, and Tobs t-paired-randomized E 

= 2.84].
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Table 3

Analysis stage: comparison of the average causal effect (ACE) estimates and intervals across methods.

Hypothetical experiment/Design
stage methods Analysis method

Number of
units

Estimate
of the ACE

95% Confidence
interval

Hypothetical experiment (A) / No design (a) Crude comparison 654 0.71 [0.50; 0.93]

Standard linear 
regression with no 
interactions

654 −0.09 [−0.20; 0.03]

Hypothetical experiment (B) / Trimming (b) (Restriction to girls 
between 10 and 18 years old and height between 60 and 69 
inches and to boys between 9 and 18 years and height between 
58 to 72 inches)

Crude comparison 361 0.18 [−0.03; 0.39]

Standard linear 
regression with no 
interactions

361 −0.16 [−0.30; −0.03]

Hypothetical experiment (C) / Stratified matching (c) (cem R 
package)

Crude comparison 273 −0.16 [−0.37; 0.05]

Standard linear 
regression with no 
interactions

273 −0.16 [−0.30; −0.03]

Hypothetical experiments (D.1 and D.2) / Propensity score 
matching (d) (caliper=1 standard deviation of the propensity 
score, Matching R package)

Crude comparison 126 −0.20 [−0.43; 0.03]

Standard linear 
regression with no 
interactions

126 −0.23 [−0.46; −0.00]

Hypothetical experiment (E) / Optimal pair matching (e) 
(Mimimum squared Mahalanobis distance, optmatch R package)

Crude comparison 126 −0.19 [−0.46; 0.08]

Standard linear 
regression with no 
interactions

126 −0.18 [−0.35; −0.01]
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