
Transfer Function Analysis of Dynamic Blood Flow Control in 
the Rat Kidney

Ioannis Sgouralis1, Vasileios Maroulas2, and Anita T. Layton3

1National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, 
TN, USA

2Department of Mathematics, University of Tennessee, Knoxville, TN, USA

3Department of Mathematics, Duke University, Durham, NC, USA

Abstract

Renal blood flow is regulated by the myogenic response (MR) and tubuloglomerular feedback 

(TGF). Both mechanisms function to buffer not only steady pressure perturbations but also 

transient ones. In this study, we develop two models of renal autoregulation—a comprehensive 

model and a simplified model—and use them to analyze the individual contributions of MR and 

TGF in buffering transient pressure perturbations. Both models represent a single nephron of a rat 

kidney together with the associated vasculature. The comprehensive model includes detailed 

representation of the vascular properties and cellular processes. In contrast, the simplified model 

represents a minimal set of key processes. To assess the degree to which fluctuations in renal 

perfusion pressure at different frequencies are attenuated, we derive a transfer function for each 

model. The transfer functions of both models predict resonance at 45 and 180 mHz, which are 

associated with TGF and MR, respectively, effective autoregulation below ~100 mHz, and 

amplification of pressure perturbations above ~200 mHz. The predictions are in good agreement 

with experimental findings.
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1 Introduction

The kidneys not only filter metabolic wastes and toxins from the body, they also regulate the 

body’s water balance, salt balance, acid-base balance, and blood pressure. One requirement 

for maintaining normal kidney function is that renal blood flow be kept within a narrow 

range. When renal blood flow falls outside of that range, so does the fluid flow through the 

nephrons, which are the main functional units of the kidney. As a result, the ability of the 
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kidney to maintain water, salt, and acid-base balance may be compromised. Nephron fluid 

flow depends, in large part, on glomerular filtration rate (GFR), which is controlled by 

several systemic and renal mechanisms (Cupples and Braam 2007; Just 2007; Holstein-

Rathlou and Marsh 1994b).

One of the autoregulatory mechanisms is the myogenic response (MR), in which the afferent 

arteriolar muscles respond to perturbations in intraluminal pressure or stretch with active 

force development, thereby enabling the arterioles to constrict, reducing renal blood flow 

and GFR (Cupples and Braam 2007; Just 2007; Holstein-Rathlou and Marsh 1994b). 

Another contributing mechanism is the tubuloglomerular feedback (TGF), where the 

nephrons control renal blood flow and GFR by responding to variations in the ionic 

composition of the loop of Henle outflow (Cupples and Braam 2007; Just 2007; Holstein-

Rathlou and Marsh 1994b).

Autoregulatory responses can be classified as steady state or dynamic (Griffin et al. 2004; 

Bidani et al. 2003). Steady state renal autoregulation, which is the kidney’s ability to buffer 

time-independent blood pressure perturbations, has been well characterized experimentally 

(Hayashi et al. 1992; Shipley and Study 1951; Dokkum et al. 1999; Arendshorst 1979; 

Rothe et al. 1971; Kirchheim et al. 1987) and theoretically (Kleinstreuer et al. 2008; 

Loutzenhiser et al. 2002; Marsh et al. 2005; Oien and Aukland 1983; Sgouralis and Layton 

2012, 2013, 2014, 2015, 2016). For example, our group has recently developed 

autoregulation models that simulate the actions of MR and TGF on renal blood flow 

(Sgouralis and Layton 2014, 2016). These models represent detailed ionic transport and 

muscle mechanics of the afferent arteriole, glomerular filtration, and tubular transport. The 

models predict that over a wide range of steady perfusion pressures (~80–180 mmHg), the 

combined actions of MR and TGF yield stable renal blood flow and GFR. That prediction is 

consistent with experimental findings (Holstein-Rathlou and Marsh 1994b; Cupples and 

Braam 2007).

Dynamic renal autoregulation is the ability of the kidney to buffer transient pressure 

perturbations. Dynamic autoregulation is important, because renal perfusion pressure is 

continuously perturbed by heart beat, breathing, movement, excitement, hormonal, and other 

systemic factors. Nonetheless, despite substantial experimental efforts, for example 

Holstein-Rathlou and Marsh (1994b), Just et al. (1998), Just (2007), Just and Arendshorst 

(2003), Chon et al. (2008), Cupples and Braam (2007), Flemming et al. (2001), Griffin et al. 

(2004), Wang et al. (2007), Sakai et al. (1986), and He and Marsh (1993), dynamic 

autoregulation has remained relatively less investigated theoretically.

In vivo experimental studies of dynamic autoregulation typically record renal perfusion 

pressure and renal blood flow over the same time period. The recorded time series are then 

transformed to the frequency domain, and the resulting spectra are analyzed using a transfer 

function (Cupples and Braam 2007; Holstein-Rathlou and Marsh 1994b). One can use the 

transfer function to compare the power contents of the fluctuations in perfusion pressure and 

renal blood flow and to determine the extent to which perturbations in perfusion pressure of 

different frequencies are attenuated. To date, the assessment of the transfer function has been 

the focus of only three theoretical studies (Loutzenhiser et al. 2002; Holstein-Rathlou et al. 
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1991; Holstein-Rathlou and Marsh 1994a), all of which evaluate the transfer function 

numerically rather than analytically.

The goal of this study is to investigate the kidney’s full autoregulatory response to dynamic 

pressure perturbations using a transfer function. In particular, we aim to: (i) quantify the 

individual contributions of MR and TGF in stabilizing renal blood flow under transient 

perturbations, (ii) identify bottleneck processes that limit the autoregulatory efficiency, (iii) 

assess the impact of an array of physiologic factors on renal autoregulation, such as vascular 

compliance and spontaneous vasomotion, and (iv) provide an explicit form of the transfer 

function that could be used in future studies. Additionally, we aim to assess the feasibility of 

constructing a control system with the characteristics of renal autoregulation, i.e., having a 

feedback system such as TGF and a feedforward system such as MR coupled to an 

autonomous oscillator, that yields transfer function responses similar to those obtained on 

the rat kidney.

To achieve these goals, we conduct simulations using two mathematical models of renal 

autoregulation. Both models represent a single superficial nephron of a rat kidney together 

with its associated vasculature, but with different levels of complexity: One is a 

comprehensive model adopted from our recent study of renal autoregulation (Sgouralis and 

Layton 2014), and the other is a simplified model that allows an asymptotic evaluation of the 

transfer function. By comparing the predictions of the two models, we also determine the 

extent to which the simplified model can reproduce the characteristics of dynamic 

autoregulation predicted by the comprehensive model.

2 Mathematical Model

We have developed two models of renal hemodynamics to study the kidney’s autoregulatory 

response. Both models are formulated for a single superficial nephron and predict blood 

flow through the associated afferent arteriole.

The first model, which we refer to as the full model, is based on a comprehensive model 

recently developed by Sgouralis and Layton (2014). The full model includes a detailed 

representation of the autoregulatory processes and captures essential nephron functions in a 

rat kidney (see below). Solutions to model equations are obtained numerically.

The second model, which we refer to as the simplified model, includes a minimal set of 

autoregulatory elements necessary to reproduce key experimental observations in the rat 

kidney. The simplified model is essentially a linearized form of the full model. Solutions to 

the simplified model are obtained asymptotically, and explicit formulas are provided to 

leading-order approximations.

We analyze the autoregulatory response of both models to transient pressure perturbations 

by means of a transfer function. A transfer function H(f) of a system is given by the ratio 

between an input signal ϕ(t) and an output signal ψ(t) in the frequency domain:
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H f = ℱψ t
ℱϕ t , (1)

In Eq. (1), ℱ denotes the Fourier transform. For renal hemodynamics, the input signal ϕ(t) 
and the output signal ψ(t) are typically chosen to be renal perfusion pressure and renal blood 

flow, respectively (Cupples and Braam 2007; Holstein-Rathlou and Marsh 1994b). 

Attenuation is measured by the admittance gain which is given by |H(f)| (Holstein-Rathlou 

and Marsh 1994b).

2.1 Full Model

The full model represents a superficial nephrovascular unit which includes an afferent 

arteriole, a glomerulus, a proximal tubule, and a short loop of Henle. A schematic diagram is 

shown in Fig. 1. The representation of the model components is based on our previous work 

(Sgouralis and Layton 2012, 2013, 2014).

The model afferent arteriole consists of a series of smooth muscle cell models (Sgouralis and 

Layton 2012, 2013, 2014), electrically coupled via gap junctions and via an endothelial 

layer. The ionic transport dynamics of each smooth muscle cell, influenced by the 

autoregulatory mechanisms, determine the local vascular tone. The resulting vascular 

resistance is the main determinant of blood flow and single-nephron glomerular filtration 

rate (SNGFR).

Each smooth muscle model incorporates cell membrane potential, transmembrane ionic 

transport, cytosolic Ca2+ regulation, and muscle contraction. The interactions between the 

Ca2+ and K+ fluxes, which are mediated by voltage-gated and voltage-calcium-gated 

channels, respectively, give rise to the development of spontaneous oscillations in membrane 

potential. This in turn results in oscillations in cytoplasmic [Ca2+] and muscle tone.

2.1.1 Membrane Potential—The afferent arteriole extends from the cortical radial artery 

(z = 0) to the glomerulus (z = LAA). The afferent arteriolar wall is composed of an 

endothelial layer, which is surrounded by a layer of smooth muscle cells, as shown in Fig. 1. 

The rates of change of the membrane potentials of the smooth muscle and endothelial 

compartments, denoted vm(t, z) and ve(t, z), respectively, are given by:

Cm
d
dt vm t, z = − IL t, z − IK t, z − ICa t, z + Imm t, z + Ime t, z + IMR t, z + ITGF t, z ,

(2)

Ce
d
dt ve t, z = − Ime t, z + Iee t, z , (3)
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where Cm and Ce denote cellular capacitances; IL(t, z), IK(t, z), and ICa(t, z) denote 

transmembrane leak current, potassium current, and calcium current, respectively; Imm(t, z), 

Ime(t, z), and Iee(t, z) are gap-junctional currents; and IMR(t, z) and ITGF(t, z) are MR- and 

TGF-induced currents (see below). The transmembrane currents are given by:

IL t, z = gL vm t, z − vL , (4)

IK t, z = gKn t, z vm t, z − vK , (5)

ICa t, z = gCam t, z vm t, z − vCa , (6)

where n(t, z) and m(t, z) denote the fraction of open K+ and Ca2+ channels, respectively. The 

model assumes that n(t, z) depends on vm(t, z) and cytosolic [Ca2+], whereas m(t, z) depends 

only on vm(t, z). For details see Chen et al. (2011) and Sgouralis and Layton (2014).

Neighboring cells communicate via gap junctions (Brink 1998). We consider gap-junctional 

currents passing between smooth muscles, denoted Imm(t, z), between smooth muscles and 

the endothelium, denoted Ime(t, z), and between endothelial cells, denoted Iee(t, z). The gap-

junctional currents in Eqs. (2) and (3) are given by:

Ime t, z = gme ve t, z − vm t, z , (7)

Imm t, z = gmm
∂2vm t, z

∂z2 , (8)

Iee t, z = gee
∂2ve t, z

∂z2 . (9)

where gmm, gme, gee denote the corresponding conductances. Details can be found in 

Sgouralis and Layton (2012, 2013, 2014).

Myogenic response: We assume that the activity of non-selective cation channels of the 

smooth muscle membrane responds to changes in intravascular pressure, such that elevations 

in local intravascular pressure depolarize the surrounding smooth muscles. To induce 

pressure-dependent changes in membrane potential, we apply a current IMR(t, z) in Eq. (2), 

which is described by:
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d
dt IMR t, z = kMR IMR

∗ P t, z , z − IMR t, z , (10)

where P(t, z) denotes local intravascular pressure and kMR is a rate constant. To represent a 

depolarizing current at elevated blood pressure, we assume that the target current IMR
∗ P, z  is 

an increasing function of luminal pressure having the saturable form:

IMR
∗ P, z = IMR

min +
IMR
max − IMR

min

1 −
IMR
max

IMR
min exp −sMR P − P ∗ z

. (11)

The parameters IMR
max, IMR

min, and sMR determine the dynamic range and sensitivity of MR 

(Sgouralis and Layton 2014). The reference pressure profile P*(z) is chosen such that at 

baseline perfusion pressure IMR
∗ P z , z  is zero.

Tubuloglomerular feedback: The TGF current is similarly given by:

d
dt ITGF t, z = kTGF ITGF

∗ CMD t , z − ITGF t, z . (12)

where kTGF is a rate constant. The target current ITGF
∗ CMD, z , which is applied to the 

smooth muscles spanning only the distal LTGF of the afferent arteriole, exhibits a sigmoidal 

dependence on intratubular macula densa [Cl−] (denoted CMD(t)),

ITGF
∗ CMD, z =

0, 0 ≤ z < LAA − LTGF,

ITGF
min +

ITGF
max − ITGF

min

1 −
ITGF
max

ITGF
min exp −sTGF CMD

∗ − CMD

, LAA − LTGF ≤ z ≤ LAA,

(13)

where CMD
∗  denotes the operating macula densa [Cl−], set to 32 mM (Layton et al. 1991). 

The parameters ITGF
max , ITGF

min , and sTGF determine the dynamic range and open-loop gain of 

TGF; for details see Sgouralis and Layton (2014).
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2.1.2 Smooth Muscle Contractile Mechanism—Cytosolic [Ca2+], denoted c(t, z), is 

assumed in equilibrium with the buffer BT and is related to influx though the membrane 

channels ICa(t, z) by:

d
dt c t, z =

Kd + c t, z 2

Kd + c t, z 2 + KdBT
−αCaICa t, z − kCac t, z , (14)

where the constant αCa relates Ca2+ influx to changes in cytosolic [Ca2+], and kCa 

characterizes calcium extrusion from the cytosol (Chen et al. 2011). Cytosolic [Ca2+] 

determines the phosphorylation level ψ(t, z) according to:

ψ t, z = c t, z 3

cM
3 + c t, z 3 , (15)

which in turn determines the fraction of formed crossbridges, denoted ω(t, z), according to:

d
dt ω t, z = kψ

ψ t, z
ψ t, z + ψM

− ω t, z . (16)

Vasomotion is driven by the balance between Laplace tension TP(t, z), which is influenced 

by local blood pressure, and local vascular tone Twall(t, z), which is influenced by the 

smooth muscles. The Laplace tension is given by:

TP t, z = P t, z − Pext RAA t, z , (17)

where Pext denotes the extravascular pressure. The vascular tone consists of a passive Tpass(t, 
z) and an active component Tact(t, z). The active component generates the stress:

Tact t, z = ω t, z Tact
max t, z , (18)

where Tact
max t, z  is the maximum active tension that can be generated at a given vessel 

circumference (see below) and the muscle activation level is taken equal to the fraction of 

formed crossbridges ω(t, z).

For a given luminal radius RAA(t, z), the following wall tensions are developed:

Tpass t, z = Cpass
0 exp Cpass

1 RAA t, z

RAA
c − 1 + Cpass

2 , (19)
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Tact
max t, z = Cact

0 exp −
RAA t, z /RAA

c − Cact
1

Cact
2

2

. (20)

The difference between TP(t, z) and Twall(t, z) drives the changes in vascular radius RAA(t, 
z) according to:

d
dt RAA t, z = 1

τc
TP t, z − ξ z Twall t, z . (21)

Because the pressure P(t, z) decreases along the vessel, baseline TP(t, z) also decreases 

axially. To achieve an approximately uniform baseline radius, a factor ξ(z), which decreases 

linearly along the vessel, is included in Eq. (21) to scale the wall tension accordingly.

2.1.3 Vascular Blood Flow—We assume that the blood pressure at the entrance of the 

cortical radial artery (Fig. 1), which is referred to as the renal perfusion pressure PRA(t), is 

known a priori. The cortical radial artery is modeled as a fixed resistor ΩRA. Thus, the 

pressure at the afferent arteriole’s inlet is given by:

P t, 0 = PRA t − Q t ΩRA, (22)

where Q(t) denotes the blood flow. The value of ΩRA is chosen such that at baseline it 

accounts for a pressure drop of 5 mmHg (Sgouralis and Layton 2014).

Arteriolar blood flow is approximated by Poiseuille flow. Thus, the pressure gradient along 

the afferent arteriole lumen is given by:

∂P t, z
∂z = − 8μ

π RAA t, z 4Q t , 0 < z < LAA, (23)

where μ denotes the apparent blood viscosity. This implies that arteriolar blood flow Q(t) 
can be computed, given the pressure drop along the vessel and the vascular resistance 

ΩAA(t), by:

Q t =
P t, 0 − P t, LAA

ΩAA t . (24)

The overall arteriolar resistance is computed from the radius profile:
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ΩAA t = 8μ
π ∫

0

LAA dz
RAA t, z 4 . (25)

We assume that the model afferent arteriole is connected in series to a post-glomerular 

resistor ΩEA(t), with outlet pressure similar to the pressure in the renal vein Pv. Post-

glomerular blood flow is given by the difference between arteriolar flow Q(t) and SNGFR 

(denoted QF(t)) and is related to pressure drop and vascular resistance according to the 

Poisuille law:

Q t − QF t =
PGL t, LGL − Pv

ΩEA t . (26)

In Eq. (26), PGL(t, LGL) is the blood pressure at the end of the glomerular capillary network 

(see below). Efferent arteriole resistance ΩEA(t) changes passively with blood pressure; for 

details see Sgouralis and Layton (2014).

2.1.4 Glomerular Filtration—SNGFR is determined by considering the filtration process 

through the model glomerulus, which is represented as a single capillary of equivalent 

surface area that extends from y = 0 to y = LGL. The two end points correspond to the 

connections with the afferent and efferent arterioles, respectively. Let QGL(t, y) and CGL(t, 
y) denote the plasma flow and plasma protein concentration, respectively. Conservation of 

plasma mass is given by:

∂ QGL t, y
∂y = − K f PGL t, y − PF t − π t, y , (27)

where Kf is the ultrafiltration coefficient. Blood pressure PGL(t, y) is assumed to decrease 

linearly along the capillary, i.e.,

PGL t, y = P t, LAA − y
ΔPGL
LGL

, (28)

where ΔPGL is a constant. PF(t) denotes the pressure in the Bowman space which is assumed 

equal to the proximal tubule inflow pressure; for details see Sgouralis and Layton (2014). 

The colloid osmotic pressure π(t, y) depends on local protein concentration CGL(t, y) 

according to the empirical relation:

π t, y = αGL1CGL t, y + αGL2CGL
2 t, y . (29)
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The glomerular capillaries are impermeable to protein, so CGL(t, y)QGL(t, y) = CGL(t, 
0)QGL(t, 0), which together with Eq. (27) results in:

∂CGL t, y
∂y =

K f
QGL t, 0

CGL
2 t, 0

CGL t, 0 PGL t, y − PF t − π t, y . (30)

Plasma protein concentration entering the glomerulus CGL(t, 0) is assumed fixed at 5.5 g/dl. 

Plasma enters at a rate determined by hematocrit Ht and arteriolar blood flow:

QGL t, 0 = 1 − Ht Q t . (31)

By integrating Eq. (30) over the model glomerulus, one obtains CGL(t, LGL), which is used 

to compute QGL(t, LGL) from the conservation of plasma mass. SNGFR is given by:

QF t = QGL t, 0 − QGL t, LGL . (32)

2.1.5 Tubular Transport—The model renal tubule represents a proximal tubule connected 

to a short loop of Henle; see Fig. 1. Model equations, which describe intratubular pressure, 

water flow, and intratubular [Cl−], can be found in Sgouralis and Layton (2014).

2.1.6 Transfer Function—The transfer function for the full model uses the following 

input and output signals:

ϕ t =
PRA t − PRA

ref

PRA
ref , (33)

ψ t = Q t − Qref

Qref (34)

where PRA
ref  and Qref denote the time averages of renal perfusion pressure and blood flow, 

respectively.

The model equations are discretized over a 1-h time interval using a step of Δt = 0.01 s. 

Renal perfusion pressure PRA(tn) at the discrete time levels:

tn = nΔt, n = 0, …, 36 × 104 (35)
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is obtained as follows. Initially, Gaussian white noise of unit variance θn is generated in the 

time domain. Subsequently, by an application of the fast Fourier transform, θn is 

transformed to the frequency domain Θn. The power contained in Θn is distributed equally 

among all frequencies, indicating that θn contains fluctuations of significant amplitude even 

at arbitrarily high frequencies. To avoid large errors arising from the numerical scheme that 

is used for the time stepping of the model equations, we remove from Θn the power above 1 

Hz. This results in significant smoothing in the time domain without affecting the power 

content at the frequencies of interest in this study (i.e., below 1 Hz). Finally, the resulting 

spectrum Θ
∼

n is transformed back to the time domain θ
∼

n. A realization of the signals θn and 

θ
∼

n, in the time and frequency domains, is shown in Fig. 2a1, a2.

At time level tn, renal perfusion pressure is given by:

PRA tn = PRA
ref + Pp

θ
∼

n
σ∼ , (36)

where PRA
ref = 100 mmHg, Pp = 10 mmHg, and σ∼ is the standard deviation of θ

∼
n. A typical 

time course of renal perfusion pressure is shown in Fig. 2b.

For a given realization of the initial signal θn, a transfer function Hθ(fn) is calculated by the 

ratio:

Hθ f n =
Sϕψ f n
Sϕϕ f n

, (37)

where Sϕϕ(fn) is the autospectrum of ϕ(tn) and Sϕψ(fn) is the cross-spectrum of ϕ(tn) and 

ψ(tn). The transfer function Hθ(fn) is estimated using Welch’s method (Welch 1967), in 

which the time series of ϕ(tn) and ψ(tn) are subdivided into 6-min segments with 50% 

overlap. This results in ten segments of data to which the Hanning window is applied. Fast 

Fourier transforms are implemented on the windowed segments and averaged to calculate 

the auto- and cross-spectra. This procedure is repeated for 32 realizations of θn, and an 

overall transfer function H(fn) is taken by the average of the Hθ(fn)’s.

2.2 Simplified Model

The simplified model consists of two components: (i) a hemodynamic component that 

describes arteriolar blood flow and glomerular filtration and (ii) a vascular resistance 
component that describes the contractile mechanism of the vascular wall and the activation 

of the autoregulatory mechanisms. This model is essentially a linear approximation of the 

full model described in the previous section. The approximation is valid in the limit of 

infinitesimal perturbations in renal perfusion pressure and vascular resistance. A schematic 

diagram is shown in Fig. 3.
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2.2.1 Hemodynamics—Model perfusion pressure, denoted by PRA(t), consists of a time-

independent component PRA
ref  and a time-varying perturbation:

PRA t = PRA
ref + δΛ t , (38)

where δ is a non-dimensional parameter and Λ(t) has dimensions of pressure. It is assumed 

that δ ≪ 1 and Λ(t) = O(1).

Let P(t, z), Q(t), and r(t, z) denote blood pressure, blood flow, and vascular resistance per 
length along the afferent arteriole. As in the full model, we describe blood flow by 

Poisuille’s equation using the following boundary value problem:

∂P t, z
∂z = − Q t r t, z , 0 < z < LAA, (39)

P t, 0 = PRA t , P t, LAA = PD t , (40)

where LAA is the length of the afferent arteriole and PD(t) is glomerular capillary pressure. 

We assume that the pressure drop is negligible along the cortical radial artery and along the 

glomerular capillaries. Thus, PD(t) is equal to both the afferent arteriole outlet and the 

efferent arteriole inlet pressures. If one assumes Poisuille flow along the efferent arteriole, 

then:

PD t = Pv + Q t − QF t REA t , (41)

where Pv is the venous pressure which is assumed constant and QF (t) denotes SNGFR. 

Efferent arteriolar resistance, denoted REA(t), changes passively with blood pressure, 

according to:

REA t = REA
ref − sEA PD t − PD

ref , (42)

where sEA > 0 is a constant that characterizes the compliance of efferent arteriole, and PD
ref

and REA
ref  denote reference values for PD(t) and REA(t), respectively. SNGFR depends on 

glomerular capillary pressure and blood flow, i.e.,

QF t = g PD t , Q t , (43)
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for some function g(P, Q) that approximates plasma conservation in the glomerular 

capillaries [e.g., Eqs. (27) and (32) of the full model].

Given r(t, z), Eqs. (39)–(43) form a closed system that allows the evaluation of P(t, z) and 

Q(t). Assuming sufficiently small deviations from the baseline resistance, r(t, z) can be 

written as:

r t, z = rref z + εw t, z , (44)

where ε ≪ 1 and w(t, z) = O(1). The evaluation of ε w(t, z) is described in the next section.

The reference state is chosen to be the unperturbed system, which corresponds to δ = 0 and ε 
= 0 (Eqs. 38, 44). Let q(t), p(t, z), and qF(t) denote the deviations of blood flow Q(t), 
pressure P(t, z), and SNGFR QF (t) from their respective baseline values. Linearizing the 

system of Eqs. (39)–(44) around the reference state, and solving the resulting leading-order 

system, we obtain the following approximations:

q t = B1δΛ t − B1Qref∫
0

LAA
εw t, x dx + O δ2 + O δε + O ε2 , (45)

p t, z = 1 − B1∫0

z
rref x dx δΛ t − Qref∫

0

z
εw t, x dx + B1Qref∫

0

z
rref x

dx∫
0

LAA
εw t, x dx + O δ2 + O δε + O ε2 ,

(46)

qF t = B2δΛ t − B2Qref∫
0

LAA
εw t, x dx + O δ2 + O εδ + O ε2 . (47)

These approximations are valid up to leading orders with respect to δ and ε perturbations. 

Detailed derivation and the definitions of B1 and B2 can be found in the SUPPLEMENT.

2.2.2 Vascular Resistance—The afferent arteriole resistance perturbation ε w(t, z) 

consists of an active component and a passive component. The active component is a linear 

function of smooth muscle activation perturbation u(t, z). The passive component is assumed 

to be a linear function of pressure perturbations p(t, z). Thus,

εw t, z = sMu t, z − sAAp t, z , (48)
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where sM > 0 characterizes the sensitivity of vascular resistance to muscle activation and 

sAA > 0 characterizes the compliance of the afferent arteriole. Muscle activation perturbation 

u(t, z) is described by the first-order kinetics:

∂u t, z
∂t = km smv t, z − u t, z , (49)

where the target activation smv(t, z) is a linear function of membrane potential perturbation 

v(t, z). The constant sm > 0 characterizes the sensitivity of muscle activation to membrane 

potential.

Afferent arteriole smooth muscle membrane potential is known to oscillate spontaneously 

(Cupples and Braam 2007; Holstein-Rathlou and Marsh 1994b). To model the spontaneous 

oscillations, we describe the kinetics of v(t, z) by a driven linear oscillator:

∂2v t, z
∂t2

+ ηs
∂v t, z

∂t = ks λ∂2v t, z
∂z2 + iMR t, z + iTGF t, z − v t, z . (50)

The driving force is given by gap-junctional coupling characterized by conductance λ and 

the currents iMR(t, z) and iTGF(t, z), which are mediated by the autoregulatory mechanisms 

(see below). We assume zero fluxes across the end points of the model vessel; thus, the 

boundary conditions for Eq. (50) are:

∂v t, 0
∂z = 0,

∂v t, LAA
∂z = 0. (51)

Myogenic response activation: Pressure perturbation p(t, z) induces a transmembrane 

current iMR(t, z) that follows the first-order kinetics:

∂iMR t, z
∂t = kMR iMR

∗ t, z − iMR t, z , (52)

with the target current given by:

iMR
∗ t, z = sMRp t, z , (53)

where sMR > 0 characterizes the sensitivity of membrane potential to pressure perturbations. 

Pressure elevations induce a depolarizing current that, taken in isolation, raises membrane 

potential v(t, z) (Eq. 50) and muscle tone u(t, z) (Eq. 49) and consequently increases 

arteriolar resistance ε w (t, z) (Eq. 48). Pressure drops induce polarization and reduce 

arteriolar resistance.
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Tubuloglomerular feedback activation: Let c(t) denote the perturbation of macula densa 

[Cl−] from its reference value. Tubuloglomerular feedback is mediated by the current iTGF(t, 
z), which follows the first-order kinetics:

∂iTGF t, z
∂t = sTGF iTGF

∗ t, z − iTGF t, z , (54)

with the target current given by:

iTGF
∗ t, z =

0, 0 ≤ z < LAA − LTGF
sTGFc t , LAA − LTGF ≤ z ≤ LAA, (55)

where sTGF > 0 characterizes the sensitivity of the afferent arteriole’s distal segment to c(t). 
Elevations in macula densa [Cl−] lead to depolarization of the afferent arteriole, thereby 

increasing vascular resistance. Drops in macula densa [Cl−] induce polarization and reduce 

arteriolar resistance.

Note that even though the TGF current is applied only to the distal segment of the afferent 

arteriole, the TGF signal is expected to spread along the arteriole due to the coupling term 

λvzz in Eq. (50).

2.2.3 Transfer Function—Equations (48)–(55) describe the model resistance in the time 

domain. To facilitate the evaluation of the transfer function, we reformulate those equations 

in the frequency domain. We begin by considering the frequency responses corresponding to 

Eqs. (49), (50), (52), and (54):

hm f =
km

2πi f + km
, (56)

hs f =
ks

−4π2 f 2 + 2πi f ηs + ks
, (57)

hMR f =
kMR

2πi f + kMR
, (58)

hTGF f =
kTGF

2πi f + kTGF
, (59)

Sgouralis et al. Page 15

Bull Math Biol. Author manuscript; available in PMC 2018 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where f denotes frequency and i = −1. The time-to-frequency transformation that yields the 

above frequency responses can be found in the supplement.

To close the TGF loop, one must link the SNGFR perturbations qF(t) with the macula densa 

[Cl−] perturbations c(t). To accomplish that, we assume the following relationship in the 

frequency domain:

ℱc t = sTBhTB f ℱqF
t , (60)

where sTB > 0 is a constant characterizing the dependence of macula densa [Cl−] to SNGFR 

and hTB(f) is the frequency response of the tubular segment. We assume:

hTB f = e
−55i f + f 2

1 + 0.90 e
−2 f + 275 f 2

− 1 , (61)

where f is in Hz. Equation (61) approximates the frequency response of the tubular 

component of the full model. For the identification of the frequency response of the tubular 

component of the full model, we use Welch’s method (Welch 1967) over time series of 

SNGFR (prescribed) and macula densa [Cl−] (predicted), as described in Sect. 2.1.6.

Figure 4 shows the frequency response hTB(f) used in the simplified model, i.e., Eq. (61), 

and the frequency response of the tubular segment of the full model. It is well established 

that the renal tubule acts as a low-pass filter between SNGFR and macula densa [Cl−] 

perturbations with a cutoff frequency above 100 mHz (Cupples and Braam 2007; Holstein-

Rathlou and Marsh 1994b; Young and Marsh 1981; Sakai et al. 1986; Layton et al. 1997), a 

characteristic that Eq. (61) reproduces sufficiently well.

To evaluate the transfer function, we use the following input and output signals:

ϕ t =
PRA t − PRA

ref

PRA
ref , (62)

ψ t = Q t − Qref

Qref , (63)

which are analogous to those of the full model (e.g., Eqs. 33, 34). Using the expansions 

(45)–(47), one obtains the following approximation of the transfer function (details given in 

the SUPPLEMENT):
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H f =
P0

refB1
Qref

1 − Qref LAA
2 KMR f

1 − Qref 𝓁 − 1
2 LAA KMR f + QrefLTGFKTGF f

+ O δ + O ε2/δ + O ε ,

(64)

which is valid up to leading orders of δ and ε. The terms KMR(f) and KTGF(f) are given by:

KMR f = sMsmsMRhm f hs f hMR f − sAA, (65)

KTGF f = B2sMsmsTGFsTBhm f hTGF f hTB f , (66)

Equation (64) contains an O(ε2/δ) term, which becomes unbounded if δ decreases faster 

than ε2. In this study, we restrict our attention to scenarios where the afferent arteriole 

sufficiently absorbs the pressure perturbations. In such scenarios, pressure and resistance 

perturbations are of the same order, i.e., ε = O(δ). So, it follows that the right-hand side of 

Eq. (64) remains bounded.

2.3 Parameters

2.3.1 Full Model—Values of selected parameter for the full model are given in Table 1. For 

a complete list see Sgouralis and Layton (2014) and the references therein.

2.3.2 Simplified Model—A list of the parameter values used in the simplified model is 

given in Table 2. Afferent arteriole reference resistance is assumed uniform throughout the 

vessel:

rref z =
PRA

ref − PD
ref

QrefLAA
. (67)

Efferent arteriole compliance and reference resistance are set by:

sEA = sAALAA, (68)

REA
ref =

PD
ref − Pv

Qref − QF
ref . (69)
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The transfer function in Eq. (64) depends on the products sMsmsMR and sMsmsTGF for which 

no a priori choices can be made. As reference values, we have chosen the expressions:

sMsmsMR
∗ = sAA + 2

QrefLAA
(70)

sMsmsTGF
∗ = 2γ

B2QrefLTGFsTB
1 − 𝓁

LAA
(71)

Analytic derivation of these expressions and the definition of ℓ are given in the 

SUPPLEMENT. With the above choices, the simplified model predicts perfect steady state 

autoregulation and an open-loop gain for the TGF system of γ > 0 that are valid up to 

leading orders of ε and δ perturbations. Given that we have neglected higher order terms, for 

example in Eqs. (45)–(47), such (sMsmsMR)* and (sMsmsTGF)* are poor approximations of 

the actual values. Thus, we use instead

sMsmsMR = β sMsmsMR
∗ (72)

sMsmsTGF = β sMsmsTGF
∗ (73)

where β is a dimensionless scaling factor, chosen such that the transfer functions of the 

simplified and full models are of similar magnitude at frequencies below 10 mHz.

3 Results

3.1 Baseline Time Courses: Full Model

We applied a steady arterial pressure of PRA(t) = 100 mmHg to the full model and computed 

the baseline solution. Figure 5 shows the time courses of afferent arteriole resistance (panel 

a1) and blood flow (panel a2). Even in the absence of perturbations in perfusion pressure, 

the model exhibits spontaneous oscillations with two fundamental frequencies (panel b). The 

slow oscillation at 45 mHz with large amplitude is mediated by TGF; the faster oscillation at 

180 mHz with a small amplitude is generated by the spontaneous ionic fluxes in the afferent 

arteriole smooth muscles. The other frequency peaks either are harmonics of the 

fundamental peaks (e.g., 90 and 360 mHz) or arise from nonlinear interactions 

(heterodyning) of the two fundamental peaks.

The oscillations at 45 and 180 mHz are initiated by periodic changes in afferent arteriole 

smooth muscle membrane potential, which translate into fluctuations of smooth muscle 

cytosolic [Ca2+] and vascular tone. The resulting vasomotion alters the vascular resistance 
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and blood delivery to the glomerulus, which then transmits the fluctuations to SNGFR and 

downstream tubular transport (time courses not shown).

3.2 Response to Sinusoidal Perturbations: Full Model

We studied the full model response to sinusoidal, single-frequency pressure perturbations. 

Figure 6 shows the time courses of perfusion pressure, key autoregulatory currents, and the 

resulting blood flow for three characteristic frequencies: 10, 100, and 1000 mHz.

For the slow pressure perturbation at 10 mHz (panel a1), a strong MR is activated (panel b1), 

which sufficiently adjusts the vascular tone and absorbs most of the perturbation. The 

signature of the slow perturbation can be seen in the amplitude modulation of the blood flow 

oscillations (panel d1). The dominant frequency in the blood flow oscillations arises from 

TGF (panel c1).

For the intermediate perturbation at 100 mHz (panel a2), MR is only partially activated 

(panel b2). As a result, a significant fraction of the pressure perturbation reaches the tubular 

system. However, owing to the damping effect of the renal tubule, much of that perturbation 

does not reach the macula densa and thus does not allow the TGF system to provide further 

compensation (panel c2). The combined effect is a significant imprint of the pressure 

perturbation on renal blood flow (panel d2).

For the fast perturbation at 1000 mHz (panel a3), MR is only minimally activated (panel b3), 

allowing nearly all of the imposed perturbation to pass on to the tubular system. Again, due 

to damping in the tubular system, that perturbation does not reach macula densa and elicits 

no TGF compensation (panel c3). As a result, the effect of the pressure perturbation is 

clearly visible in the blood flow oscillations (panel d3).

3.3 Response to Pressure Fluctuations: Full and Simplified Models

Processes that perturb renal perfusion pressure induce fluctuations over a wide range of 

frequencies (Holstein-Rathlou and Marsh 1994b; Cupples and Braam 2007; Holstein-

Rathlou et al. 1995), and thus single-frequency forcing (e.g., Sect. 3.2) is not representative 

of in vivo conditions. To study the ability of the model afferent arteriole to buffer broadband 

perturbations, we computed the transfer functions for the full and simplified models. For the 

full model, the transfer function is evaluated numerically as described in Sect. 2.1.6. For the 

simplified model, we use the leading-order asymptotic approximation given by Eq. (64).

It follows from the definition of the transfer function (Eq. 1) that fluctuations at frequencies 

with |H(f)| = 1 are neither attenuated nor amplified by the system (in this case the model 

afferent arteriole), which implies that for these frequencies the model afferent arteriole 

behaves like a rigid tube (Cupples and Braam 2007; Just 2007). Fluctuations at frequencies 

with |H(f)| > 1 are amplified by the system, whereas fluctuations at frequencies with |H(f)| < 

1 are attenuated. For the frequencies at which attenuation occurs, |H(f)| provides a measure 

of the autoregulatory effectiveness (Just and Arendshorst 2003), with lower values indicating 

more effective autoregulation (i.e., larger damping of the imposed perturbations).
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Figure 7 shows the transfer functions of the two models. For frequencies higher than ~200 

mHz, both models predict a slight amplification of the pressure perturbations, indicating that 

the autoregulatory mechanisms are unable to buffer such fast fluctuations. The amplification 

seen in this frequency range is due to passive distention of the arteriolar walls.

On the other side, both models predict significant attenuation at the lowest frequencies, 

indicating effective autoregulation. Autoregulatory effectiveness increases with decreasing 

frequency. That is, the slower the pressure perturbations are, the better the afferent arteriole 

is at buffering them. Fluctuations of intermediate frequencies, with the exception of the 

frequency bands around 45 and 180 mHz, are generally less well autoregulated.

The amplification of the fluctuations at the frequency bands around 45 mHz and 180 mHz is 

due to the spontaneous oscillations introduced by TGF and the smooth muscle 

transmembrane ionic fluxes, respectively. For the unperturbed case, these oscillations are 

shown in Fig. 5. The peaks seen in the transfer function magnitude (Fig. 7a) indicate 

resonance of the associated oscillators with the pressure perturbations. Due to the 

nonlinearity of the smooth muscle oscillator of the full model, Eq. (2), the peak at 180 mHz 

appears wider than in the simplified model.

Notably, both models predict a secondary peak near 135 mHz. This peak is associated with 

the second harmonic of TGF oscillation and is sufficiently close to the natural frequency of 

the smooth muscle oscillator to get amplified.

Both models predict similar phase spectra with sharp transitions at the resonance frequencies 

of the oscillations (Fig. 7b). Near the TGF operating frequency, both models predict phases 

that jumps from approximately 0° to 130°. Near the MR operating frequency, both models 

predict jumps from approximately −60° to 60° (simplified model) or 90° (full model). In the 

intermediate frequency range, the simplified model predicts lower phase than the full model. 

As noted above, such differences likely stem from the different representations of the 

smooth muscle oscillators in the two models: The full model uses a third-order nonlinear 

oscillator, Eq. (2), whereas the simplified model uses a second-order linear oscillator, Eq. 

(50).

At the high frequency range, the predicted phase of both models is 0◦, indicating that renal 

blood flow oscillates in phase with perfusion pressure. This is yet another demonstration of 

the inefficiency of the autoregulatory mechanisms in the high frequency range.

3.4 Responses of Individual Autoregulatory Processes: Simplified Model

The transfer function is a result of a number of individual processes, including MR, TGF, 

tubular transport, arteriolar passive distention, and membrane potential spontaneous spiking. 

Such processes cannot be isolated and studied individually in the experimental setting. To 

better characterize the behaviors of these individual processes, we show their frequency 

responses (Eqs. 56–59, 61) in Fig. 8. These frequency responses are computed using the 

simplified model; it would be difficult, if not impossible, to derive response functions for the 

individual processes in the full model. For these response functions, a large value implies 

that the fluctuations at that frequency are easily transmitted to the vascular resistor such that 
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an autoregulatory response can be induced. For values significantly below 1, the model is 

unable to respond to and buffer fluctuations at the corresponding frequencies. In other 

words, responses substantially lower than 1 indicate bottleneck processes.

Figure 8 shows that the frequency responses of MR hMR(f), TGF hTGF(f), muscle kinetics 

hm(f), and tubular transport hTB(f) are qualitatively similar. Their response curves are 

monotonically decreasing with increasing frequency, meaning that those processes act as 

low-pass filters to pressure perturbations and permit mostly low-frequency fluctuations to 

affect the smooth muscle potential and thus elicit an autoregulatory response. The response 

of muscle oscillator hs(f) is rather distinct: It amplifies the autoregulatory currents near 180 

mHz, as evidenced by the prominent resonance peak, and it also exhibits much sharper 

cutoff at high frequencies, which further limits the ability of the autoregulatory mechanisms 

to buffer fast fluctuations.

As seen in Eq. (64), the transfer function H(f) of the simplified model can be computed from 

the individual frequency responses. As noted, owing to the low-pass behavior of hTB(f), 
hMR(f), hTGF(f), hs(f), and hm(f), low-frequency perturbations can more effectively reach the 

active component of the vascular resistance and induce an autoregulatory response. In 

contrast, fast pressure oscillations are less effectively transmitted and thus less effective in 

eliciting a compensatory response of the vascular resistor. Indeed, the primary response to 

the high-frequency fluctuations is a passive one that leads to amplification of flow 

perturbations.

In summary, three main bottlenecks can be identified. With increasing “severity,” these are: 

activation of the autoregulatory mechanisms hMR(f) and hTGF(f), smooth muscle oscillator 

hs(f), and tubular transport hTB(f), which limit the transmission of signals above ~800, ~600, 

and ~100 mHz, respectively.

3.5 Transfer Function Sensitivity on Selected Parameters: Simplified Model

In the next set of simulations, we investigate the effect of variations in tubular damping, 

properties of the smooth muscle oscillator, and vascular compliance on the overall 

autoregulatory response. Such effects are difficult to assess experimentally. Figure 9a 

exhibits the effect of tubular damping. We simulated a less compliant tubule by modifying 

the tubular frequency response (Eq. 61) as follows (the difference is in the second 

exponential):

hTB f = e
−55i f + f 2

1 + 0.90 e
−0.2 f + 275 f 2

− 1 . (74)

With the modified response function, the model tubule allows the transmission of 

perturbations from SNGFR to macula densa [Cl−] for frequencies up to ~130 mHz (baseline 

and modified frequency responses of the tubule are shown on Fig. 10a). Consequently, the 

contribution of TGF in the intermediate frequency band ~45–180 mHz increases, which 

leads to increased autoregulatory effectiveness within this band. Interestingly, in this case the 

model predicts two prominent peaks near the MR operating frequency. The faster of the two 
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corresponds to the oscillation shown in Fig. 5. The slower peak is an amplification of the 

second harmonic of TGF. Despite the double resonance near 180 mHz, the model predicts 

improved autoregulation near 45 mHz, where the fundamental peak associated with TGF is 

considerably attenuated.

Panel b exhibits the effect of varying the natural frequency of the smooth muscle oscillator 

(Eq. 50). For this case, smooth muscles are set to oscillate at 250 mHz (compare with 

baseline natural frequency at 180 mHz, Fig. 10b). This results in a shift in the associated 

resonance peak without a significant change in the autoregulatory response in the low or 

high frequency range.

Panel c exhibits the effect of overdamping the smooth muscle oscillator. The damping 

coefficient ηs (Eq. 50) is set to 2.5 (compare with baseline at ηs = 0.25, Fig. 10b). At 

sufficiently high damping, the resonance peak at 180 mHz is lost. Further, the reduced 

responsiveness of the smooth muscles leads to a reduction of the autoregulatory 

effectiveness at the low frequency range.

Panel d exhibits the effect of vascular compliance. We increase afferent and efferent 

arteriolar compliances (sAA in Eq. 48 and sEA in Eq. 42) by a factor of 10 relative to 

baseline. Model simulations suggest that the more compliant vessels yield more pronounced 

passive responses and are thus less effective in attenuating slow oscillations and more prone 

to amplifying fast perturbations. The vascular compliance has a uniform effect throughout 

the entire frequency domain in reducing the attenuation.

3.6 Inhibition of Autoregulatory Mechanisms: Full and Simplified Models

To assess the individual contributions of MR and TGF to dynamic renal autoregulation, we 

evaluate the transfer function using the full model and the simplified model, with the two 

mechanisms selectively inhibited. To simulate inhibition of a mechanism in the full model, 

we set the associated target current in Eq. (10) or (12) to zero. In the simplified model, we 

set the associated sensitivity in Eq. (53) or (55) to zero. The resulting transfer functions are 

shown in Fig. 11.

With MR inhibited, the smooth muscle oscillator is excited only by the TGF forcing, which, 

due to the damping along the renal tubule (see Fig. 4a), contains little or no power near the 

muscle oscillator’s natural frequency. Consequently, both models predict a significant 

reduction of the resonance peak at 180 mHz. With TGF inhibited, the system is unable to 

generate feedback oscillations; therefore, as predicted by both models, the peaks at 45 mHz 

are eliminated.

As expected, inhibition of either mechanism impedes autoregulatory effectiveness at the low 

frequency range for both models. In the full model, the reduction following the inhibition of 

MR is more prominent than TGF, indicating that MR is the dominant mechanism in 

buffering pressure perturbations. Nevertheless, simultaneous operation of MR and TGF 

results in stronger autoregulation at the low frequency range as the predicted attenuation at 

10 mHz is stronger than the sum of the individual attenuations.
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Analogous to the case of full autoregulation (e.g., Fig. 7), both models predict similar 

transfer functions in terms of magnitude and phase; however, the nearly perfect 

correspondence is lost. The biggest discrepancy appears in the transfer function magnitude 

following the inhibition of MR. In this case, the simplified model predicts a lower reduction 

in attenuation at 10 mHz than the full model (compare Fig. 11A1, A2). Such discrepancies 

arise due to the nonlinearities of the involved processes.

It is noteworthy that the nearly perfect correspondence of the two models, for example Fig. 

7, can be recovered even in this case (results not shown) by properly adjusting the scaling 

factor β in Eqs. (72) and (73).

3.7 Modulation of Autoregulatory Mechanisms: Simplified Model

Nitric oxide (NO) and angiotensin II (Ang II) are two key modulators of renal autoregulation 

(Cupples and Braam 2007; Just 2007). Neither NO nor Ang II is believed to significantly 

alter steady state autoregulation (Just 2007). Instead, they modulate MR and TGF 

sensitivities to triggering signals and affect the dynamics of the autoregulatory responses. 

Motivated by this observation, we varied the sensitivity of the individual autoregulatory 

mechanisms in the simplified model and assessed the effects on the resulting transfer 

function. We consider three scenarios: (i) modulated TGF, for which we varied sTGF (Fig. 

12a), (ii) modulated MR, for which we varied sMR (Fig. 12b), (iii) modulated TGF and MR, 

for which we varied sMR and sTGF simultaneously (Fig. 12c). Each transfer function is 

computed with the associated sensitivities increased/reduced fivefold relative to their 

baseline values.

Modulation of TGF leads to either improved or reduced autoregulatory effectiveness at the 

lower frequencies (panel a), depending on whether sTGF increases or reduces. This trend is 

expected given that sTGF is directly proportional to the open-loop gain of the feedback 

system.

Modulation of MR leads to significant reduction of the autoregulatory effectiveness at the 

lower frequencies (panel b), even when sMR is increased. A smaller sMR reduces the 

capability of MR to compensate for pressure perturbations, thereby reducing the 

effectiveness of the overall autoregulation. In contrast, a larger sMR causes MR to 

overcompensate, which also results in reduced autoregulatory effectiveness. This 

counterintuitive prediction stems from the feedforward nature of MR (see transfer function 

in Eq. 64).

As expected, simultaneous modulation of both mechanisms leads to reduced autoregulatory 

effectiveness (panel c); but the reduction is not much different from the case of modulated 

MR (panel b), which indicates that the effect of MR dominates that of TGF. This result is in 

agreement with Sect. 3.6.

4 Discussion

The principal objective of this study is to investigate the dynamic autoregulatory response of 

the rat kidney. That response is particularly crucial to kidney function, because in vivo renal 
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perfusion pressure is continuously perturbed by various physiological processes (Marsh et 

al. 1990; Cupples et al. 1996; Brown et al. 2006; Wagner and Persson 1994). Uncontrolled 

renal perfusion pressure destabilizes the operation of the nephrons leading to absence of 

body homeostasis and glomerular barotrauma with severe consequences (Cupples et al. 

1996; Loutzenhiser et al. 2006). A popular and reliable means for analyzing such time-

dependent control systems is the transfer function (Holstein-Rathlou and Marsh 1994b).

While the transfer function has been utilized in many experimental studies of renal blood 

flow, for example Bidani et al. (2003), Griffin et al. (2004), Holstein-Rathlou and Marsh 

(1994b), Just et al. (1998), Just and Arendshorst (2003), Knudsen et al. (2004), Sakai et al. 

(1986) and He and Marsh (1993)), its theoretical analysis remains lacking. Thus, a 

contribution of this study is to conduct a theoretical analysis of renal autoregulation using 

the transfer function. To accomplish that, we derived transfer functions for two models of 

renal autoregulation: a comprehensive model that is based on our previous work (Sgouralis 

and Layton 2014), and a newly developed simplified model, Sect. 2.2. It is noteworthy that 

the transfer function of the simplified model is the first such function of which the 

evaluation is done asymptotically rather than numerically. Thus, a transfer function which 

explicitly demonstrates the relation between the various autoregulatory elements is obtained, 

Eq. (64).

Another goal of this study is to develop a simple model of renal hemodynamic control that 

yields sufficiently accurate dynamic responses, but (i) that requires a substantially lower 

computational cost than the full model and (ii) that has explicit solutions. The simplified 

model presented in this study meets these requirements. A comparison between the full 

model and the simplified model, as shown in Fig. 7, indicates general agreement in both the 

magnitude and phase of the predicted transfer function. The most notable discrepancies are: 

(i) in the phase spectra, especially in the intermediate frequency range, 45–180 mHz, Fig. 

7b; (ii) when one of the autoregulatory components, for example MR, is inhibited, the full 

model predicts a considerably smaller attenuation at the lower frequencies compared with 

the simplified model, as shown in Fig. 11. In general, such discrepancies can be attributed to 

the nonlinear nature of the the full model’s representation of the underlying phenomena.

The key difference between the two models of this study is:

• The smooth muscles in the full model represent the intracellular processes in 

details, Sects. 2.1.1 and 2.1.2, whereas in the simplified model the intracellular 

process are lumped together in two equations, Eqs. (49) and (50).

• The representation of the smooth muscle membrane potential used in the full 

model utilizes a third-order nonlinear oscillator, Eq. (2), whereas the simplified 

model utilizes a second-order linear oscillator, Eq. (50). In principle, one could 

use third-order oscillators in both models; however, the straightforward 

interpretation of “natural frequency” and “damping” would then be lost.

• The full model contains a detailed representation of the renal tubule that accounts 

for water and solute transport, Sect. 2.1.5, whereas the simplified model contains 

only an approximation of the tubular fluid [Cl−] at the macula densa, Eq. (61).
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• The evaluation of SNGFR in the full model is achieved through a detailed 

representation of the glomerulus that takes into account spatial differences along 

the capillaries, Sect. 2.1.4, whereas in the simplified model it is done by means 

of an approximation that is space independent, Eq. (43).

• The simplified model is only valid in the limit of infinitesimal perturbations of 

renal perfusion pressure.

4.1 Model Predictions

The response curves of the transfer functions, as shown in Fig. 7, predict that both models: 

(i) can effectively buffer fluctuations at frequencies up to ~100 mHz; (ii) exhibit resonance 

at ~45 and ~180 mHz, corresponding to the TGF and spontaneous vasomotion, respectively; 

(iii) exhibit sharp transitions in the phase spectra at the resonance frequencies; and (iv) 

predict slight amplification of perturbations and zero phases above ~200 mHz. These 

predictions are consistent with experimentally obtained transfer functions (for an in-depth 

comparison with the experimental findings see Sect. 4.2 below).

Using the simplified model, as shown in Fig. 8, we verify that the absence of autoregulation 

at the high frequency range is caused by three limiting process: activation of the 

autoregulatory mechanisms, smooth muscle oscillators, and tubular transport. Further, Fig. 

9d verifies that the amplification of the pressure perturbations at high frequencies, which is 

typically observed in measurements of dynamic autoregulation, is caused by the passive 

dilation of the renal vasculature.

Both of the models allow perfect isolation of the autoregulatory mechanisms on the same 

preparation, something that has not been achieved in experimental models yet. Based on the 

transfer functions of Fig. 11, we conclude that TGF, when acts alone, has a minor 

contribution to dynamic autoregulation compared with MR. However, simultaneous 

operation of TGF and MR results in synergistic interaction, and the resulting transfer 

functions predict stronger attenuation at the lower frequency range than the sum of the 

individual contributions.

4.2 Comparison with Experimental Data

The transfer function of renal autoregulation has been assessed in a number of experimental 

studies. Table 3 summarizes key characteristics of dynamic autoregulation that are predicted 

by the models in the present study and that were estimated experimentally.1 In particular, 

Table 3 indicates: (i) whether peaks in the transfer function are found in the TGF and MR 

frequency bands (assumed to span 10–100 and 100–300 mHz, respectively); (ii) gain values 

at selected low and high frequencies (set to 10 mHz and 1 Hz, respectively); (iii) the location 

of the TGF and MR peaks (evaluated from the gain maxima); and (iv) the phase jumps 

occurring across the TGF and MR peaks. For (ii), the low and high frequencies have been 

1Some entries in Table 3 were estimated from figures in the associated references. Those entries are marked with asterisks and, despite 
our efforts, may contain a degree of inaccuracy. Also, in several studies gain is reported in dB. In those cases, the values were 
computed using the reported formulas, or, when such formulas were not reported, assuming the standard one 20 log10 |H(f)| Finally, to 
avoid complications introduced by the normalization of blood pressure time series, we have excluded studies in which the arterial 
blood pressure of the experimental models deviated substantially from 100 mmHg.
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chosen to lie in the frequency ranges where dynamic autoregulation is expected to be fully 

and minimally developed, respectively (Cupples and Braam 2007). Due to the presence of 

significant dumping in the experimental preparations, the resulting transfer functions do not 

contain sharp phase transitions, which makes the interpretation of the phase spectra difficult. 

For this reason, the jumps shown in Table 3 are computed as follows:

– MR phase jump is the maximum difference ΔpMR of the phase over the range 

0.1 Hz to fMR from the phase at 1 Hz, where fMR denotes the frequency of the 

MR peak, i.e.,

ΔpMR = max
f ∈ 0.1, f MR

H f − H 1 (75)

– TGF phase jump is the maximum difference ΔpTGF of the phase over the range 

0.01 Hz to fTGF from the phase at 1 Hz, where fTGF denotes the frequency of the 

TGF peak, i.e.,

ΔpTGF = max
f ∈ 0.01, f TGF

H f − H 1 (76)

We note that the phase jumps computed by Eqs. (75) and (76) are expected to underestimate 

the true jumps.

The experimental transfer functions exhibit a peak in the range 100–250 mHz, which is 

attributed to the operation of MR or spontaneous vasomotion. That same peak is predicted 

by both models. It is noteworthy that the models predict an MR peak even with inhibited 

MR. This result is in agreement with the experimental transfer functions estimated in rats of 

the Brown Norway strain which show substantially impaired MR and thus should be 

compared with models lacking an active MR (Wang et al. 2000). A second peak, located in 

30–60 mHz, is also present in most of the experimental transfer functions. This peak is 

attributed to the operation of TGF and is missing from preparation in which TGF is inhibited 

by either ureteral obstruction (e.g., Daniels et al. 1990; Moss et al. 2016), administration of 

furosemide (e.g., Shi et al. 2006; Just et al. 1998; Ajikobi et al. 1996), or induced 

hydronephrosis (e.g., Cupples and Loutzenhiser 1998). Similarly, such peak is present in 

every model that includes an active TGF and is missing from all models in which TGF is 

inhibited.

The models that represent an active TGF predict a prominent TGF peak with gain values 

significantly above 1, see Figs. 7 and 11. This differs from the experimental transfer 

functions which typically show a peak gain lower than 1. That discrepancy likely arises from 

the fact that the experimental transfer functions utilize whole kidney blood flow 

measurements and thus contain autoregulatory contributions of many nephrons with 

differing lengths and transport properties. In contrast, the models represent only one 

superficial nephron. In vivo measurements and in silico simulations indicate that different 

types of nephrons oscillate with different frequencies (Holstein-Rathlou 1987; Leyssac 

1986; Layton et al. 1991). Hence, whole kidney blood flow measurements tend to average 
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out the oscillations, resulting in a lower apparent peak gain. Holstein-Rathlou and coworkers 

have noted a similar reduction in the peak gain of the TGF oscillations associated with 

whole kidney transfer functions, relative to single-nephron transfer functions (Holstein-

Rathlou et al. 1991). Indeed, transfer functions computed utilizing proximal tubule pressure 

(a single-nephron variable) and utilizing whole kidney blood flow indicated TGF peaks of 

peak gain above 1 and below 1, respectively (Holstein-Rathlou et al. 1991).

Compared with the experimental data, the models appear to predict stronger autoregulatory 

responses at low-frequency perturbations. When both TGF and MR are active, the models 

predict 90% compensation of the perturbations at 10 mHz. The same values estimated 

experimentally range from 80–85% in Wistar rats to 40–50% in Sprague–Dawley rats. The 

stronger compensation predicted by the models may be attributed to many factors, 

predominantly the sensitivity of MR to pressure perturbations and the sensitivity of TGF to 

macula densa [Cl−] perturbations. In the full model, these are characterized by the 

parameters sMR and sTGF, see Eqs. (11) and (13). Similar to our previous work (Sgouralis 

and Layton 2014), we assigned values to these parameters assuming (i) the resulting model 

predicts perfect steady autoregulation and (ii) the open-loop gain of the TGF system is equal 

to 3. In vivo those assumptions might not be satisfied. Characteristically, if sMR and sTGF are 

adjusted to reflect an ~2% error in steady autoregulation or an open-loop gain of ~2.9, the 

model predicts an attenuation of ~75% of a 10 mHz perturbation (results not shown).

At high frequencies, both the models and experimental observations indicate an absence of 

autoregulation. In particular, at 1 Hz the models predict 15% magnification of the pressure 

perturbation. This value is within the range 10–20% of the experimental estimates (e.g., 

Holstein-Rathlou et al. 1991; Sakai et al. 1986).

Substantial variability is found in the experimental data concerning the phase spectrum. 

Jumps as low as 15° and as high as 65° have been reported across the MR peak (e.g., Sakai 

et al. 1986; Ajikobi et al. 1996), and jumps as low as 45◦ and as high as 115◦ have been 

reported across the TGF peak (e.g., Just et al. 1998; Ajikobi et al. 1996). Model predictions 

are qualitatively similar, although the precise values differ. For example, the full model 

predicts phase jumps across the MR and TGF peaks of 90° and 130°, respectively.

4.3 Perspectives and Future Work

Interesting blood flow dynamics such as transient synchronization of large clusters of 

nephrons have been reported (Holstein-Rathlou et al. 2011; Scully et al. 2013, 2014). In a 

future work, we plan to study these phenomena by extending the single-nephron model to a 

network model that simulates dynamic autoregulation at the cortical radial artery or whole 

kidney level. A typical cortical radial artery feeds into 30–40 nephrons, whereas a rat kidney 

contains ~30,000–40,000 nephrons (Casellas et al. 1994; Nordsletten et al. 2006). Given its 

substantially lower computational cost, the simplified model developed in the present study 

can be a useful component in such large scale networks.

Further, the explicit formulas derived in this study may provide the basis for a detailed 

analysis of the impact of internephron coupling on dynamic autoregulation. Such an analysis 
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could distinguish the contributions between hydrodynamic and electrotonic coupling at 

different frequency ranges (Sgouralis and Layton 2016).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic diagram of the nephrovascular unit represented in the full model. Arrows indicate 

fluid flow direction and sensor/effector sites of the autoregulatory mechanisms. SM smooth 

muscle layer, GL glomerulus, MD macula densa (Color figure online)
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Fig. 2. 
A realization of the signals used in the evaluation of renal perfusion pressure PRA(tn). a1 

White noise before the removal of high-frequency fluctuations θn and after θ
∼

n. a2 Power 

spectral densities of θn and θ
∼

n. b Corresponding renal perfusion pressure. Note that the 

removal of power above 1 Hz (a2) results in substantial smoothing in the time domain (a1) 

(Color figure online)
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Fig. 3. 
Schematic diagram of the nephrovascular unit represented in the simplified model. 

Perturbations from the reference state: δΛ, perfusion pressure; q, blood flow; p, blood 

pressure; qF, SNGFR; c, macula densa [Cl−]; v, smooth muscle membrane potential; u, 

smooth muscle activation; εw, vascular resistance. Currents mediating the myogenic 

response and tubuloglomerular feedback are denoted by iMR and iTGF, respectively (Color 

figure online)

Sgouralis et al. Page 34

Bull Math Biol. Author manuscript; available in PMC 2018 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Frequency response of the renal tubule hTB(f) for the simplified and full models (Color 

figure online)
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Fig. 5. 
Baseline dynamics of the full model. a1 Time course of afferent arteriole resistance ΩAA(t). 
a2 Time course of blood flow Q(t). b Power spectral density of blood flow Q(t); dotted lines 
indicate the fundamental frequencies of tubuloglomerular feedback 45 mHz and spontaneous 

vasomotion 180 mHz (Color figure online)
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Fig. 6. 
Autoregulatory responses to single-frequency pressure perturbations of the full model. a1–

a3 Oscillatory renal perfusion pressure input signal ϕ(t). b1–b3 Corresponding MR current 

obtained at afferent arteriole’s entrance. c1–c3 Corresponding current mediating TGF. d1–

d3 Resulting blood flow output signal ψ(t) (Color figure online)
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Fig. 7. 
Transfer function H(f) evaluated using the full and the simplified models. a Transfer 

function magnitude |H(f)|. b Transfer function phase angle H f . Vertical dotted lines 
indicate the baseline fundamental frequencies of spontaneous vasomotion (180 mHz) and 

TGF (45 mHz) (Color figure online)
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Fig. 8. 
Frequency responses of the components of the simplified model: hs(f) membrane potential 

oscillator, hm(f) muscle activation, hTB(f) renal tubule, hMR(f) myogenic response activation, 

hTGF(f) TGF activation, H(f) resulting transfer function. Vertical dotted lines indicate the 

baseline fundamental frequencies of spontaneous vasomotion (180 mHz) and TGF (45 mHz) 

(Color figure online)

Sgouralis et al. Page 39

Bull Math Biol. Author manuscript; available in PMC 2018 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Effect of modifying selected components on transfer function magnitude. All panels show 

the transfer function of the simplified model with altered parameters (solid line) and baseline 

(dashed line). a Reduced tubular damping (cut off is at ~130 mHz while baseline is at ~100 

mHz). b Natural frequency of spontaneous vasomotion (set to 250 mHz while baseline is 

180 mHz). c Overdamping of smooth muscle oscillator (ηs = 2.5 while baseline ηs = 0.25). 

d Increased vascular compliance (10 times baseline). Vertical dotted lines indicate the 

baseline fundamental frequencies of spontaneous vasomotion (180 mHz) and TGF (45 mHz) 

(Color figure online)
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Fig. 10. 
Effect of modifying selected parameters on frequency responses. a Tubular frequency 

responses hTB(f) corresponding to Fig. 9a. b Arteriolar oscillator frequency responses hs(f) 
corresponding to Fig. 9b, c. Vertical dotted lines indicate the baseline fundamental 

frequencies of spontaneous vasomotion (180 mHz) and TGF (45 mHz) (Color figure online)
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Fig. 11. 
Transfer function H(f) evaluated with the autoregulatory mechanisms selectively inhibited. 

a1–b1 Full model. a2–b2 Simplified model. Vertical dotted lines indicate the baseline 

fundamental frequencies of spontaneous vasomotion (180 mHz) and TGF (45 mHz) (Color 

figure online)
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Fig. 12. 
Transfer function H(f) evaluated using the simplified model with modulated autoregulation. 

a Modulated TGF, b modulated MR; c modulated TGF and MR. In all panels, “ref ” 

indicates baseline sensitivity sMR or sTGF, “inc” fivefold increased baseline sensitivity, “red” 

fivefold reduced baseline sensitivity. Vertical dotted lines indicate the baseline fundamental 

frequencies of spontaneous vasomotion (180 mHz) and TGF (45 mHz) (Color figure online)
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Table 1

Parameter values for the full model

Parameter Value Units

PRA
ref 100 mmHg

Qref 280 mmHg

LAA 303 μm

LTGF 60 μm

kCa 190 Hz

αCa 645 nM/mV

kψ 2 Hz

ψM 0.1 Dimensionless

kMR 0.5 Hz

IMR
min −21.35 mV/s

IMR
max 1.29 mV/s

sMR 0.76 1/mmHg

kTGF 0.5 Hz

ITGF
min −27 mV/s

ITGF
max 32 mV/s

sTGF 1.75 1/mM

RAA
c

12 μm

Cpass
0 0.16 mmHgcm

Cpass
1 6 Dimensionless

Cpass
2 −0.23 mmHgcm

Cact
0 1.5 mmHgcm

Cact
1 1 Dimensionless

Cact
2 0.47 Dimensionless
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Table 2

Parameter values for the simplified model

Parameter Value Units

PRA
ref 100 mmHg

Qref 280 nl/min

QF
ref 30 nl/min

PD
ref 50 mmHg

Pv 3.75 mmHg

LAA 300 μm

LTGF 60 μm

γ 3 Dimensionless

km 2 Hz

kMR 0.5 Hz

kTGF 0.5 Hz

ks 1.28 Hz2

ηs 0.25 Dimensionless

sTB 5 mMmin/nl

sAA 0.01 min/nl/cm

β 0.65 Dimensionless
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