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Review Article
Androgen action in prostate function and disease
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Abstract: Benign prostatic hyperplasia (BPH) is an enlargement of the prostate gland that is frequently found in 
aging men. Androgens are essential for the development and differentiated function of the prostate, as well as for 
proliferation and survival of prostatic cells. In man, dog and rodent, there are age-related decreases in serum tes-
tosterone. Despite the lower serum testosterone levels, benign prostatic hyperplasia increases with age in men and 
dogs, while age-dependent prostatic hyperplasia develops in the dorsal and lateral lobes of the rat prostate. The 
possible mechanisms that lead to prostate hyperplasia have been extensively studied over many years. It is clear 
that androgens, estrogens and growth factors contribute to the condition, but the exact etiology remains unknown. 
Prostate cancer (CaP) represents a significant cause of death among males worldwide. As is the case of BPH, it 
is clear that androgens (testosterone and dihydrotestosterone) and their metabolites play important roles in the 
disease, but cause-effect relationships have not been established. Androgen deprivation therapy has been used 
for decades, primarily in the metastatic stage, to inhibit androgen-dependent prostate cancer cell growth. Androgen 
deprivation, which can be achieved by targeting hormone biosynthesis or androgen receptor activation, results in 
symptom amelioration. However, most patients will develop hormone refractory cancer or castration-resistant pros-
tate cancer (CRPC). Prostatic epithelial cells demonstrate enormous plasticity in response to androgen ablation. 
This characteristic of prostatic epithelial cells may give rise to different populations of cells, some of which may 
not be dependent on androgen. Consequently, androgen receptor positive and negative cells might co-exist within 
CRPC. A clear understanding of this possible cellular heterogeneity and plasticity of prostate epithelial cells is neces-
sary to develop an optimal strategy to treat or prevent CRPC.
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Tribute to Donald S. Coffey, Ph.D.

This review is dedicated to the memory of Dr. 
Donald S. Coffey, whom we and countless oth-
ers have been fortunate to have had as a dear 
friend and mentor. Much of our early interest in 
the role of testosterone in prostate function 
and disease came from interacting and working 
with Dr. Coffey (Don) in the context of a Program 
Project grant on benign prostatic hyperplasia 
(BPH) that he led for many years. Don freely 
shared his ideas and enthusiasm with all those 
involved with the grant, and particularly with 
young investigators just starting out. Working 
with and around Don was simply thrilling, al- 
ways enriching, and never dull!! After the com-
pletion of the Program Project grant, our inter-
est in testicular function and prostate health 

and disease, which had been stimulated by 
interactions with Don, continued for many 
years. We and many, many others will never for-
get the influence of this great man, or the con-
sistent joy in interacting with him. 

Introduction

Testicular androgens are essential for the for-
mation and functioning of the prostate through-
out life, and in particular for the proliferation 
and survival of cells within the gland. Testos- 
terone is produced during the fetal and adult 
periods by two distinct populations of testicular 
cells, the fetal Leydig cells and the adult Leydig 
cells, respectively. The high levels of testoster-
one produced by the fetal Leydig cells decline 
postnatally, coincident with the loss in the num-
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bers of these cells. Then, during postnatal 
weeks 2 and 3 in the rat, the fetal Leydig cells 
are gradually replaced by adult Leydig cells, 
and testosterone gradually increases to high 
levels with the pubertal transition to adulthood. 
During the pre-pubertal and pubertal periods, 
the conversion of testosterone (T) to dihydro- 
testosterone (DHT) within the prostate is con-
sidered by many investigators to stimulate the 
growth of the prostate to its adult size. There- 
after, a balance between prostatic cell prolifer-
ation and cell death is reached such that there 
is no further growth of the prostate. During 
aging, serum testosterone levels decrease in 
some species, including man, dog, and rat. 
Despite the lower serum testosterone levels, 
aging often is associated with increased pros-
tatic cell proliferation relative to cell death, an 
imbalance that can lead to prostatic hyperpla-
sia or cancer in men and dogs. The possible 
reason(s) for the imbalance is (are) uncertain. 
Clearly however, it is not only the serum testos-
terone concentration that determines whether 
or not there is abnormal prostate growth. 

Our major objectives in this review are to dis-
cuss the role(s) considered to be played by 
androgens and androgen signaling in BPH and 
prostate cancer (CaP), with an emphasis on 
early work that led to current thinking.

Leydig cell development and steroidogenic 
function

Virilization of the male urogenital system de- 
pends upon the testosterone produced by the 
fetal Leydig cells. In the mouse, the fetal Leydig 
cells form from the differentiation of steroido-
genic factor 1 (SF-1; NR5A1) - positive cells [1, 
2]. In the rat, the fetal Leydig cells begin to pro-
duce testosterone by gestational day 15.5, ini-
tially independent of luteinizing hormone (LH) 
and later in response to LH [3, 4]. Late in fetal 
life, the fetal Leydig cells begin to regress, with 
only few persisting in the adult [5-8]. Early in 
the postnatal period, the fetal Leydig cells 
begin to be replaced by the forming adult Leydig 
cells [1, 9]. The latter cells, which arise from 
stem cells that are present in the neonatal tes-
tis [10-13], produce high levels of testosterone 
in response to LH.

Age-related reductions in serum levels of tes-
tosterone [hypogonadism] can occur in both 
young and aging men. Indeed, significant de- 

cline in serum testosterone levels affects mil-
lions of American men [14, 15] including 20- 
50% of men over age 60 and approximately 
15% of men who are among the couples who 
seek infertility-related medical appointments 
[16-18]. There are many other men who also 
present with what is referred to as “low T”, 
including those with sickle cell disease and spi-
nal cord injury [19]. In some men, reduced ser- 
um testosterone results from reduced serum 
LH and thus reduced stimulation of the Leydig 
cells (hypogonadotropic hypogonadism) [18]. In 
most hypogonadal men, however, serum LH 
either does not change or increases, indicative 
of primary testicular deficiency of testosterone 
biosynthesis (primary hypogonadism) [16, 17]. 
Whether in aging or young men, reduced serum 
testosterone is associated with a number of 
metabolic and quality-of-life changes, including 
decreased lean body mass, bone mineral den-
sity, muscle mass, libido and sexual function, 
increased adiposity, osteoporosis and cardio-
vascular disorders, and altered mood [17, 19].

Exogenous administered testosterone, known 
as testosterone replacement therapy (TRT), 
often is prescribed to reverse symptoms of low 
testosterone. A host of methods that are rela-
tively easy to use and produce constant testos-
terone concentrations are available by which to 
do this. However, recent studies suggest that 
there may be increased risk of cardiovascular 
disease in older men after TRT [20-22]. There 
also are reports suggesting that exogenous tes-
tosterone treatment might increase the risk of 
CaP [23]. 

Benign prostatic hyperplasia

Of the hundreds of mammalian species, all of 
which have prostate glands, humans and dogs 
in particular develop BPH and CaP [24]. In the 
human, different anatomic regions within the 
prostate have different rates of BPH and carci-
noma. Thus, the transition zone has a high inci-
dence of BPH and a low incidence of carcino-
ma, whereas the peripheral zone has a high 
incidence of carcinoma and a low incidence of 
BPH [25, 26]. BPH in humans is characterized 
primarily by stromal hyperplasia [27, 28]. In 
dogs, BPH takes the form of overgrowth or 
hyperplasia of both the epithelial and stromal 
compartments throughout the gland. Despite 
the differences between dog and man, Coffey 
and others argued that there are sufficient simi-
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for such a metabolic shift. It should be noted 
however, that contrary to most studies, there 
are reports that there are no significant differ-
ence in prostatic DHT concentration between 
dogs with histologically normal prostates and 
those with spontaneous BPH [52], and that ste-
roid hormone treatment regimens resulting in 
elevated prostatic DHT concentrations do not 
always result in high prostatic weight [53]. 

In the rat, as in dog and man, spontaneous as 
well as hormonally-induced hyperplasia can 
develop [36, 54-56]. In both young and old 
Brown Norway rats, exogenously administered 
testosterone resulted in age- and lobe-specific 
overgrowth of the ventral, dorsal, and lateral 
lobes. In the case of old rats, both hyperplasia 
and hypertrophy were seen in the dorsal and 
lateral lobes of untreated control rats, as well 
as in rats treated with testosterone. Thus, 
despite the lower serum testosterone levels in 
old rats, age-dependent and spontaneous 
prostatic hyperplasia developed in the dorsal 
and lateral lobes of the prostate, though not in 
the ventral lobe [55]. The lobe-specific, age-
dependent hyperplasia was enhanced by the 
administration of testosterone [54]. Castration 
led to decreased weight of all prostate lobes, 
but less rapidly and to a lesser magnitude in 
the dorsal and lateral lobes compared to the 
ventral lobe. Moreover, less cell death occurred 
in the prostates of old than young rats in 
response to castration. These studies revealed 
marked differences in cell death and survival 
among the different rat prostatic lobes in 
response to castration, and suggested an age-
dependent response of apoptosis to reduced 
androgen. The lower rates of cell death ob- 
served for the dorsal and lateral lobes, and par-
ticularly so with increasing age, appear to be 
important components of the age-dependent 
and lobe-specific overgrowth observed for 
these lobes. Moreover, the age-dependent 
decline in apoptotic cell death observed in the 
prostates of old rats suggests that prostate 
cells develop an altered sensitivity to androgen 
as a function of age, and that survival of these 
cells is less dependent on androgen (Figure 1). 

What causes the imbalance of cell death and 
cell proliferation that leads to prostatic hyper-
plasia? 

As indicated above, androgens are essential for 
the proliferation and survival of cells within the 

larities between the two to regard the dog as an 
appropriate model for the human [29-35]. This 
was a central tenant of the Coffey Program 
Project grant. We later discovered that prostat-
ic hyperplasia also occurs in the dorsal and lat-
eral lobes, but not the ventral lobe, of the aged 
Brown Norway rat prostate, with some similari-
ties to both dog and man [36]. 

In both man and dog, the development of BPH 
requires functioning testes, advancing age, and 
the involvement of hormonal factors [37-39]. 
Walsh and Wilson [40] and others [41, 42] dem-
onstrated that BPH could be induced in young 
castrated dogs by administering androgens 
and estrogens concomitantly. In a long-term 
study conducted by Don Coffey, Larry Ewing 
and colleagues [29], it was reported that where-
as 100% of intact control, aging beagles devel-
oped BPH, restoration of serum testosterone 
levels after castration of young dogs resulted in 
only 50% of the aging dogs developing BPH. 
This study made it clear that the testes, but not 
just the testosterone that they produce, are 
important for the development of canine BPH. 

Androgens are essential for development and 
differentiated function of the prostate, as well 
as for proliferation and survival of cells within 
the gland. The issue of how BPH is initiated is 
made more complex by the fact that this condi-
tion occurs with aging as there is a gradual 
decline in the mean serum testosterone con-
centration in aging dogs and men. With the 
decline in testosterone, there is decline in the 
ratio of testosterone to 17β-estradiol in the 
serum, which may be critical in the pathogene-
sis of BPH [29]. There also may be altered sen-
sitivity of the prostate to serum testosterone. 
Hyperplasia and/or hypertrophy of the prostate 
in the face of decreasing serum testosterone 
concentrations also might mean that the 
changes that are responsible for prostatic 
hyperplasia may be initiated early in adult 
canine life, and that testosterone later in life is 
permissive, not causative. Alternatively, as sug-
gested by Coffey and others, there may be met-
abolic changes within the prostate that favor 
BPH. For example, it has been suggested that 
there may be increased production of the active 
androgen 5a-DHT [43, 44]. Indeed, prostatic 
DHT levels have been reported in many studies 
to be several-fold greater in hyperplastic tissue 
compared with normal prostate in both man 
[45-49] and dog [50, 51], providing evidence 
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prostate gland. Despite the lower serum levels 
with aging, BPH increases with age in men and 
dogs, while age-dependent prostatic hyperpla-
sia develops in the dorsal and lateral lobes of 
the rat prostate. These observations have prov-
en difficult to explain. One possibility is age-
related altered responsiveness of prostatic 
cells to androgen. For example, it has been 
reported that in response to castration, there 
are lower rates of cell death in the dorsal and 
lateral lobes of aged as compared to young 
rats, suggesting that prostatic cells may devel-
op some measure of androgen independence 
with aging [57]. Isaacs and Coffey [58] reported 
that aging results in an increase in intra-pros-
tatic DHT levels associated with BPH in both 
animal and human studies. However, the- 
re are studies in which this is disputed [59, 60]. 
Given that testosterone functions via androgen 
receptors, the proliferative response of cells 
within the prostate to androgens presumably is 
dependent in some way upon the expression of 
androgen receptors. In a study that we conduct-
ed some years ago, we hypothesized that age-
dependent hyperplasia in the dorsal and lateral 
lobes of Brown Norway rats might occur in rela-
tion to age-dependent and lobe-specific differ-

gether, provide evidence that the imbalance in 
cell death and cell proliferation that leads to 
age-dependent prostatic hyperplasia may be 
related to an altered sensitivity of the prostate 
to androgen, and suggest that this may be a 
function of nuclear androgen receptor expres-
sion changes with age. 

The studies of the rat ventral, dorsal, and lat-
eral prostatic lobes in response to altered hor-
monal environment, including differences in 
epithelial cell apoptosis [57] and androgen 
receptor expression after castration, suggest a 
role for factors in addition to androgen in the 
regulation of lobe-specific androgen receptor 
expression. In this regard, it has been suggest-
ed [55, 64-66] that androgen receptor-depen-
dent transcription of target genes may result in 
the production and secretion of peptide growth 
factors, including IGF-I, keratinocyte growth 
factor, fibroblast growth factor-related proteins 
such as keratinocyte growth factor, interleukin 
6, and others. Suffice to say at this juncture 
that the exact etiology and pathophysiology  
of BPH remain unknown. The contributions  
of androgens and estrogens, growth factors, 
and chronic inflammation remain under investi-

Figure 1. Age-dependent changes in androgen sensitivity in the dorsolateral 
lobe of Brown Norway rat prostatic acini. Prostatic epithelial cells of young 
adults (age 4 months) are androgen-dependent, and therefore castration re-
duces the size of the dorsolateral lobe. However, epithelial cells of the aging 
dorsolateral prostate become relatively insensitive to changes in androgens, 
and therefore are relatively unaffected by castration or by normally occurring 
androgen reductions. 

ences in androgen receptor 
expression [36, 55]. Lobe-
specific increased andro-
gen receptor protein expre- 
ssion was seen that corre-
lated with age-dependent 
hyperplasia in the dorsal 
and lateral lobes of the 
Brown Norway rat prostate. 
A series of studies by Prins 
et al. [61-63] of young adult 
Sprague Dawley rats also 
showed lobe-specific auto-
regulation of the androgen 
receptor. Evidence for in- 
creased androgen sensitiv-
ity of prostatic cells in the 
dorsal and lateral lobes of 
aging rats was also demon-
strated by the observation 
of increases in cell prolifer-
ation and cell cycle mark-
ers in response to low lev-
els of testosterone corre-
lated with lobe-specific 
increases in androgen re- 
ceptor levels of aged rats. 
These findings, taken to- 
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gation. Additionally, stromal-epithelial interac-
tions are known to be very important for BPH 
pathogenesis and in the regulation of normal 
cell growth and differentiation [55]. 

In sum, androgens are essential for develop-
ment and differentiated function, as well as 
proliferation and survival of cells within the 
prostate gland. In man, dog and rodent, there 
are age-related decreases in serum testoster-
one. Despite the lower serum testosterone lev-
els, BPH and CaP increase with age in men 
while age-dependent prostatic hyperplasia de- 
velops in the dorsal and lateral lobes of the rat 
prostate. Clearly, it is not only the serum testos-
terone concentration that determines whether 
or not there is abnormal prostate growth.

Androgen/androgen receptor signaling and 
prostate cancer

Androgen/androgen receptor signaling also is 
considered to drive prostate malignancy [67], 
the second leading cause of cancer deaths in 
the US [68] and worldwide [69]. Given its criti-
cal role in the normal prostate, it is perhaps not 
surprising that the AR signaling axis is crucial 
for prostate carcinogenesis and subsequent 
phases of disease progression. For that rea-
son, androgen-deprivation therapy has been 
the mainstay for CaP treatment for over seven 
decades, after Dr. Charles Huggins demon-
strated that orchiectomy or treatment with high 
doses of estrogen led to regression of meta-
static CaP [70]. Androgen deprivation therapy 
in the form of LHRH agonists/antagonists has 
typically been used as treatment for metastatic 
CaP. In addition, various anti-androgens, includ-
ing flutamide, bicalutamide, and nilutamide, 
bind to the androgen receptor and inhibit its 
activity, and thus have been used along with/
without chemotherapy [71-73]. However, many 
patients receiving androgen-deprivation thera-
py progress to metastatic castration-resistant 
CaP, characterized by cancer progression 
despite low serum testosterone levels (Figure 
2). Although androgen-deprivation therapy is 
initially successful in most men, development  
of resistance is inevitable, normally occurring 
within a period of 18-24 months [74]. The resul-
tant form of this disease is referred to as cas-
tration-resistant prostate cancer (CRPC), and is 
incurable and most often lethal [75, 76]. To 
overcome this shortfall, taxane (docetaxel) has 
been used as the standard of care for meta-

static CRPC. However, survival is not long-last-
ing [77, 78]. 

Given the importance of androgen receptor sig-
naling during prostate carcinogenesis, and the 
vast body of work over the past 2-3 decades 
showing that most CRPC remain dependent on 
the AR signaling pathway, androgen receptor 
signaling has remained the major therapeutic 
target in CRPC even in the face of a very low 
androgenic environment. The dependence on 
androgen receptor signaling may be due to the 
increased AR gene copy number and expres-
sion of androgen receptors in the CRPC. Eighty 
percent of patients exhibit elevated androgen 
receptor gene copy number, and evidence for 
mRNA amplification has been observed in 30% 
of patients with CRPC [79-82]. Moreover, ele-
vated levels of AR have been shown to hyper-
sensitize cancer cells even to castrate levels of 
androgens [83-85], switch AR antagonists to 
agonists [86], and promote resistance to vari-
ety of AR-targeting agents [87]. 

In some patients with CRPC, AR mutations have 
been detected in primary CaP prior to androgen 
deprivation therapy, and it is generally believed 
that androgen deprivation therapy-mediated 
selection of such mutations can underlie resis-
tance in patients with CaP [87-92]. However, 
much higher frequencies of AR mutations (5- 
30%) have been reported in CRPC tissue, circu-
lating tumor cells, and circulating cell-free DNA 
samples compared to pre-treated tumor sam-
ples [80-82, 89, 93-98]. These AR mutations 
are clustered in domains responsible for ligand-
binding (at the AR C-terminal domain) or trans-
activation activity (the AR N-terminal domain). 
Such alterations by mutation facilitate AR sig-
naling in CRPC by conferring ligand promiscuity 
or ligand-independent transcriptional activity, 
thereby allowing AR to be activated even in the 
presence of low/absent levels of androgens. 
The best known AR mutation is the T878A 
mutant, first identified in the LNCaP cell line 
[99]. This is the archetypal promiscuous recep-
tor, activated by estrogen, progesterone, and 
glucocorticoids [92, 97, 99-104]. AR mutations 
H875Y and L702H broaden ligand specificity by 
enabling AR activation by glucocorticoids [103-
106]. AR mutations also confer agonistic prop-
erties to antiandrogens. For example, cancer 
cells with the T878A mutation are activated by 
flutamide and nilutamide, and those with the 
H875Y or W742C/L mutations are activated by 
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nilutamide or bicalutamide, respectively [96, 
97, 99, 101, 107-109]. 

Furthermore, increased expressions of consti-
tutively active AR splice variants (AR-Vs) repre-
sent another layer of complexity that pertains 
to the molecular mechanism for disease pro-
gression after castration-resistance or andro-
gen-deprivation [110]. Many alternatively 
spliced AR-Vs lack the C-terminal ligand-binding 
domain but retain the transactivating N-terminal 
domain, leading to constitutively active AR in 
the absence of ligands [111, 112]. AR-Vs are 
either truncated versions of full-length AR (AR-
V1 to AR-V11) or have missing/skipped exons 
(AR-V12 to AR-V14 and AR-V567es) [110]. Of 
the different AR isoforms identified in CaP, 
AR-V7 and ARv567es are the most common 
[110, 113, 114]. Both are upregulated in meta-
static CRPC compared with hormone-naïve 
metastatic disease [114-116], although only 

V7 has been consistently described in human 
samples.

In addition to AR gene amplification, AR muta-
tions and AR splice variants, AR activation in 
CRPC can occur in response to increased intra-
tumoral synthesis of testosterone and dihy-
drotestosterone (DHT) from weak androgens 
produced by the adrenal glands as well as from 
de novo androgen synthesis from cholesterol 
[117, 118]. A number of studies demonstrated 
that intratumoral levels of androgens in meta-
static CRPC are elevated compared with un- 
treated primary prostate cancers [119, 120]. 
Increased levels of AKR1C3, HSD3B2 and 
CYP17A1, enzymes that are involved in andro-
gen synthesis, have been detected in the intra-
tumoral tissue from CRPC patients [119, 121]. 
Therefore, abiraterone acetate, a steroidal anti-
androgen that inhibits intratumoral androgen 
biosynthesis by blocking the hydroxylase and 

Figure 2. Model by which the treatment naïve prostate cancer (CaP) changes from complete androgen dependence 
to castration-resistant prostate cancer (CRPC). Treatment with 1st generation of anti-androgens kills a majority of 
wild-type, androgen receptor (AR)-expressing androgen sensitive cells. However, some of these cells acquire AR 
mutations, some express AR splice variants, and some trans-differentiate to cancer stem-like cells by expressing 
stemness genes. Second generation anti-androgens attacks only some of the mutated AR expressing cells; because 
of the plasticity of the CaP cells, some survive, repopulate heterogeneous cancer cells throughout the prostate, and 
there is cancer relapse. To target all mutated and splice variant AR positive-cells and cancer stem-like cells, total AR 
degradation together with inhibitors of stem-like cells will be necessary. Only this way will a lethal environment be 
created that will eradicate all CaP cells irrespective of their heterogeneity. 
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lyase activities of CYP17A, has been used to 
treat CRPC. However, the benefit of this treat-
ment is also short-lived. 

Why has targeting androgen receptor signal-
ing not dramatically improved overall survival 
in individuals with metastatic castration-resis-
tant prostate cancer? 

We have enormous understanding about andro-
gen receptor signaling, AR gene amplification, 
AR mutation, AR splice variants and intratumor-
al androgen synthesis in CaP tumor tissue be- 
fore and after androgen deprivation therapy. 
However, overall survival has not improved 
beyond few months. Although clinical data indi-
cate the benefits of second generation antian-
drogens such as Enzalutamide (MDV3100) and 
ARN509, recent evidence also indicates the 
emergence of resistance. Enzalutamide is inef-
fective in preventing the growth of CRPC cell 
lines such as 22Rv1 unless the AR splice vari-
ant, AR-V7, is specifically knocked down [122]. 
Two independent groups have demonstrated 
the appearance of a specific missense muta-
tion (F876L) in the AR ligand binding domain in 
cell lines, xenograft tumors, and clinical sam-
ples that have undergone prolonged treatment 
with enzalutamide and ARN509 [123, 124]. 
Additionally, patients who are poor responders 
to enzalutamide treatment show increased 
expression of the glucocorticoid receptor in 
bone marrow biopsies [125]. Elevated gluco-
corticoid receptor expression has been impli-
cated as a compensatory mechanism to over-
come AR antagonism in vitro and in vivo. There- 
fore, it appears that the benefits of anti-andro-
gen therapy are short-lived, and alternative 
approaches to combat emerging resistance are 
needed for the effective management of CRPC. 
One flaw of Enzalutamide and ARN509 is that 
these second generation antiandrogens, as 
well as earlier antiandrogens, target the AR- 
ligand binding domain. Now we know that CRPC 
also expresses AR splice variants that lack the 
ligand-binding domain, and therefore neither 
Enzalutamide or ARN509 alone will be effec- 
tive in that scenario. More recent therapeutic 
modalities have attempted to target the AR- 
transactivation domain rather than the ligand-
binding domain. 

EPI-001, a small-molecule antagonist of AR N- 
terminal transactivation domain that inhibits 
protein-protein interactions necessary for AR 

transcriptional activity, has recently been devel-
oped. EPI-001 inhibited transcriptional activity 
of AR and its splice variants and reduced the 
growth of CRPC in a xenograft model [126-
128]. These findings suggest that the develop-
ment of small-molecule inhibitors that target 
the AR transactivation domain could be a prom-
ising strategy for CRPC. Currently, a stereoiso-
mer of EPI-001, EPI-506, is under phase I/II 
clinical testing (NCT02606123) in post-abi-
raterone and post-enzalutamide settings. How- 
ever, the outcomes of these clinical trials are 
not published yet.

Another alternative therapeutic approach is 
one that directly targets the degradation of  
the androgen receptor protein itself rather than 
its ligand binding and/or transcriptional activi-
ty. A plant-derived carbazole alkaloid, maha-
nine, showed inhibition of both ligand-depen-
dent and ligand-independent AR transactiva-
tion, as well as AR protein degradation, leading 
to a decline in AR target gene expression [129]. 
Niclosamide, an FDA-approved antihelminthic 
drug, was identified as a potent inhibitor of the 
AR-V7 variant in prostate cancer cells. Niclosa- 
mide significantly down-regulated AR-V7 pro-
tein expression by enhancing protein degrada-
tion through a proteasome-dependent path- 
way [130]. It also inhibited AR-V7 transcription 
activity and reduced the recruitment of AR-V7 
to the PSA promoter [130]. More importantly, 
this drug potentiates the effects of enzalu-
tamide in vitro and in vivo, and resensitizes 
enzalutamide-resistant CaP cells [130]. This 
finding has elicited a phase I trial to assess  
the utility of niclosamide in combination with 
enzalutamide for treating AR-V7-positive CRPC 
(NCT02532114). The clinical outcome has not 
been published yet. There are additional selec-
tive agents that target AR degradation (SARDs; 
UT-69, UT-155, and (R)-UT-155) and markedly 
reduce the activity of wild-type and splice vari-
ant isoforms of AR at submicromolar doses 
[131]. However, the efficacy of these agents in 
clinical settings has yet to be determined. 

It is important to emphasize that prostatic epi-
thelial cells demonstrate enormous plasticity  
in response to androgen ablation. This innate 
characteristic of prostatic epithelial cells may 
give rise to different populations of cells, some 
of which are not dependent on androgen. Con- 
sequently, androgen receptor positive and neg-
ative cells might co-exist as important exam-
ples of cellular heterogeneity within CRPC.
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Understanding CaP phenotypic and functional 
cellular heterogeneity is critical for the optimal 
treatment of CRPC [132-138]. To better under-
stand this cellular heterogeneity, it is essential 
to identify the individual cell types within the 
tumor. The predominant histological subtypes 
found in prostatic adenocarcinoma [139] are 
luminal secretory cells, rare neuroendocrine 
cells, and some basal cells, with luminal epithe-
lial cells accounting for the highest percentage 
within the gland. However, all these luminal epi-
thelial cells are not the same. In fact, using  
multiple xenograft models and over 70 patient 
tumor samples, a comprehensive study was 
conducted recently to dissect the phenotypic, 
functional, and tumorigenic heterogeneities in 
human CaP. Four subtypes of prostate cancer 
cells, AR+PSA+, AR-PSA+, AR+PSA-, and AR- 
PSA, were seen in untreated human CaP tissue, 
reconfirming that Cap tissue is comprised of a 
heterogeneous pool of cells [140]. In another 
elegant study, the same group demonstrated 
that the PSA-/lo CaP cells possess unlimited 
tumor-propagating activity, whereas PSA+ CaP 
cells have limited activity [141]. Results from 
this study reinforce the intrinsic stem cell 
nature and castration-resistant properties of 
the PSA-/lo cancer cells. The heterogeneous 
properties of CaP cells present the ultimate 
challenge to effective therapy in this disease.

The revelations regarding heterogeneity of CaP 
cells bring us full circle to our earlier studies in 
which we observed a diversity of responses 
among cells in the aging Brown Norway rat 
prostate. We noted cellular heterogeneity in the 
normal rodent prostate gland, both during its 
development in various lobes (ventral, dorsal, 
lateral and anterior) and in response to andro-
gen ablation by castration. To our surprise, we 
observed that although cell proliferation occurs 
in all lobes, the presence of physiological or 
exogenously administered androgen resulted in 
significant differences in cell death and andro-
gen responsiveness in the ventral compared to 
the dorsal and lateral lobes [54, 55, 57, 142-
145]. While luminal epithelial cells in the ven-
tral lobe are very sensitive to androgen abla-
tion, indicated by significant loss of total DNA 
content and cell death, the dorsal and lateral 
lobes showed almost no change in total cell 
numbers or cell death. Sensitivity to androgen 
withdrawal also was found to depend on the 
age of the rat and the presence and absence of 
various survival factors (telomerase activity, 

TGF-alpha, Bcl2) [146-148]. These results sug-
gest that although prostatic epithelial cells are 
dependent on androgen for their growth and 
survival, epithelial cells exhibit plasticity such 
that their function can be modified over time so 
as to form a heterogeneous pool of cells within 
the prostate gland, even before androgen with-
drawal. These properties become even more 
apparent following androgen withdrawal (Figure 
1). 

It is interesting to note that approximately a 
quarter of CRPC patients who develop an 
aggressive phenotype have low to no AR ex- 
pression, acquire neuroendocrine signatures, 
loss of function of tumor suppressor genes 
(PTEN, RB1, and TP53), overexpression of 
stemness markers (SOX2, Nanog, Oct4), and 
epigenetic reprogramming factors (EZH2, BMI) 
[149-161]. Therefore, unidirectional targeting 
of androgen receptor signaling will not result in 
a major benefit or cure from CRPC. A clear 
understanding about the cellular heterogeneity 
and plasticity of prostate epithelial cells is nec-
essary to develop an optimal combinatorial 
strategy to treat or prevent CRPC. A hypotheti-
cal model is proposed in Figure 2.

Conclusions and future directions

It is clear that androgens and androgen recep-
tor signaling are crucial for prostate growth and 
homeostasis, and for the development of BPH 
and CRPC. However, it is also evident that in the 
face of decreasing serum androgen, as during 
aging, prostatic cells adapt to survive in low 
concentrations of androgen. Thus, although 
androgens are essential, prostatic hyperplasia 
can occur in men, dogs and rats despite de- 
creased androgen. Clearly, it is not only serum 
androgen concentration that determines 
whether or not there is abnormal prostate 
growth. This also is true of CRPC; heteroge-
neous cells evolve with various mutations and 
splice variants in AR after androgen depriva-
tion. Therefore, traditional treatment with anti-
androgen targeting to the ligand-binding 
domain of AR typically is not effective or cura-
tive for CRPC. Beside AR modifications, CRPC 
cells acquire various epigenetic changes and 
overexpression of stemness genes that make 
these cells extremely heterogeneous. 
Therefore, to treat CRPC effectively, anti-andro-
gens are needed that target the AR transactiva-
tion domain or completely degrade ARs (wild-
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type, mutated and splice variants). The hope is 
that these, used in combination with other che-
motherapy, will be able to create a lethal envi-
ronment that kills all CaP cells irrespective of 
their heterogeneity. Until we understand the 
cellular heterogeneity in CRPC, it will remain dif-
ficult to cure this deadly disease. 
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