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Abstract

Recent studies suggest that biofluid-based metabonomics may identify metabolite markers
promising for colorectal cancer (CRC) diagnosis. We report here a follow-up replication study,
after a previous CRC metabonomics study, aiming to identify a distinct serum metabolic signature
of CRC with diagnostic potential. Serum metabolites from newly diagnosed CRC patients (V=
101) and healthy subjects (A= 102) were profiled using gas chromatography time-of-flight mass
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spectrometry (GC-TOFMS) and ultraperformance liquid chromatography quadrupole time-of-
flight mass spectrometry (UPLC-QTOFMS). Differential metabolites were identified with
statistical tests of orthogonal partial least-squares-discriminant analysis (VIP > 1) and the Mann—
Whitney Utest (p < 0.05). With a total of 249 annotated serum metabolites, we were able to
differentiate CRC patients from the healthy controls using an orthogonal partial least-squares-
discriminant analysis (OPLS-DA) in a learning sample set of 62 CRC patients and 62 matched
healthy controls. This established model was able to correctly assign the rest of the samples to the
CRC or control groups in a validation set of 39 CRC patients and 40 healthy controls. Consistent
with our findings from the previous study, we observed a distinct metabolic signature in CRC
patients including tricarboxylic acid (TCA) cycle, urea cycle, glutamine, fatty acids, and gut flora
metabolism. Our results demonstrated that a panel of serum metabolite markers is of great
potential as a noninvasive diagnostic method for the detection of CRC.
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INTRODUCTION

Colorectal cancer (CRC) is the third most common type of cancer in the world and is a
major cause of worldwide cancer morbidity and mortality.: Due to the lack of early and
accurate diagnosis, fewer than 40% of CRC patients were diagnosed at the localized stage
with relatively high 5-year survival rate.? To date, colonoscopy is the gold standard for
accurate diagnosis of CRC, but its invasive and unpleasant nature often brings unwanted
pain and discomfort to the patient. Although certain tumor biomarkers such as
carcinoembryonic antigen (CEA) and fecal occult blood testing (FOBT) are commonly used
in clinic, the poor sensitivity and specificity limit their application.3-> Therefore,
development of effective molecular biomarkers for early diagnosis has become increasingly
important in the management of CRC patients.
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Cancer, as a metabolic disease, is characterized by its metabolic transformations in cells
essential to sustain their higher proliferative rates and resist cell death signals with altered
flux along key metabolic pathways such as glycolysis and tricarboxylic acid cycle (TCA
cycle).6 Metabonomics (or metabolomics) enables the quantitative measurement of the
dynamic multiparametric metabolic response of living systems to pathophysiological stimuli
or genetic modification.” This technology has been extensively used to identify metabolite-
based biomarkers in various cancers.8-12 Differentially expressed serum or plasma
metabolites have been reported, involving intermediates in glycolysis, TCA cycle, urea
cycle, arginine and proline metabolism, fatty acid metabolism, and gut flora metabolism
associated with CRC morbidity.13-14 However, cancer metabonomics studies'5-20 often
generate different metabolite markers due to the different clinical protocols used and the
wide dynamic range of metabolites measured by different platforms. As a result, very few
metabolic markers in a given cancer type have been consistently discovered, confirmed, and
validated by use of this approach. Therefore, it is of central importance to replicate the
cancer metabonomics studies and verify the biomarker findings.

Here we present a comprehensive serum metabonomics study designed to replicate a
previous CRC study3 by our group and confirm whether a serum based metabonomics
approach can be used as diagnostic tool for CRC patients. Serum metabolites from newly
diagnosed CRC patients (/= 101) and healthy subjects (V= 102) were measured with gas
chromatography time-of-flight mass spectrometry (GC-TOFMS) and ultraperformance
liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS).
The differentially expressed serum metabolites in CRC were identified using univariate and
multivariate statistical tools.

MATERIALS AND METHODS

Clinical Samples

All subjects were recruited in the study with the same sample collection protocol. The
patients consisting of 101 CRC patients (aged 24—-82 years) and 102 healthy subjects (aged
31-76 years) was recruited and diagnosed at the Ruijin Hospital affiliated with Shanghai
Jiao Tong University School of Medicine. CRC and control samples were divided into a
learning group and a validation group, with the age (v = 0.364, the Pearson’s chi-squared
test) and gender (p = 0.281) matched in the learning group. All patients were not on any
medication before sample collection. Any subjects in the healthy control group with
inflammatory conditions or gastrointestinal tract disorders were excluded. Blood samples
were collected in the morning before breakfast, and sera were prepared within one hour after
blood collection and then kept at =80 °C. CRC was staged according to TNM classification
of malignant tumors. CEA levels for all CRC patients were also assessed. The demographic
information and clinical characteristics of all subjects are provided in Table 1.

All the patients signed a consent form. The study was approved by the institutional ethics
committees of the Ruijin Hospital.
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Serum Sample Preparation and Analysis by GC-TOFMS

Following our previous procedure,13 each 100 £ of serum sample spiked with two internal
standards (10 gL of L-2-chlorophenylalanine in water, 0.3 mg/mL; 10 s of heptadecanoic
acid in methanol, 1 mg/mL) was used for metabolite extraction with 300 gL of
methanol:chloroform (3:1) at —20 °C for 10 min. An aliquot of the 300 gL supernatant was
used for further analysis after a 12,000 rpm centrifuge for 10 min. The samples were
vacuum-dried at room temperature. The residue was subjected to a two-step derivatization
procedure with 80 4L of methoxyamine (15 mg/mL in pyridine) for 90 min at 30 °C, and 80
UL of BSTFA (1% TMCS) for 60 min at 70 °C. In addition to the internal standards used for
quality control, another quality control sample consisting of multiple reference standards
was prepared and run with each of 10 samples (see Supplementary Table 3 in the Supporting
Information). This QC sample was vacuum-dried and derivatized using the same procedure
along with the samples.

The samples were analyzed by Pegasus HT system (Leco Corporation, St. Joseph, MI, USA)
coupled with an Agilent 6890N gas chromatography in the order “control-CRC-control”. A
QC sample was run after each 10 serum samples. The injection volume was 1 4L with a
splitless mode. The injection was set to 270 °C. A DB-5MS capillary column (30 m x 250
umi.d., 0.25 pm film thickness; Agilent J&W Scientific, USA) was used to separate the
metabolites. Helium was used as the carrier gas, with 1.0 mL/min. The GC oven temperature
started at 80 °C for 2 min, then ramped to 180 °C at 10 °C/min, to 230 °C at 6 °C/min, and
finally to 295 °C at 40 °C/min. The final temperature of 295 °C was maintained for 8 min.
The temperature of the transfer interface and the ion source was set to 270 and 220 °C,
respectively. The m/zrange was set to 30—600 with electron impact ionization (70 eV). The
acquisition rate was set to 20 spectra/second.

Serum Sample Preparation and Analysis by UPLC-QTOFMS

The procedure for serum sample treatment and analysis for UPLC-QTOFMS followed our
published report with minor modifications.8:13 Each 80 z1_ of serum sample was used in
UPLC-QTOFMS analysis. After addition of internal standard (10 zL of L-2-
chlorophenylalanine in water, 0.3 mg/mL), the samples were combined with 400 /i of a
mixture of water, methanol, and acetonitrile (1:2:7). The extraction procedure was
performed at =20 °C for 10 min after 2 min vortexing and 1 min ultrasonication. The
samples were then centrifuged at 12,000 rpm for 20 min. The supernatant was transferred
into the sampling vial for UPLC-QTOFMS analysis. Similar to GC-TOFMS analysis, a QC
sample consisting of multiple reference standards was prepared (Supplementary Table 3 in
the Supporting Information). This QC sample was run after each 10 serum samples.

The samples were kept at 4 °C during the analysis. A 5 gL aliquot of sample was injected
into an ultraperformance liquid chromatography system (Waters, USA) with a 100 mm x 2.1
mm, 1.7 gm BEH C18 column (Waters, USA) in the same order of GC-TOFMS. The
column was held at 40 °C. The elution procedure for the column was 1-20% B over 0-1
min, 20-70% B over 1-3 min, 70-85% B over 3-8 min, 85-100% B over 8-9 min, and the
composition was held at 100% B for 1 min, where A = water with 0.1% formic acid and B =
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acetonitrile with 0.1% formic acid for positive mode (ES+), while A = water and B =
acetonitrile for negative ion mode (ES-). The flow rate was 0.4 mL/min.

A Waters Q-TOF premier (Manchester, U.K.) was used for data collection, with an
electrospray source operating in either positive or negative ion mode. The temperature for
the source and desolvation gas was set at 120 and 350 °C, respectively. The gas flow for
cone is 50 L/h, and 650 L/h for desolvation gas. The capillary voltage and cone voltage were
setto 3.2 kV and 35 V for ES+, and 3 kV and 50 V for ES—, respectively. MassLynx
software (Waters) was used to collect the data at a centroid data mode with a mass range of
50 to 1000 //z. The scan time was set at 0.3 s, and the interscan delay was set at 0.02 s over
a 9.5 min analysis time. Leucine-enkephalin was used as the lock mass (/m/z556.2771 in ES
+and 554.2615 in ES-).

Data Analysis

The acquired MS data from GC-TOFMS and UPLC-QTOFMS was analyzed according to
our previously published work.13 The GC-TOFMS data was analyzed by ChromaTOF
software (v 4.34, LECO, USA). After alignment with Statistic Compare component, the
CSV file was obtained with three dimensional data sets including sample information, peak
retention time, and peak intensities. The internal standard was used for data normalization.
Internal standards and any known pseudo positive peaks, such as peaks caused by noise,
column bleed, and BSTFA derivatization procedure, were removed from the data set.

The UPLC-QTOFMS ES+ and ES- raw data was analyzed by the MarkerLynx Applications
Manager version 4.1 (Waters, Manchester, U.K.) using the following parameters: the initial
and final retention time (RT) was set at be 0, and 9.5 min, respectively. The mass range was
set to 50-1000 Da, with mass window of 0.05 Da. The internal standard detection
parameters were deselected for peak retention time alignment. The isotopic peaks were
excluded from the analysis. The minimum intensity was set to 5% of base peak intensity.
The noise elimination level was set at 6 and RT tolerance was set at 0.3 min. A list of the ion
intensities of each peak detected was generated, using retention time (RT) and the /m/z data
pairs as the identifier for each ion. The resulting three-dimensional matrix contains
arbitrarily assigned peak index (retention time—//z pairs), sample names (observations), and
ion intensity information (variables). To obtain consistent differential variables, the resulting
matrix was further reduced by removing any peaks with missing value (ion intensity = 0) in
more than 80% samples. The internal standard was used for data quality control
(reproducibility) and data normalization. The ion peaks generated by the internal standard
were also removed. The final data was normalized to the peak area of the corresponding
internal standard.

For GC-TOFMS generated data, metabolite annotation was processed by comparing the
mass fragments with NIST 11 Standard mass spectral databases in ChromaTOF software (v
4.34, LECO, USA) with a similarity of more than 70% and then verified by available
reference standards in our lab (~800 mammalian metabolite standards). Metabolites obtained
from positive (ES+) and negative (ES-) mode of UPLC-QTOFMS analyses were annotated
by means of available reference standards in our lab (by comparing the accurate mass (mass
difference <0.02 Da) and retention time (<0.5 min)), in addition to web-based resources
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such as the Human Metabolome Database (http://www.hmdb.ca/) (by comparing the
accurate mass with difference less than 0.005 Da).

All annotated metabolites by GC-TOFMS and UPLC-QTOFMS ES+ and ES— (expressed
as G, P, and N, respectively) were combined into a new data set for further investigation (the
total list of 249 annotated metabolites is shown in Supplementary Table 1 in the Supporting
Information). Principal component analysis (PCA) and orthogonal partial least-squares-
discriminant analysis (OPLS-DA) were carried out (SIMCA-P 12.0, Umetrics, Umea,
Sweden) to visualize the metabolic alterations between CRC patients and healthy controls
after mean centering and unit variance scaling. The default 7-fold cross-validation was
applied, in order to guard against overfitting. The variable importance in the projection
(VIP) values of all the metabolites from the 7-fold cross-validated OPLS-DA model was
taken as a criterion for differential metabolites selection. Those variables with VIP > 1.0 are
considered relevant for group discrimination.?! Additionally, the nonparametric univariate
method, Mann-Whitney U'test, was applied to measure the significance of each metabolite
in discriminating CRC patients from healthy controls. Differential metabolites were selected
by consideration of both coefficients (VIP > 1 and p < 0.05). The corresponding up- and
downregulated trend (fold change) showed how these selected differential metabolites varied
between CRC patients and healthy controls, and was used for subsequent metabolic pathway
analysis. Furthermore, we conducted box-plot analysis to show the individual metabolite
difference between CRC patients and controls with SPSS software (v19, IBM, USA).

Serum Metabolic Profiles of CRC

We obtained 209, 1293, and 1368 spectral features from each sample analyzed by GC-
TOFMS, UPLC-QTOFMS ES+, and ES—, respectively. PCA scores plots showed the
separation trend between CRC patients and healthy controls in the learning group
(Supplementary Figure 1A,E,l in the Supporting Information). Subsequently, three cross-
validated OPLS-DA models were established and demonstrated satisfactory modeling and
predictive abilities with 1 predictive component and 2 orthogonal components (R2X =
0.245, R2Ycum = 0.881, Q2cum = 0.767) for GC-TOFMS, 1 predictive component and 1
orthogonal component (R2X = 0.302, R2Ycum = 0.95, Q2cum = 0.938) for UPLC-
QTOFMS ES+, and 1 predictive component and 3 orthogonal components (R2X = 0.363,
R2Ycum = 0.961, Q2cum = 0.894) for UPLC-QTOFMS ES-, respectively (Supplementary
Figure 1B,F,J in the Supporting Information). All these results demonstrated the distinct
serum metabolic profiles of CRC patients.

Serum Metabolite Markers of CRC

We have annotated 249 metabolites in the sera of each subject (summarized in
Supplementary Table 1 in the Supporting Information), which mainly include sugar
metabolites (19.2%), amino acid metabolites (14.1%), lipid metabolites (26.9%), short-chain
carboxylic acids (12.8%), nucleic acid metabolites (3.6%), gut flora metabolites (10.0%),
amines (3.6%), bile acids (3.6%), and others (16.1%). Based on the 249 metabolites in the
learning group, an OPLS-DA model was constructed with one predictive component and two
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orthogonal components with good model parameters (R2X = 0.187, R2Ycum = 0.941,
Q2cum = 0.86) (Figure 1). The permutation test assured the validity of the OPLS-DA model
with all the R2 (cum) and Q2 (cum) values calculated from the permuted data were lower
than the original ones in the validation plot and the Q2 (cum) intercepted the y~axis at
-0.309 (Supplementary Figure 2 in the Supporting Information). Furthermore, a set of
samples in the validation group (40 control and 39 CRC samples) were used to test the
prediction ability of the established OPLS-DA model above. In the Y prediction scores plot,
all the samples in the validation groups were correctly assigned to either control or CRC
group using a cutoff value of 0.5 (Figure 2, the Y'value was set at 1 for CRC, and 0 for
controls in the learning group). This result showed the ability of the OPLS-DA model to
predict the unknown samples to the right groups with a sensitivity of 100% and a specificity
of 100%.

To further test the influence of gender on the quality of the prediction model, two models
with males or females only in the training data set were constructed. The samples in the
validation set were fed into the models to test the predictive ability of the model. The results
showed both models (constructed with only males or females) can correctly assign all the
samples in the validation sample set into the right group (CRC or control), suggesting that
the gender does not significantly affect the quality of the prediction model (Supplementary
Figure 3 in the Supporting Information).

Significantly altered serum metabolites with the VIP threshold (VIP > 1) in the above-
mentioned OPLS-DA model, as well as the Mann-Whitney Utest (p < 0.05), were selected
in CRC patients and are summarized in Table 2. Among these differential metabolites, 36
were confirmed by reference standards, and 10 were identified in both analytical platforms
(GC-TOFMS and UPLC-QTOFMS). Variations of these metabolites are expressed in fold
change (FC) in CRC subjects from TNM stage | to stage IV (both in learning group and in
validation group) in Supplementary Figure 4 in the Supporting Information. Using Kyoto
Encyclopedia of Genes and Genomes (KEGG) database, 2 several key metabolic pathways
that were altered in CRC patients were identified, which involve TCA cycle, urea cycle,
tryptophan metabolism, fatty acid metabolism, and gut flora metabolism (Table 2 and
Supplementary Figure 4 in the Supporting Information). The box plots of typical metabolites
in those metabolic pathways are shown in Figure 3.

We further compared the differential metabolites identified in this study with those selected
from our previous study with a different patient cohort. A panel of 10 metabolites was
selected in the two studies between CRC patients and healthy controls with VIP > 1 and p<
0.05 and with the same up and down direction (see first 10 metabolites in Supplementary
Table 2 in the Supporting Information). Using these 10 metabolites, an OPLS-DA model
was constructed with samples in the training set of the current study (one predictive
component and two orthogonal components with R2X = 0.457, R2Ycum = 0.664, Q2cum =
0.600. The samples in the validation data set were fed to the model to test the prediction
ability of this metabolite panel. The results showed the model yielded a sensitivity of 83.7%
and a specificity of 91.7% (Supplementary Figure 5 in the Supporting Information).
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The serum markers identified in this study can also correctly diagnose the CRC patients with
low CEA value (<5 ng/mL, n=58). The samples with high level of CEA and low level of
CEA cannot be separated in the PCA scores plot as shown in Supplementary Figure 6 in the
Supporting Information. No valid OPLS-DA model can be obtained, suggesting that the
CEA values are not associated with changes of serum metabolites. Similar to our previous
findings, our attempt to stratify TNM stages (I-1V) of CRC patients using these differential
metabolites was not successful. We also found some metabolites that consistently up- and
downregulated along with the pathological stages (Supplementary Figure 7 in the
Supporting Information). Interestingly, consistently with our previous report, 5-
hydroxybutyrate was found to continuously increase through stage I to stage IV patients,
while two metabolites related to tryptophan metabolism (tryptophan and indoleacrylic acid)
were continuously decreasing through stage | to stage 1V patients.

DISCUSSION

In this study, we identified 249 serum metabolites of CRC patients with the combination of
GC-TOFMS and UPLC-QTOFMS. A robust OPLS-DA model based on these identified
metabolites was able to distinguish all of the CRC patients including all the TNM-I stage
patients from healthy controls, from which 72 metabolites were found differentially
expressed in CRC subjects. Compared with our previous CRC metabonomics findings,13:14
several key metabolic pathways including TCA cycle, urea cycle, glutathione metabolism,
fatty acid metabolism, and gut microflora metabolism were consistently altered in
association with CRC (Supplementary Table 2 in the Supporting Information). Some
previously reported metabolite markers were significantly different between CRC and
control subjects with univariate statistics in the current study, but do not meet the criteria in
multivariate statistics (Supplementary Table 2 in the Supporting Information). There were
also inconsistencies in the differential metabolites compared to our previous study.® For
example, lactate and several amino acids such as tyrosine and leucine were found to be
differential metabolites in the serum of CRC patients in our previous study,3 but not
identified as biomarkers in the current study. Comparing the two CRC metabonomics
studies, among the 32 differential metabolites identified in the previous study, only nervonic
acid was not detected in the present study. About 70.1% (22 out of 31) of those detected
metabolites are also significantly different between CRC patients and healthy controls in this
replication study (Supplementary Table 2 in the Supporting Information). Several possible
factors may contribute to such a discrepancy between the two data sets. First, in the current
study, 25.7% of the CRC patients were diagnosed at stage I, while only 14.1% of the CRC
patients were at stage | in the previous study. Second, different data analysis procedure may
also result in differences in the metabolite markers identified. In our previous study,!3 the
data obtained from GC-TOFMS, UPLC-QTOFMS (ES+), and UPLC-QTOFMS (ES-)
were analyzed separately, and then the most statistically significant variables were merged
from the three platforms. The metabolite annotation was only performed on those
differential variables. However, in this study, with the increased entries in our in-house
library and the increased knowledge in metabolite annotation, we were able to annotate the
metabolites detected from the three platforms before statistical analysis.
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The most significant differential metabolites (based on pvalue) obtained from our
previously published human hepatocellular carcinoma study?3 were compared with the CRC
metabolite markers. Only two metabolites (oleamide and ornithine) in the most significantly
differing 20 metabolites (based on the pvalue) in the HCC study were found in the 22
differential metabolites (based on pvalue) in the two CRC studies (Supplementary Table 2
in the Supporting Information), suggesting that the metabolite markers identified in the
current study may be specific to CRC phenotype. Consistent with our previous report,13
pyruvate, an important intermediate in glycolysis, was also detected higher in the CRC
patients compared with healthy controls. In addition several intermediates in TCA cycle
such as fumarate and c/s-aconitate were found depleted in CRC subjects. The increased
pyruvate and decreased intermediates in TCA cycle suggest an impaired mitochondrial
respiration in CRC, which is in line with previous metabonomics studies.1418 Interestingly,
a decreased entry of pyruvate into the TCA cycle in cancer cells was also observed in
leukemia cells by Ismael et al.24 These metabolic changes may be indicative of an increased
oxidation of non-glucose carbon sources such as fatty acids.

About 10 amino acids detected in our study such as intermediates in urea cycle (aspartate
and ornithine) and metabolites related to glutamine and proline metabolism were found
decreased significantly in CRC serum compared to healthy controls. While higher
concentrations of various amino acids in CRC tissue were reported compared to normal
mucosa, 171920 the findings with depleted amino acids in CRC serum may suggest the
higher absorption of amino acids by the tumor cells to sustain the rapid cell proliferation.
One example is that the decreased level of serine in CRC patients may be resulted from the
higher consumption of serine in the cancer cells, as evidenced by increased serine 3-
phosphoglycerate dehydrogenase and serine hydroxymethyltransferase observed in human
colon carcinoma.2> Furthermore, lower level of glutamate in CRC patients was observed in
CRC patients in the current study and our previous study.:® As higher consumption of
glutamine in tumor cells has been reported to be essential for the production of
macromolecules such as fatty acid and nuclear acids,26:27 more circulating glutamate may be
transformed to glutamine in CRC patients to compensate the higher consumption in tumor
tissue cells.

A notable metabolic feature of CRC subjects was the remarkably disturbed lipid (including
fatty acids) metabolism. As shown in Table 2, four lysophosphatidylcholines (LysoPCs)
(LysoPC(14:0), LysoPC(16:1), LysoPC(20:0), and LysoPC(P-18:1)) were observed
significantly lower in the serum of CRC patients compared with healthy controls. Consistent
with our observation, decreased signal of LysoPC in cancers was also observed in previous
reports.28:2% The decrease in LysoPCs was reported to be associated with body weight loss
and activated inflammatory status in cancer patients.2% Therefore, the observed decreased
levels of LysoPCs in CRC patients may be indicative of higher decomposition rate of
LysoPCs to support cancer metabolism and activities. Increased degradation of LysoPCs
may result in an increased level of the FFAs, which was also observed in our study (for
example, oleic acid, linolic acid palmitic acid, and elaidic acid were elevated in CRC patient
serum, Table 2). Additionally, increased fatty acid synthesis characterized by increased
expression of fatty acid synthase (FAS) and stearoyl-CoA desaturase-1 (SCD 1) was also
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reported to be an important metabolic characteristic for cancer cells.30:31 The increased
levels of fatty acids may also be associated with increased FAS and SCD1 in CRC patients.

Concomitant with the decreased LysoPCs and increased FFAs, there was a significant
elevation of glycerol and g-hydroxybutyrate, the most important ketone body of fatty acid 5
oxidation, observed in the CRC patient, which was consistent with previous serum
metabonomics study of CRC.13 In fact, FFA and glycerol turnover rates were reported to be
higher in cancer patients compared with healthy normal subjects. Increased fatty acid 5
oxidation may be used as a fuel source in cancer patients.32 Meanwhile, conjugation with
carnitine is essential for long chain fatty acids to cross the mitochondrial membranes for g-
oxidation. In our study, carnitine (18:1) and acetyl carnitine were both significantly
increased, while decanoyl carnitine was found decreased in CRC patients. Fatty acid (18:1)
is a long chain fatty acid, and decanoic acid is a medium chain fatty acid. The medium chain
fatty acids can freely diffuse into mitochondria and be oxidized, while the long chain fatty
acids can cross mitochondrial membrane only after they are conjugated with carnitine.
Therefore, the conjugated long chain fatty acid, carnitine (18:1), and its S-oxidation product,
acetyl carnitine, but not decanoyl carnitine, are found increased in CRC with increased
consumption of energy substrates.

A number of differentially expressed metabolites involved in tryptophan metabolism,
phenylalanine and tyrosine metabolism, bile acid metabolism, and choline metabolism
(Table 2), which are linked to gut microbial-host cometabolism, were observed in the CRC
serum metabolic profile. Consistent with the depleted tryptophan in CRC patients in our
previous study,13 tryptophan and its metabolites, 5-hydroxytryptamine (5-HT), A-acetyl-5-
HT, indoxyl, and indoxyl sulfate, were found significantly depleted in CRC patients.
Particularly, 5-HT was observed to be the most significantly lowered metabolite in the CRC
patients compared with healthy controls. Most of the 5-HT production in the human body
occurred in the gastrointestinal tract, which is important for the regulation of intestinal
activity.33 In fact, a recent report showed that a lower level of serotonin in the rat colon can
enhance colonic dysplasia in a high fat diet rat model.34 Our results support the important
role of 5-HT metabolism in the CRC carcinogenesis. Intermediates in phenylalanine and
tyrosine metabolism, including hippuric acid, phenol, and hydroquinone, were produced in
gut microbiota by fermentation of dietary polyphenols and aromatic amino acids.3° Gut
microbiota has been suspected to play a key role in the carcinogenesis and progression of
CRC.36 These abnormal metabolites related to gut microbiota in our study indicated that the
altered gut flora metabolism was closely associated with CRC morbidity, as suggested in our
recent study with structural imbalance of gut microbiota in CRC patients.36 We presumed
that the abnormalities of gut flora metabolism might be a distinct metabolic signature of
CRC.

Significantly elevated levels of 2-hydroxybutyrate, 2-oxobutyrate, and 2-aminobutyrate were
observed in our study. As a byproduct of the conversion from cystathione to cysteine (2-
oxobutyrate is the intermediate), 2-hydroxybutyrate was considered a biomarker of
glutathione status.3” Therefore, the elevation of 2-hydroxybutyrate and 2-oxobutyrate may
indicate a higher level of oxidative stress in the CRC patients. Additionally, 2-aminobutyrate
is used to synthesize ophthalmate,38 which is indicative of glutathione consumption through
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activation of y-glutamyl cysteine synthetase. The elevated level of 2-aminobutyrate further
indicates a higher level of oxidative stress in CRC patients compared with healthy controls.

The lower serum level of ubiquinone may be associated with CRC progression along with
elevated glutathione metabolism as ubiquinone was reported to suppress fat-induced colon
carcinogenesis as an antioxidant.3° In addition, the level of ubiquinone was also reported to
be negatively correlated with redox status.*? The lower level of ubiquinone in CRC patients
is consistent with the higher levels of metabolites associated with glutathione metabolism
such as 2-hydroxybutyrate and 2-aminobutyrate.

In summary, a panel of differentially expressed metabolites was identified, which verified
most of the markers discovered in our previous CRC metabonomics study. We confirmed
that serum based metabonomics is able to discriminate CRC patients from healthy controls,
reassuring us about the feasibility of developing a new diagnostic tool for CRC with a serum
metabolite signature.
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Figure 1.
The scores plot of the OPLS-DA model of the learning group. The OPLS-DA model was

constructed using data from 62 CRC patients (red dots) and 62 healthy controls (blue dots).
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Y-predicted scatter plot of samples in validation groups. The erected OPLS-DA model with
those samples in the learning group was used to predict the “group membership” (control or
CRC) for the samples in a validation data set with 40 healthy controls (blue triangle) and 39
CRC patients (red triangle). The prediction ability of the OPLS-DA model was made with a
cutoff of 0.5.
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Figure 3. _
Box plots of 6 typical differential metabolites concerning 5 metabolic pathways: (A)

fumarate, (B) aspartate, (C) tryptophan, (D) S-hydroxybutyrate, (E) octenedioate, (F)
trimethylamine N-oxide.
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Table 1

Clinical Information and Characteristics of Human Subjects?

learning group validation group

control (n=62) CRC (n=62) control (n=40) CRC (n=39)

male/female 28/34 34/28 0/40 23/16
age (mean, range) 59.4 (31-75) 60.1 (24-82) 55.9 (35-76) 61.8(36-80)
CEA (ng/mL, mean, range)? 27.9(0.7-891.2) 26.4 (0.9-376.4)

location of tumor®

AC 15 6
TC
DC 5 4
SC 6 1
R 35 28

stage (17, male/female)
TNM-I 16 (11/5) 10 (9/1)
TNM-II 25 (13/12) 18 (11/7)
TNM-I1I 17 (8/7) 9 (3/6)
TNM-IV 4(212) 2 (0/2)

a . . . L
One patient of stage 1V without a location record in training set.
b . . .
CEA, carcinoembryonic antigen.

c . . .
R, rectum; AC, ascending colon; DC, descending colon; SC, sigmoid colon.
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