
Introduction 

The luminal surface of the healthy vascular endothelium is 
covered with glycocalyx, a gel-like layer enriched with carbohy-
drates. Its dimensions vary according to the type of vasculature, 
ranging from 0.2 μm to more than 2 μm. The endothelial gly-

cocalyx (EG) consists of various types of glycosaminoglycans 
covalently attached to plasma membrane-bound core proteo-
glycans. Heparan sulfate comprises 50–90% of endothelial gly-
cosaminoglycans, and the remainder is a mixture of hyaluronic 
acid, dermatan, keratan, and chondroitin sulfates [1]. The high 
degree of sulfation of heparans, dermatans, keratans, and chon-
droitin sulfates, as well as the carboxyl groups of hyaluronic 
acid, contribute to the net negative charge of the EG, which in-
fluences the interaction between the EG and blood constituents. 
Two families of proteoglycans, syndecans 1–4 (single mem-
brane-spanning domain) and glypicans 1–6 (glycosylphosphati-
dylinositol-anchored), provide the membrane-tethered scaffold 
for these glycosaminoglycans except hyaluronic acid, which is 
attached to the osteopontin receptor CD44. In addition, the EG 
incorporates diverse biologically active molecules, including ex-
tracellular superoxide dismutase, xanthine oxidoreductase, lipo-
protein lipase, various cytokines, and regulators of coagulation. 
Several glycoprotein families (selectins, integrins, and immuno-
globulins) are also incorporated in the EG. Pro-inflammatory 
stimuli increase the expression of these glycoproteins to act as 
adhesion molecules. 

In a healthy vasculature, the EG and intercalated blood con-
stituents form the endothelial surface layer (ESL). As a barrier 
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between the endothelium and circulating blood, this layer regu-
lates vascular permeability [2], as well as the interaction between 
endothelial and circulating blood cells [3,4]. The EG senses the 
shear stress of blood flow and transduces it into intracellular 
signals [5]. In addition, the binding and activation of various 
ligands and cell surface receptors may be affected by the EG [1,6]. 
The EG is not a static structure and is maintained in an equilib-
rium of continuous shear-induced shedding and synthesis. This 
constant state is, however, quite vulnerable and tends to disinte-
grate in response to various stressors, including ischemia-reper-
fusion, oxidative stress, hypervolemia, endotoxins, and other 
pro-inflammatory stimuli. The degradation of the EG leads to 
increased vascular permeability, facilitated transmigration of 
inflammatory cells, impaired mechanotransduction, reduced 
antioxidant activity, compromised anti-coagulant properties on 
the endothelial surface, and further activation and propagation 
of danger signals. 

Physiologic Functions of the EG

Vascular permeability

In the classic Starling’s principle, the net fluid flux across the 
inter-endothelial junction is determined by the balance between 
hydrostatic and oncotic pressure gradients [7]. High hydrostatic 
pressure in the vascular lumen drives fluid to the interstitial 
space, whereas lower levels of proteins in the interstitial space 
compared to the plasma results in opposing forces for hydrostat-
ic filtration. This can be expressed by the following equation:

Jv/A = Lp (Pc − Pi) − σ (πc − πi)

where Jv/A is the filtration rate per area, Lp is the hydraulic con-
ductance, Pc is the intravascular hydrostatic pressure, Pi is the 
interstitial hydrostatic pressure, σ is the reflection coefficient, πc 
is the plasma oncotic pressure, and πi is the interstitial oncotic 
pressure.

However, several quantitative studies revealed that actual 
fluid filtration differed from the amount predicted by the classic 
Starling’s principle. As hydrostatic pressure gradually decreases 
from the arteriolar to venular ends of the capillary, it was as-
sumed that fluid is filtered to the interstitium along the arterio-
lar side of the capillaries and then reabsorbed at the venular side. 
This model has been refuted in later studies [8,9]. Revisions to 
Starling’s principle has been made, suggesting that the return of 
fluids to the circulation occurs exclusively via lymphatic drain-
age. In contrast to earlier experiments, which were conducted in 
models where the interstitial oncotic pressure was near zero [10], 
Levick [11] used accurate measures of interstitial oncotic pres-
sure, which is almost half the plasma, and showed that the net 

filtration pressure predicted by the classic Starling’s equation was 
in far excess of the observed lymphatic flow. Moreover, when 
the interstitial oncotic pressure was raised, the increase in net 
fluid filtration was much smaller than expected [8]. These dis-
crepancies indicated that interstitial protein concentration plays 
a minor role in the generation of the oncotic pressure gradient 
across the capillary wall. The introduction of the glycocalyx-cleft 
model helped to resolve the paradox, and Starling’s principle was 
revised to the following:

Jv/A = Lp (Pc − Pi) − σ (πc − πsg)

where πsg is the subglycocalyx oncotic pressure.
The EG acts as a molecular sieve of plasma proteins [9,12], 

and filtered fluid accelerates through the narrow junctional 
breaks. If this downstream fluid velocity approaches the up-
stream diffusion velocity of interstitial proteins, a washout of 
the diffusing proteins can maintain the protein concentrations 
in the sub-glycocalyx area at a very low level. Consequently, the 
effective oncotic pressure gradient opposing hydrostatic filtra-
tion is greater than the difference in oncotic pressure between 
the plasma and interstitium, reducing the basal fluid filtration 
rate to approximately the normal lymphatic drainage rate [13]. 
Enzymatic removal of EG components results in increased hy-
draulic conductivity, protein flux, albumin excretion, and edema 
[14–16]. When the negative charge of the EG was removed, 
increased permeability to albumin or dextrans were observed 
[17,18]. This evidence indicates that EG is a major determinant 
of vascular permeability. 

In addition to a passive barrier role, recent studies suggested 
that the EG may regulate vascular permeability by acting as a 
mechanotransducer of flow-mediated shear stress [19]. Accord-
ing to Starling’s principal, hydrostatic pressure and fluid flux 
should have a linear relationship if Lp is held constant. However, 
it has been shown that increases in hydrostatic pressure results 
in an increase in Lp, thus resulting in a non-linear elevation of 
net fluid flux [20–23]. The shear-induced increase in Lp involves 
the activation of endothelial nitric oxide synthase (eNOS) and 
resultant alterations of junctional proteins [24]. The heparanase 
treatment of bovine endothelial cells abolished the shear-in-
duced increase in Lp [23,25], suggesting a non-Starling mecha-
nistic role of EG in the regulation of vascular permeability.

Mechanotransduction

One of the main roles of EG is represented by the mechano-
transduction of blood flow-mediated shear stress to the cyto-
skeleton, nucleus, and enzymatic reactions, which is essential for 
vascular homeostasis. The EG functions as a sensor of mechan-
ical forces exerted on the endothelial surface [26], in concert 
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with other sensors including G-protein-coupled receptors [27], 
stretch-sensitive ion channels [28], rheological properties of the 
plasma membrane [29,30], caveolar structures [31], and integ-
rins and focal adhesion molecules [32]. These mechanosensors 
initiate intracellular signaling such as increases in cytosolic 
calcium, the activation of eNOS [33], Rho-family guanosine 
triphosphatases, tyrosine kinases, Ras, Erk, and JNK; the phos-
phorylation of platelet endothelial cell adhesion molecule-1 
(PECAM-1) intracellular domain [34]; and cytoskeletal remod-
eling [35], especially at the sites of highest tension like cell-cell 
junctions [36]. Physiologically, shear stress on the endothelium 
activates eNOS via the phosphorylation of S617, S635, S1177/
S1179 residues by calmodulin kinase, PI3K/Akt, and PKA 
pathways [37]. In addition, shear stress also induces sirtuin 1, a 
nicotinamide adenine dinucleotide (NAD)-dependent deacety-
lase, which enhances eNOS activity through deacetylation at 
Lys496 and Lys506 [38]. Physiological shear stress also induces 
transcription factors such as Kruppel-like factor-2 and nuclear 
factor-like-2, both of which are responsible for the induction of 
eNOS and antioxidant defense [39]. In contrast, in endothelial 
cells, perturbed blood flow induces the activation of the nuclear 
factor kappa B (NF-κB) pathway and activator protein-1, which 
participate in the acquisition of a pro-inflammatory phenotype 
by endothelial cells [40,41]. Defective mechanosensing and the 
resulting reduction in the shear-induced release of nitric oxide 
(NO) is associated with decreased eNOS activity. Direct pulling 
of the EG components and core proteins using atomic force 
microscopy results in a rapid Ca2+ influx and NO production 
[33,42], whereas enzymatic removal of EG [43], inhibition or 
knockdown of specific transient receptor potential (TRP) chan-
nels [44,45], or disruption of caveolae [46], all of which result in 
the impairment of flow-induced NO production.

NO has a crucial role in vascular homeostasis including the 
regulation of vascular tone, permeability, and inflammatory 
phenotype [47]. Decreased bioavailability and uncoupling of 
eNOS are associated with increased oxidative and nitrosative 
stress as well as endothelial dysfunction [48]. Of note, endo-
thelial dysfunction induced by the disintegration of the EG and 
defective mechanotransduction may accelerate the further loss 
of the EG, leading to a vicious cycle of endothelial dysfunction. 
Decreased bioavailability of NO can increase exocytosis of lyso-
some-related organelles, which are responsible for the intrinsic 
mechanism of the EG degradation, via reduced S-nitrosylation 
of the N-ethylmaleimide-sensitive factor [49]. Furthermore, 
sirtuin 1 deficiency also affects vascular homeostasis. Recently, 
we reported that endothelium-specific sirtuin 1 knock-out mice 
have a significantly reduced whole body EG volume compared 
with wild-type mice [50]. Sirtuin 1-mediated deacetylation of 
Forkhead box O (FoxO1) DNA-binding protein is required for 
its active conformational change and enhanced cellular protec-

tion from oxidative stress [51,52]. Deficient sirtuin 1 expression 
or activity, which is associated with diverse vasculopathies [53], 
leads to susceptibility to oxidative stress. Oxidative stress acti-
vates disintegrin and metalloproteinase domain-containing pro-
tein 17 (ADAM-17) [54]. Activation of this enzyme contributes 
to cleavage of syndecan, which results in the shedding of EG [55]. 
Additionally, sirtuin 1 deficiency activates NF-κB, which induces 
transcriptional activation of heparanase, one of the target genes 
of this transcription factor [56,57]. Subsequently, increased 
heparanase activity leads to the enzymatic removal of heparan 
sulfate side chains from the EG and disintegration of ESL.

Role in blood cell-endothelial interactions

The EG shields the endothelium from interactions with cir-
culating blood cells. The length of projections of cell adhesion 
molecules, including selectins (PECAM, vascular cell adhesion 
molecules (VCAMs), and ICAMs (intercellular adhesion mole-
cules)) and integrins (CD11/CD18), are shorter than the thick-
ness of the EG [58]. Thus, intact EG inhibits firm adhesion of 
leukocytes and platelets, whereas shedding of the EG facilitates 
their adhesion. In rodent cremaster muscle preparation, deg-
radation of the EG by oxidized lipoproteins or tumor necrosis 
factor alpha (TNF-α) increased platelet or leukocyte-endothelial 
adhesion [3,59]. Similarly, chemotactic peptide fMLP (formyl-
Met-Leu-Phe) degraded the EG and increased adhesion of 
leukocytes, while the matrix metalloprotease (MMP) inhibitor 
doxycycline attenuated the degradation of the EG and reversed 
the facilitated adhesion of leukocytes [4,60]. Knockout of syn-
decan-1 in mice resulted in increased adhesion and transmi-
gration of leukocytes under pro-inflammatory stimuli as well as 
basal conditions [61].

Mechanisms of Glycocalyx Degradation

A variety of enzymes and reactive oxygen species (ROS) 
contribute to the degradation of the EG under inflammatory 
conditions. Activated neutrophils produce ROS and reactive 
nitrogen species (RNS), and release granules that contain pro-
teases responsible for EG degradation [62]. Heparanase liber-
ated from mast cells cleaves heparan sulfate side chains from 
membrane-bound core proteoglycans [63–65]. Additionally, 
hyaluronic acid can be cleaved by hyaluronidase. Although 
these enzymes are capable of fragmentation and removal of 
major glycosaminoglycans from the EG, more extensive shed-
ding can occur by damage to core proteoglycans that constitute 
the backbone of ESL. Proteases released and activated under 
inflammatory conditions have been demonstrated to cause 
shedding of the EG [66]. MMPs are thought to cleave the syn-
decan ectodomain [60,66,67]. Other potential sheddases include 
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neutrophil elastase, thrombin, plasmin, tryptase, and cathepsin 
B [68]. Upon appropriate inflammatory stimuli, phagocytes 
release their vesicles containing MMPs [67]. Doxycycline, a 
non-selective inhibitor of MMP activity, decreases shedding of 
the glycocalyx [60,66,67]. High affinity of MMP to heparan sul-
fate promotes the immobilization of MMPs within the ESL [69] 
and potentially enhances its destructive potential. Furthermore, 
MMPs have also been suggested to cleave CD44 [70–72]. 

ROS/RNS can damage the EG directly. One of the major 
sources of ROS is neutrophil-derived myeloperoxidase bound to 
the negatively charged glycosaminoglycan side chains [62]. The 
cleavage of HS after increased oxidative stress shows a similar 
pattern of increase in macromolecular passage compared to 
treatment with heparanase [73,74]. In addition, core proteogly-
cans are also susceptible to oxidative/nitrosative stress [62]. Fur-
thermore, ROS/RNS can facilitate shedding of the EG via activa-
tion of MMPs and inhibition of endogenous protease inhibitors 
[54,62].

EG-degrading mediators are mainly released by inflam-
matory cells such as neutrophils and mast cells as described 
above. However, endothelial cells can be directly stimulated by 
inflammatory mediators such as TNF-α or lipopolysaccharides 
(LPS) to secrete molecules that contribute to the disintegration 
of the EG [59,75–78]. Recently, we showed using stochastic op-
tical reconstruction microscopy (STORM) that the degradation 
of the EG is also mediated by the exocytosis of Weibel-Palade 
bodies (WPBs) and secretory lysosomes, which are visualized 
as patch loss or craters of the EG in a very early course of a ro-
dent sepsis model [79]. Exocytosis of WPB and secretory lyso-
somes are one of the earliest responses of activated endothelial 
cells [80]. WPBs are rod-shaped organelles (0.2 µm × 2–3 µm) 
characteristic of endothelial cells and containing various kinds 
of proteins, enzymes, and inflammatory mediators. Known 
inducers of exocytosis of WPB include thrombin, histamine, 
leukotrienes, complements, superoxide anion, vascular endo-
thelial growth factor (VEGF), sphingosine-1-phosphate, sero-
tonin, vasopressin, and epinephrine [81–83]. The mechanisms 
of exocytosis of lysosomal-related organelles, such as WPB and 
secretory lysosomes, involves docking to the plasma membrane 
via soluble N-ethylmaleimide sensitive factor (NSF) attachment 
protein receptors (SNAREs) [81]. An interaction of NSF and its 
adaptor synaptosome-associated protein (α-SNAP) with SNARE 
proteins is required to prime WPB for exocytosis. This process 
can be inhibited by S-nitrosylation of NSF, implicating a crucial 
role of NO in the regulation of exocytosis of lysosomal-related 
organelles [49]. Notably, the prevention of exocytosis of lyso-
somal-related organelles with a NO donor improved survival of 
animals with severe experimental sepsis [79].

Perioperative Degradation of Glycocalyx

Acute degradation of the EG has been shown in patients with 
major surgery, especially those with cardiac surgery [84–88], as 
well as those with sepsis [89–92] and major trauma [93,94]. Ele-
vated levels of EG degradation markers are associated with poor 
outcome in septic and critically ill patients [92,93,95–97]. In the 
perioperative setting, high postoperative syndecan-1 levels are 
correlated with greater incidence of severe acute kidney injury 
in pediatric patients that underwent cardiac surgery [98]. It has 
been proposed that ischemia-reperfusion (I/R) injury, oxidative 
stress, hypervolemia, and massive hemorrhage contribute to the 
perioperative degradation of the EG. I/R injury can disrupt the 
integrity of the EG through increased oxidative stress, secondary 
inflammatory response, and microvascular endothelial dysfunc-
tion [99,100]. The degradation of EG has been well demonstrat-
ed in animal models of mesenteric or cardiac ischemia [77]. I/
R injury is also commonly encountered during cardiac, major 
vascular, and transplantation surgeries. Indeed, an elevation 
in the serum concentration of EG components, which reflects 
the degradation of the EG and release of its components into 
the circulation has been shown in cardiac and aortic surgeries 
[84–86]. Furthermore, I/R injury alone is not solely responsible 
for cardiac surgery-induced EG degradation. Cardiopulmo-
nary bypass (CPB) induces an intense systemic inflammatory 
response, which is characterized by the activation of the coagu-
lation system and complement pathway, I/R injury, recruitment 
of inflammatory cells in multiple organs, surge of pro-inflam-
matory cytokines, increased oxidative stress, activation of serine 
proteases, and microvascular endothelial dysfunction [101]. The 
inflammatory response following CPB is initiated by contact of 
blood with a non-endothelialized foreign surface and further ac-
centuated by endotoxemia due to the translocation of LPS from 
the intestine to circulation [102–104]. Taken together, the in-
flammatory phenotype following CPB resembles that of sepsis, 
in which the degradation of the EG has been well-documented 
[105].

Interestingly, patients undergoing off-pump coronary artery 
bypass (OPCAB) showed a similar increase in the serum con-
centrations of the EG components, despite circumventing CPB 
[85]. This may have been due to the inevitable warm I/R injury 
from the temporary ligation of coronary arteries during grafting, 
hypotension, and the low cardiac output leading to the hypoper-
fusion of vital organs following cardiac displacement for the 
exposure of coronary arteries. Moreover, it was suggested that 
the release of atrial natriuretic peptide (ANP) during surgery 
may induce shedding of the EG. Cardiomyocytes in the atrium 
of the heart secrete ANP in response to a stretch in the atrium. 
In addition to its renal effect, ANP is known to increase micro-
vascular permeability. Experimental studies demonstrated that 
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ANP induced rapid shedding of EG via a cyclic guanosine mo-
nophosphate (cGMP)-linked proteolytic pathway, and resulted 
in increased net fluid flux and colloid extravasation to the inter-
stitial space [106]. Furthermore, intracoronary infusion of ANP 
showed a dose-dependent effect on the EG shedding [107]. The 
displacement of the heart during OPCAB impairs ventricular 
filling and causes a stretch or compression of the atrium, leading 
to the release of ANP [108].

A reduction in the EG dimension was also shown in animal 
models of hemorrhagic shock [109,110]. However, the mecha-
nism of shedding has not yet been elucidated. It is well known 
that patients with severe multiple trauma have diminished EG 
volume, probably due to massive hemorrhage and systemic 
inflammatory response [94]. Massive hemorrhage is not un-
common during major surgeries; however, no clinical study has 
addressed this issue so far. 

Strategies to Protect EG

The natural regeneration of the EG appears to be slow. Ani-
mal studies suggest that the restoration of a hydrodynamically 
relevant volume of the EG following enzymatic degradation re-
quires up to seven days [111]. There has been little evidence for 
the time-course of EG degradation and restoration during the 
perioperative period. In cardiac surgery, the concentrations of 
serum EG components peaked at the end of CPB, followed by a 
rapid decrease and return to near normal values at 24 h post-op-
eration [84]. However, the serum concentrations of those 
fragments cannot be considered as a reliable indicator of EG re-
generation, whereas an initial rise in serum can be a marker for 
degradation. Considering that the EG degrading stimuli can last 
several days postoperatively, the restoration of the EG may take 
a longer time. Therefore, strategies to minimize the degradation 
or accelerate restoration may have high clinical relevance.

Avoiding hypervolemia

Hypervolemia can result in the shedding of the EG, which 
is induced by the release of ANP due to atrial stretch. When 
colloid solutions are administered to normovolemic patients, 
60% of the infused solution was extravasated immediately, 
whereas almost the entire volume was maintained within the 
intravascular space in an acute normovolemic hemodilution 
setting [112,113]. The prophylactic administration of fluids 
upon the induction of general or neuraxial anesthesia has long 
been advocated to counteract hypotension due to an anesthe-
sia-induced decrease in cardiac preload. However, this practice 
cannot be recommended considering the role of the EG in fluid 
management. Furthermore, preloading of fluids did not show 
consistent efficacy for decreasing the incidence of hypoten-
sion or requirement for vasopressors after neuraxial anesthesia 
[114,115]. Moreover, liberal perioperative fluid administration 
leading to a positive fluid balance has been associated with in-
creased morbidity [116]. Perioperative degradation of the EG 
may provide one rationale for restrictive fluid administration by 
a goal-directed protocol; however, the clinical impact of liberal 
versus restrictive fluids needs more extensive discussion [117] 
and is beyond the scope of this review. 

Albumin

The EG can be stabilized by supplementation with albumin 
within the ESL [63]. The intercalation of albumin can provide 
protection against oxidative damage owing to an oxidizable 
sulfhydryl group of albumin, excessive attachment of leukocytes 
and platelets, and maintenance of shear-induced vasodilatation 
[63,118]. In addition, albumin carries sphingosine-1-phosphate, 
which inhibits MMP activity on the endothelium [119]. In an 
animal model for heart transplantations, the addition of histi-
dine-tryptophan-ketoglutarate solution, which contains albumin 
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Permeability
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Adequate mechanotransduction
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Control of coagulation
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Fig. 1. The physiological role of intact 
endothelial glycocalyx is represented. 
The degradation of glycocalyx leads to 
various pathologies. Possible tools for 
the restoration of glycocalyx are shown. 
MMP: matrix metalloprotease, ecSOD: 
extracellular superoxide dismutase, NO: 
nitric oxide.
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reduced EG degradation [120]. In an experimental model of 
massive hemorrhage, resuscitation with plasma showed partial 
restoration of the EG, whereas lactated Ringer resuscitation did 
not [110]. These data suggest a possible role of albumin in the 
protection of the EG, although there is a paucity of direct clini-
cal evidence. 

Pharmacologic agents

A variety of pharmacological agents has been used to restore 
or prevent the degradation of the EG (Fig. 1). Agents that poten-
tially interfere with EG degradation include antioxidants [121], 
antithrombin III [122], MMP inhibitor doxycycline [67], TNF-α 
analogue etanercept [123], NO donors [124], hydrocortisone 
[125], and volatile anesthetics [126,127]. However, these prom-
ising experimental study results have not yet been translated 
into clinical practice. Other methods to prevent EG degradation 
involve the supplementation of EG constituents such as heparan 
sulfate or hyaluronic acid [128]. Although accelerated restoration 
of the EG was achieved in vitro, heparan sulfate and hyaluronic 
acid could not reconstitute EG in vivo in a sepsis model [129]. 
The lack of effect in vivo can be explained by the overwhelming 
degradation process, which cannot be suppressed by the supple-
mentation of EG components. Interestingly, we have reported a 
remarkable effect with sulodexide, an 8 : 2 mixture of fast-mov-
ing heparin and dermatan sulfate, on the restoration of the EG 
and survival benefit in a mouse model of severe sepsis [129]. The 
superior efficacy of sulodexide is thought to be due to its dual ac-
tion, supplementation of EG constituents, and concomitant inhi-
bition of degrading enzymes. Fast-moving heparin components 
of sulodexide, as a close mimic of heparan sulfate, are responsible 
for heparanase inhibition at basic clusters of heparanase in a 
competitive manner [130]. The dermatan sulfate fraction inter-
acts with the active zinc binding site of the pro-MMP-9 molecule 
to block its conformational change into an active form [131]. 
It has also been reported that sulodexide attenuates the release 
of MMP-9 from leukocytes [132]. Clinically, Broekhuizen et al. 
[133] demonstrated that oral sulodexide administration for two 
months partially restored the thickness of the EG in patients with 
type 2 diabetes using sidestream dark field imaging of sublingual 
microcirculation. It is uncertain whether sulodexide would show 
a comparable effect in the perioperative setting. The required 
dose of sulodexide was estimated to be much higher to reconsti-
tute the EG in a severe sepsis model [129]. Although sulodexide 

is known to exert minimal in vivo anti-coagulant effects due to 
its preferential uptake by the endothelium [134], care should be 
taken for its application in the perioperative setting because of 
a potential bleeding tendency from the administration of large 
doses. From this point of view, chemically modified, non-anti-
coagulant variants of heparin could be fascinating candidates for 
the protection of EG [135–137].

Emerging Therapy to Restore the Degraded 
Glycocalyx

We have recently invented liposomal nanocarriers of the pre-
assembled glycocalyx [138]. in vitro, ex vivo, and in vivo testing of 
these liposomes showed that they expeditiously restore glycocalyx 
in cultured endothelial cells stripped of EG by prior treatment with 
heparanase, restore mechanotransduction in isolated perfused ar-
terioles, improve their flow-induced NO production, and partially 
restore renal microcirculation in LPS-injected mice. Collectively, 
these findings augur potential therapeutic benefits in restoring the 
EG in diverse conditions associated with the loss of EG.

Conclusion

The structure, function, and degradation of EG under var-
ious pathological conditions have been well recognized. I/R 
injuries, oxidative stress, hypervolemia, and systemic inflamma-
tory responses promote EG degradation. Considering its unique 
location and diverse role in endothelial function, protecting the 
EG would probably improve clinical outcome after surgery. The 
degradation of EG during the perioperative period, especially in 
cardiac surgery, is a well-known phenomenon. Further study is 
needed to elucidate the clinical impact of EG degradation in the 
perioperative setting. Currently, no pharmacological tools for 
the restoration of EG are clinically available. However, attempts 
to minimize EG degradation, including avoidance of hypervole-
mia, and reducing the stress response and systemic inflamma-
tion, should be adopted by anesthesiologists. Furthermore, a 
novel strategy to restore degraded EG using liposomal nanocar-
riers of the preassembled glycocalyx is emerging.
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