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AIMS
Statistically significant positive correlations are reported for the abundance of hepatic drug-metabolizing enzymes. We investi-
gate, as an example, the impact of CYP3A4–CYP2C8 intercorrelation on the predicted interindividual variabilities of clearance and
drug–drug interactions (DDIs) for repaglinide using physiologically based pharmacokinetic (PBPK) modelling.

METHODS
PBPK modelling and simulation were employed using Simcyp Simulator (v15.1). Virtual populations were generated assuming
intercorrelations between hepatic CYP3A4–CYP2C8 abundances derived from observed values in 24 human livers. A repaglinide
PBPK model was used to predict PK parameters in the presence and absence of gemfibrozil in virtual populations, and the results
were compared with a clinical DDI study.

RESULTS
Coefficient of variation (CV) of oral clearance was 52.5% in the absence of intercorrelation between CYP3A4–CYP2C8 abun-
dances, which increased to 54.2% when incorporating intercorrelation. In contrast, CV for predicted DDI (as measured by AUC
ratio before and after inhibition) was reduced from 46.0% in the absence of intercorrelation between enzymes to 43.8% when
incorporating intercorrelation: these CVs were associated with 5th/95th percentiles (2.48–11.29 vs. 2.49–9.69). The range of
predicted DDI was larger in the absence of intercorrelation (1.55–77.06) than when incorporating intercorrelation (1.79–25.15),
which was closer to clinical observations (2.6–12).

CONCLUSIONS
The present study demonstrates via a systematic investigation that population-based PBPK modelling incorporating intercorre-
lation led tomore consistent estimation of extreme values than those observed in interindividual variabilities of clearance and DDI.
As the intercorrelations more realistically reflect enzyme abundances, virtual population studies involving PBPK and DDI should
avoid using Monte Carlo assignment of enzyme abundance.
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WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT
• Current population-based physiologically-based pharmacokinetic (PBPK) models do not consider intercorrelations
between the abundances of different enzymes when using Monte Carlo simulations to generate virtual individuals.

• Statistically significant positive correlations are reported for enzyme abundance between certain drug-metabolizing
enzymes.

WHAT THIS STUDY ADDS
• The study for the first time incorporates intercorrelation of enzymes into population-based PBPK model.
• The impact of intercorrelation was assessed for clearance and DDI variability of the model compound repaglinide.
• Here we present a practical approach to assessing enzyme intercorrelations and their potential impact on drug clearance
and DDIs.

Introduction
Pharmacokinetic drug–drug interactions (DDIs) can alter
systemic exposure to drugs, and result in reduced treatment
efficacy or increased risk of adverse drug reactions (ADRs).
Quantitative DDI assessments are important in anticipating
the clinical risks associated with DDIs prior to market
approval and during post-marketing surveillance. Physiolog-
ically based pharmacokinetic (PBPK) approaches may be used
to estimate the risk of DDIs, and validated PBPKmodels allow
the quantitative prediction of the magnitude of DDIs in
various clinical situations, including in special populations
[1–3]. DDI predictions using validated PBPK models have
influenced the labelling recommendations for several drugs,
such as ibrutinib and eliglustat [4, 5]. The approaches
described above have focused mainly on the prediction of a
single ‘average’ outcome for change in systemic exposure.
However, in individual subjects, severe ADRs may be induced
by the unexpected magnitude of DDIs based on a large
interindividual variability in metabolic clearance [6]. It is
therefore important to consider not only the average DDI
effect but also the population distribution in DDI outcomes
and the theoretically conceivable extremes in outcome in
individual subjects [6].

Interindividual variability in hepatic drug clearance can
be anticipated by incorporating sources of variability such
as demographic factors (e.g., age and sex) and physiological
factors (e.g., hepatic blood flow, enzyme/transporter levels
and activity) [7]. Data from clinical pharmacokinetic studies
are not amenable to separation of the role of variable intrinsic
clearances by various metabolic pathways and their intercor-
relations. In contrast, in silico approaches, such as PBPK
models, can provide such information about the contribu-
tion of single covariate factors, or about the interaction
between them. One of the key physiological factors
determining interindividual variability in hepatic drug
clearance is enzyme abundance, which is affected by age,
sex, body and liver weight, and dietary habits, as well as
genetic polymorphisms. However, without considering the
intercorrelation between physiological parameters (e.g., liver
volume and hepatic blood flow, and liver volume and kidney
volume), physiologically implausible parameter combina-
tions will be generated when sampling from a population
distribution that may lead to overestimation in the interindi-
vidual variability of pharmacokinetic parameters, such as
clearance [8]. To account for this, state-of-the-art PBPK

models consider the intercorrelation between organ/tissue
volumes and blood flows [7, 9].

Until recently, it has been challenging to consider the
intercorrelation between the expression levels of drug-
metabolizing enzymes and transporters due to the lack of
reliable quantitative data. Historically, measuring enzyme
and transporter expression levels relied on assessment of
gene expression (mRNA) or immuno-quantification assays,
which tended to generate semi-quantitative analyses, not
amenable to multiplexing, even when robust quality controls
were applied, and therefore these methods were generally
unable to uncover expression correlations [10]. However,
novel methods in quantitative proteomics driven by recent
advances in LC–MS technology made it possible to reliably
measure multiple enzymes and transporters in individual
tissue samples in the same experiment, therefore allowing
robust consideration of intercorrelations of these proteins
[11]. Although drug-metabolizing enzyme intercorrelations
have recently been reported [12], the quantitative impact of
such relationships on pharmacokinetic outcomes has not
been extensively explored. A PBPK model incorporating a
CYP3A4–CYP3A5 intercorrelation produced a reasonable oral
clearance estimate of tacrolimus, a substrate of both CYP3A4
and CYP3A5, in individuals displaying high or low basal
concentration of CYP3A4 [13]. Given a credible range of
predicted drug clearance in PBPK models incorporating the
reported intercorrelation between two enzymes, the PBPK
models could predict the theoretically conceivable extreme
risk of DDIs.

This report describes a proof-of-principle study for the
prediction of interindividual variability in drug clearance
and DDIs by incorporating intercorrelation between two
drug-metabolizing enzymes into a PBPK model. To achieve
the aim of this study, we investigate, as an example, the
impact of CYP3A4–CYP2C8 intercorrelation on the predic-
tion of interindividual variability in drug clearance and DDIs
of repaglinide, a probe substrate for CYP2C8 inhibition
studies [14]. Repaglinide, a short acting anti-diabetic drug, is
mainly metabolized by CYP2C8 and CYP3A4, and is also a
substrate of the hepatic uptake transporter, organic anion
transporting polypeptide (OATP) 1B1 [15–17]. Systemic
exposure of repaglinide is increased by inhibitors of CYP2C8,
CYP3A4 and OATP1B1 [18, 19]. In the present study, we
generated virtual populations assuming a CYP3A4–CYP2C8
intercorrelation, and assessed the effect of the intercorrela-
tion on the prediction of interindividual variability in
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clearance and magnitude of DDI of repaglinide using PBPK
modelling. Furthermore, theoretically conceivable extreme
values of clearance and DDI generated under various assump-
tions regarding the intercorrelations were investigated and
compared with clinical observations.

Methods

Assessing intercorrelation between hepatic
CYP3A4 and CYP2C8 abundances
Hepatic CYP3A4 and CYP2C8 abundance data usable for
correlation analysis were obtained from the literature
(Figure 1A) [20]. The protein expression was measured simul-
taneously in a set of 24 individual human liver microsomes
(HLM) using a multiplexed QconCAT-based proteomic
method, designed to allow robust assessment of expression
intercorrelation. Individual values for each HLM sample were
obtained directly from authors of the original research article.
A linear regression model was developed (using IBM SPSS
Statistics 24, IBM, New York, USA) to assess the correlation
between hepatic CYP3A4 and CYP2C8 protein expression as
previously reported [13]. The model was as follows:

CYP2C8 pmol=mgmicrosomal proteinð Þ ¼ C0 þC1 · CYP3A4 pmol mg–1
� �

where C0 is the baseline level of CYP2C8 protein expression,
and C1 is the slope. A coefficient of variation (CV) describing
residual variability in CYP2C8 protein expression was deter-
mined from the sum of squares of the least squares linear
regression analysis and themean relative CYP2C8 abundance
of the dataset. It should be noted that assigning CYP2C8 as
the dependent variable was arbitrary and does not infer any
causality (an alternative of defining CYP3A4 could equally
be applied). The correlation was only themanifestation of po-
tential common regulatory pathways (e.g., known regulatory
factors such as FXR, PXR, CAR, AhR, etc.).

Development of a PBPK model using
intercorrelation between CYP3A4 and CYP2C8
PBPK modelling and simulation were employed using the
Simcyp® Simulator (v15.1; Certara, Sheffield, UK). Virtual
populations, assuming different magnitudes of intercorrela-
tion between CYP3A4 and CYP2C8, were generated by alter-
ing physiological parameters in the ‘healthy volunteers’
population template within the Simcyp Simulator popula-
tion library (Table 1). Hepatic CYP3A4 and CYP2C8
abundances for default healthy volunteers were generated
independently using mean population values of CYP3A4
and CYP2C8 of 137 and 24 pmol mg–1 and associated CVs
of 41% and 81% for CYP3A4 and CYP2C8, respectively. In-
put parameters for CYP3A5 were substituted by the corre-
sponding values of CYP2C8 in the population template
when assessing intercorrelation between CYP3A4 and
CYP2C8. The current version of the Simcyp Simulator al-
lows enzyme intercorrelation where hepatic CYP3A5 abun-
dance is predicted from CYP3A4 abundance based on a
linear model. Default parameter values for baseline, slope
and CV of the enzyme intercorrelation module were
substituted by parameter values derived from intercorrela-
tion between hepatic CYP3A4 and CYP2C8. Default values
of CYP3A5 abundance in the gastrointestinal tract and fre-
quency of CYP3A5 extensive metabolizers (EM) were also
substituted by values for CYP2C8. This value was set to
1.00 because complete loss-of-function of CYP2C8 variants
is very rare [14].

The pre-validated repaglinide compound file in the
Simcyp compound library was adapted to use the enzyme
intercorrelation module based on an intercorrelation be-
tween hepatic CYP3A4 and CYP2C8 (Table 2). Physicochem-
ical parameters (molecular weight, log Po:w, acid/base status
and pKa), fraction unbound in plasma and blood/plasma ratio
were obtained from data in the literature and public databases
[21, 22]. A full PBPK distribution model for repaglinide was
developed using the Rodgers and Rowland method assigning
perfusion-limited distribution to all tissues except liver [23].

Figure 1
Reported enzyme abundance (A) and correlation plot (B) for CYP2C8 and CYP3A4 protein contents in 24 individual liver samples [20]. Solid and
dashed lines represent the regression line and the 95% prediction intervals, respectively. Standard errors for slope and baseline were 0.035 and
2.997, respectively. CV, coefficient of variation
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Permeability-limited distribution of repaglinide into the liver
was adopted to account for transporter-mediated intrinsic
clearance (CLint,T) for the sinusoidal uptake transporter
OATP1B1. Default values of Vmax and Km for repaglinide me-
tabolism in HLM were 300.8 pmol min–1 mg–1 and 2.3 μM
for CYP2C8, and 958.2 pmol min–1 mg–1 and 13.2 μM for
CYP3A4, respectively [15]. The enzyme kinetic values in
HLM were converted into values in microsomes from a re-
combinant system with transformation of Vmax values using
default mean abundance data of CYP2C8 and CYP3A4. In
the modified repaglinide model for CYP3A4–CYP2C8 corre-
lation, the converted enzyme kinetic values for recombi-
nant CYP2C8 and CYP3A4 were used as parameter values
for recombinant CYP3A5 and CYP3A4, respectively. The
other parameters were not changed from the pre-validated
values.

Gemfibrozil, a clinically relevant CYP2C8 inhibitor, was
used for the virtual DDI study. It is mainly metabolized to
gemfibrozil 1-O-β glucuronide (Gem-Glu) which is a
mechanism-based inhibitor of CYP2C8 [24]. In addition,
both parent gemfibrozil and the glucuronide metabolite
inhibit OATP1B1 in vitro [25] and in vivo [26]. The pre-
validated compound files of gemfibrozil and Gem-Glu

supplied in the Simcyp compound library were developed
with modifications, where inhibitory parameter values of
CYP2C8 were used as those of CYP3A5 (Table 3).

Design of virtual studies
Virtual studies for clinical pharmacokinetics and DDIs of
repaglinide were simulated using the default number of tri-
als (10) and modified virtual populations (up to 100 trials).
The simulation results were compared to pharmacokinetic
data from a published clinical trial in which repaglinide
was administered either alone or with pretreatment with
gemfibrozil [19]. Observed data for plasma repaglinide
concentration profiles were obtained directly from authors
of the original research article. The trial design (number of
subjects, age range and proportion of females) was repli-
cated as closely as possible to ensure that the characteris-
tics of virtual subjects were matched to those of the
clinical trial [19]. An age range of 19–29 years was ob-
tained directly from the authors of the original research ar-
ticle. Replicate virtual trials simulated in 10 subjects each
(nine males and one female) receiving a single oral dose
of repaglinide 0.25 mg were performed in the absence

Table 1
Summary of input population parameters

Simcyp default CYP3A4–CYP2C8 correlation Comments

Demographic

CYP phenotype

CYP3A5 EM frequency 0.17 1.00 CYP2C8 EM frequency

Liver

CYP enzyme abundance

CYP2C8 mean (pmol mg–1) 24 24

CYP2C8 CV (%) 81 81

CYP3A4 mean (pmol mg–1) 137 137

CYP3A4 CV (%) 41 41

CYP3A5 mean (pmol mg–1) Predicted Predicted Substituted by CYP2C8

CYP3A5 CV (%) Predicted Predicted Substituted by CYP2C8

Enzyme correlation

Baseline 62.775 0.771 Substituted by CYP3A4-CYP2C8 correlation

Slope 0.3934 0.266

CV (%) 24 47

Gastrointestinal tract

CYP enzyme abundance

CYP3A4 mean (pmol mg–1) 66.2 66.2

CYP3A4 CV (%) 60 60

CYP3A5 mean (pmol mg–1) 24.6 0 Substituted by CYP2C8

CYP3A5 CV (%) 60 0 Substituted by CYP2C8

CV, coefficient of variation
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and presence of pretreatment with 600 mg gemfibrozil
twice daily. The influence of the number of trials on simu-
lation outcome was assessed by incremental increase of
trials from 10 to 100. DDI effects were characterized by
ratios between before and after inhibition for maximum
concentration (Cmax) of repaglinide and the area under
the concentration–time curve (AUC) from administration
to 9 h.

Statistical analyses
Distributions of predicted oral clearance and DDI effects were
compared between virtual individuals assuming no correla-
tion and intercorrelation using the Kolmogorov–Smirnov
test. CV values for each trial were extracted and the median
CV from the sets of virtual trials were used for comparison
of the effect of considering or omitting intercorrelations be-
tween the enzymes.

Table 2
Summary of input parameters used for repaglinide simulations

Simcyp default
CYP3A4–CYP2C8
correlation Comments

Molecular weight (g mol�1) 452.6 452.6

log P 3.98 3.98

Compound type Ampholyte Ampholyte

pKa 4.2, 6.0 4.2, 6.0

Blood/plasma ratio 0.62 0.62

Fraction unbound in plasma 0.023 0.023

Absorption

Model First-order First-order

Fraction absorbed 0.98 0.98

Absorption rate constant (l h�1) 1.6 1.6

Fraction of drug unbound in enterocyte 1 1

Caco-2 permeability (×10�6 cm s�1) 24.1 24.1

Predicted Peff,man (×10�4 cm s�1) 3.89 3.89

Distribution

Model Full PBPK Full PBPK

Vss (l kg
�1) 0.24 0.24

Kp scalar 3.3 3.3

Elimination

HLM, CYP2C8 Km (μM) 2.3 Transferred to parameter for recombinant

HLM, CYP2C8 Vmax (pmol min�1 mg�1) 300.8 Transferred to parameter for recombinant

HLM, CYP3A4 Km (μM) 13.2 Transferred to parameter for recombinant

HLM, CYP3A4 Vmax (pmol min�1 mg�1) 958.2 Transferred to parameter for recombinant

Recombinant, CYP3A4 Km (μM) 13.2 CYP3A4 Km in HLM

Recombinant, CYP3A4 Vmax (pmol min�1 mg�1) 6.99 Calculated from CYP3A4 Vmax in HLM

Recombinant, CYP3A5 Km (μM) 2.3 CYP2C8 Km in HLM

Recombinant, CYP3A5 Vmax (pmol min�1 mg�1) 12.53 Calculated from CYP2C8 Vmax in HLM

CLR (l h�1) 0.013 0.013

Hepatic transport

OATP1B1 CLint,T (μL min�1 million cells�1) 246 246

CLPD (ml min�1 million hepatocytes�1) 0.089 0.089

CLint, T, transporter-mediated intrinsic clearance; CLPD, passive diffusion clearance; CLR, renal clearance; Full PBPK model, full physiologically-based
pharmacokinetic model; HLM, human liver microsomes; Km, Michaelis–Menten constant; Kp, tissue to plasma partition coefficient; Peff,man, human
jejunum permeability; Vmax, maximum rate of metabolism; Vss, volume of distribution at steady state
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Table 3
Summary of input parameters used for model of gemfibrozil and its metabolite, gemfibrozil 1-O-β glucuronide

Gemfibrozil Gemfibrozil 1-O-β glucuronide

Simcyp
default

CYP3A4–CYP2C8
correlation Comments

Simcyp
default

CYP3A4–CYP2C8
correlation Comments

Molecular weight (g mol�1) 250.3 250.3 426.5 426.5

log P 4.29 4.29 2.40 2.40

Compound type Monoprotic
acid

Monoprotic
acid

Monoprotic
acid

Monoprotic
acid

pKa 4.7 4.7 3.1 3.1

Blood/plasma ratio 0.75 0.75 0.75 0.75

Fraction unbound in plasma 0.008 0.008 0.028 0.028

Absorption

Model First-order First-order

Fraction absorbed 1 1

Absorption rate constant (l h�1) 0.81 0.81

Lag time (h) 0.25 0.25

Distribution

Model Full PBPK Full PBPK Minimal
PBPK

Minimal
PBPK

Vss (l kg
�1) 0.083 0.083 0.081 0.081

Elimination

HLM, CYP2C9 CLint (μl min�1 mg�1) 41.2 41.2

Recombinant, UGT2B7 Km (μM) 2.1 2.1

Recombinant, UGT2B7 Vmax

(pmol min�1 mg�1)
353 353

rUGT Scalar – Liver 1.33 1.33

rUGT Scalar – Intestine 0.13 0.13

rUGT Scalar – Kidney 1.27 1.27

CLiv (l h
�1) 5.54 5.54

CLR (l h�1) 0.035 0.035 2.55 2.55

Interactions

CYP1A2 Ki (μM) 79.5 79.5

CYP2C8 Ki (μM) 9.0 Transferred to
CYP3A5

0.8 Transferred to
CYP3A5

CYP2C8 MBI Kapp (μM) 19.0 Transferred to
CYP3A5

CYP2C8 MBI Kinact (μM) 13.0 Transferred to
CYP3A5

CYP2C9 Ki (μM) 5.8 5.8

CYP2C19 Ki (μM) 23.3 23.3

CYP3A4 Ki (μM) 210.2 210.2

CYP3A5 Ki (μM) 9.0 Substituted by
CYP2C8

0.8 Substituted by
CYP2C8

CYP3A5 MBI Kapp (μM) 19.0 Substituted by
CYP2C8

(continues)
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Results

Assessing intercorrelation between hepatic
CYP3A4 and CYP2C8 abundances
The correlation between CYP3A4 and CYP2C8 protein
expression in 24 individual HLMs obtained from Achour
et al. [20] is shown in Figure 1B. Linear regression analysis
indicated a strong correlation between the two enzymes
(R = 0.85; P < 0.0001). The linear model was described as
follows:

CYP2C8 pmol mg–1
� � ¼ 0:771þ 0:266 · CYP3A4 pmol mg–1

� �

The residual variability in CYP2C8 abundance was estimated
to be 47% based on the residual sum of squares (1715) and
mean CYP2C8 abundance of 18.9 pmol mg–1 derived from
the experimental dataset.

Hepatic CYP2C8 and CYP3A4 abundances in
virtual individuals
Hepatic CYP2C8 and CYP3A4 protein contents in a popula-
tion of 100 virtual individuals were generated assuming
either no correlation or correlation between the two enzymes
with CV of 0%, 47% and 100% (Figure 2). Default virtual
individuals assuming no correlation between two enzymes
showed higher CYP2C8/CYP3A4 ratio in virtual individuals
with low CYP3A4 protein content (Figure 2A). Incorporation
of correlation between CYP2C8 and CYP3A4 resulted in a
consistent pattern in CYP2C8/CYP3A4 ratio according to
the assigned residual variability (Figure 2B–D). Hepatic
CYP2C8 and CYP3A4 abundances in virtual individuals
assuming correlation between the two enzymes with residual
variability of 47% (Figure 2C) showed a similar pattern to an
actual correlation between HLM CYP3A4 and CYP2C8
protein expression (Figure 1B).

Prediction of pharmacokinetic parameters of
repaglinide
Predicted pharmacokinetic parameters, systemic clearance,
oral clearance of repaglinide and the fraction of repaglinide
escaping metabolism by the gut (FG) and by the liver (FH),
were predicted in 1000 virtual individuals generated

assuming no correlation and correlation between the
CYP3A4 and CYP2C8 with residual variability of 47%
(Figure 3). Systemic and oral clearance, and FH were affected
by the incorporation of correlation between the CYP3A4
and CYP2C8 within the virtual population, but FG was not.
The influence of CYP3A4–CYP2C8 intercorrelation on oral
clearance was different among three groups classified by he-
patic CYP3A4 abundance in microsomal protein: 5% lower
estimate in low expression (<100 pmol mg–1), 36% higher es-
timate in medium expression (100–199 pmol mg–1), 107%
higher estimate in high expression (≥200 pmol mg–1). CV
of the predicted oral clearance for individuals with low
CYP3A4 expression was greater in the absence of intercorre-
lation than that assuming intercorrelation (74% vs. 48%),
but that for individuals with medium and high expression
showed little or no difference between the two populations
(medium expression, 62% vs. 56%; high expression, 54%
vs. 54%).

Prediction of repaglinide DDI
Simulated plasma repaglinide concentration profiles, after a
single oral dose of 0.25 mg repaglinide without or with pre-
treatment with 600mg gemfibrozil twice daily in 1000 virtual
individuals generated assuming no correlation and correla-
tion between CYP3A4 and CYP2C8, were comparable to ob-
served data from the published clinical trial [19] (Figure 4).
Mean values of the predicted AUC andCmax without andwith
gemfibrozil were within 1.5-fold of the observed values (AUC:
no correlation, 7.1 vs. 35.0 ng h�1 ml�1; intercorrelation, 6.0
vs. 27.7 ng h�1 ml�1; observed, 4.8 vs. 29.3 ng h�1 ml�1, and
Cmax: no correlation, 3.4 vs. 7.3 ng ml�1; intercorrelation, 3.0
vs. 6.5 ng ml�1; observed, 3.7 vs. 8.1 ng ml�1) [19]. Median
CVs of the predicted AUC and Cmax without and with gemfi-
brozil were similar between no correlation and intercorrela-
tion scenarios (without gemfibrozil: AUC, 53.3% and
50.7%; Cmax, 35.7% and 36.9%, and with gemfibrozil: AUC,
31.1% and 35.8%; Cmax, 21.0% and 22.7%), but were lower
than the observed values (without gemfibrozil: AUC, 89.8%;
Cmax, 71.3%, and with gemfibrozil: AUC, 26.3%; Cmax,
39.7%) [19]. Figure 5 shows the predicted AUC and Cmax ra-
tios (DDI/control) of repaglinide for 100 trials in 10 virtual in-
dividuals generated assuming no correlation and in the
presence of correlation between hepatic CYP3A4 and

Table 3
(Continued)

Gemfibrozil Gemfibrozil 1-O-β glucuronide

Simcyp
default

CYP3A4–CYP2C8
correlation Comments

Simcyp
default

CYP3A4–CYP2C8
correlation Comments

CYP3A5 MBI Kinact (μM) 13.0 Substituted by
CYP2C8

UGT1A1 Ki (μM) 276.2 276.2 276.2 276.2

OATP1B1 Ki (μM) 0.01 0.01 0.01 0.01

CLint, intrinsic clearance; CLiv, in vivo intravenous clearance; CLR, renal clearance; PBPK, physiologically-based pharmacokinetic model; HLM, human
liver microsomes; Kapp, concentration of mechanism-based inhibitor associated with half maximal inactivation rate; Ki, concentration of inhibitor that
supports half maximal inhibition; Kinact, inactivation rate of the enzyme; Km, Michaelis–Menten constant; Vmax, maximum rate of metabolism; Vss,
volume of distribution at steady state
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CYP2C8, compared with reported clinical data (observed
AUC ratio: mean, 6.1; range, 2.6–12, and Cmax ratio:
mean, 2.2; range, 1.4–2.9) [19]. Median values of predicted
AUC ratio were similar between virtual populations

assuming no correlation and in the presence of intercorrela-
tion (4.72 vs. 4.42), but the 5th and 95th percentiles were dif-
ferent between the two virtual populations (2.48–11.29 vs.
2.49–9.69). The range of predicted AUC ratio from minimum
to maximum was larger for virtual populations assuming no
correlation than that for those assuming intercorrelation
(1.55–77.06 vs. 1.79–25.15). Predicted AUC ratios at higher
than the maximum observed in clinical data (12-fold) [19]
were observed in 39 and 21 virtual individuals from simula-
tions without and with the intercorrelation, respectively.
Median values and 5th and 95th percentiles of predicted
Cmax ratio were almost the same between virtual popula-
tions assuming no correlation and those with the intercor-
relation (median, 2.05 vs. 2.02; 5th and 95th percentiles,
1.46–3.72 vs. 1.45–3.69). However, the range of predicted
Cmax ratio from minimum to maximum was larger for
virtual populations assuming no correlation than for
populations with the intercorrelation (1.18–15.15 vs.
1.26–6.98). Predicted Cmax ratios of more than the maxi-
mum observed in clinical data (2.9-fold) [19] were gener-
ated in 145 and 137 virtual individuals without and with
the intercorrelation, respectively.

Cumulative distribution plots for predicted oral clear-
ance, AUC ratio, and Cmax ratio are shown for 1000 virtual in-
dividuals generated assuming no correlation and correlation
between hepatic CYP3A4 and CYP2C8 (Figure 6). Individual
values for CYP3A4–CYP2C8 correlation were normalized by
the corresponding mean values for no correlation. Distribu-
tions for predicted AUC ratio were unequal between virtual
individuals generated assuming no correlation and intercor-
relation (P = 0.026), but those for oral clearance and Cmax

were not significantly different (P = 0.40 and P = 0.18, respec-
tively). The frequency distributions were wider for predicted
oral clearance and tighter for AUC ratio and Cmax ratio in
the virtual population assuming CYP3A4–CYP2C8 correla-
tion than in the absence of intercorrelation. Extreme values
were seen in both ends (1–5% and 95–99%) of the cumulative
distribution for the predicted AUC ratio in the absence of in-
tercorrelation (Figures 6E and 6H).

Interindividual variability in clearance and
DDI of repaglinide
CVs of oral clearance and predicted DDI (AUC ratio and
Cmax ratio) in 10 to 100 trials were compared between vir-
tual populations generated assuming no correlation and cor-
relation between CYP3A4 and CYP2C8 (Figure 7). Median
CV of oral clearance in the 10 trials was 43.2% in the ab-
sence of intercorrelation between enzymes and 49.3% when
CYP3A4–CYP2C8 abundances were considered to be
intercorrelated. This difference in the median CV of oral
clearance became smaller in the 100 trials (52.5% vs.
54.2%). In contrast, median CV of AUC ratio in the 100
trials was reduced from 46.0% in the absence of intercorrela-
tion between the two enzymes to 43.8% when the intercor-
relation was incorporated into the virtual population, with
the exception of opposite results seen in the minimum
number of trials (the 10 trials). Median CV of predicted Cmax

ratio was almost the same between virtual populations as-
suming no correlation and intercorrelation regardless of
numbers of trials.

Figure 2
Hepatic CYP2C8 and CYP3A4 protein contents in a population of
100 virtual individuals generated assuming no correlation (A) and
correlation between the two enzymes with coefficient of variation
(CV) of 0% (B), 47% (C) and 100% (D). Correlation plots for CYP3A4
abundance and CYP2C8/CYP3A4 ratio are shown in the insets
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Discussion
This report constitutes a proof-of-principle study to highlight
the importance of intercorrelation between the hepatic
amounts of two drug-metabolizing enzymes in the prediction
of interindividual variabilities in drug clearance and DDIs.
The present study demonstrates, for the first time, that
population-based PBPK modelling incorporating such inter-
correlation led to more consistent estimation of extreme
values than those observed in interindividual variability of
drug clearance and DDI. It should be the norm, rather than
the exception, to consider this information when using
population-based PBPK models. Otherwise, a PBPK model
that does not accurately consider the intercorrelation runs
the risk of generating implausible combinations of physio-
logical parameters. Furthermore, a more realistic prediction
of interindividual variability of drug clearance may help to
more accurately estimate the theoretically conceivable
extreme risks of DDIs. This has clear implications for drug
development and clinical drug use. A large interindividual
variability in DDIs usually warrants additional caution in
recommendation of dose adjustment, even if the average
effect of DDI is tolerable based on the safety margin of the
substrate drug. Therefore, incorporation of such correlation
into a PBPK model should be considered in investigating the
DDI risk and is likely to be particularly important for

prediction of the clinical consequences of the DDI in individ-
ual patients.

A virtual population assuming intercorrelation between
CYP3A4 and CYP2C8 was developed based on actual data
on HLM enzyme abundance. The abundances of hepatic
CYP2C8 and CYP3A4 were compared between virtual indi-
viduals generated assuming no correlation and correlation
between two enzymes (Figure 2). Simcyp generates individual
values of CYP2C8 abundance independently based on popu-
lation mean and CV by default. Therefore, default virtual in-
dividuals with high and low CYP3A4 protein content can be
accompanied by underestimated and overestimated values
of CYP2C8 abundance, respectively. Although the interindi-
vidual variability of CYP2C8 and CYP3A4 protein expression
in liver is high, the protein expression is correlated between
the two enzymes [12, 20]. Virtual individuals assuming corre-
lation between the two enzymes with residual variability of
47%, which was estimated from linear regression analysis
using hepatic CYP3A4 and CYP2C8 abundance data, were
more reflective of an actual correlation between HLM
CYP3A4 and CYP2C8 protein expression than those with re-
sidual variability of 0% and 100% (Figure 2B–C). These find-
ings indicate that incorporation of an appropriate CV
describing residual variability in CYP2C8 protein expression
is important to generate virtual individuals assuming inter-
correlation between two enzymes. The HLM sample of the

Figure 3
Influence of correlation between hepatic CYP3A4 and CYP2C8 on the prediction of systemic clearance (A), oral clearance (B) of repaglinide, and
the fraction of repaglinide escaping metabolism by the gut (FG) (C) and by the liver (FH) (D). Low, medium and high hepatic CYP3A4 expression
relate to abundances of <100, 100–199 and ≥200 pmol mg–1 in microsomal protein, respectively. Blue and red boxes represent simulation of in-
dividuals assuming no correlation and correlation between CYP3A4 and CYP2C8, respectively. Closed circles indicate outliers that are beyond the
quartiles by one-and-a-half interquartile range
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individual with the highest CYP2C8 and CYP3A4 abundance
(Figure 1A) may be derived from a CYP2C8 extensive
metabolizer, such as individuals with CYP2C8*1/*3 geno-
type, who show a high metabolic clearance of repaglinide
[27]. However, CYP2C8 genotypes were unknown for the
HLM samples used in this analysis.

The PBPKmodel assuming CYP3A4–CYP2C8 intercorrela-
tion predicted the pharmacokinetic parameters of repaglini-
de, which is metabolized by CYP2C8 and CYP3A4. As
expected, the individuals at the extreme ends of CYP3A4
abundance showed similar trends in the assigned CYP2C8
abundances reported for the population in the simulation
outcome (Figure 2C). The CYP2C8-mediated pathway
displays high clearance under the assumption of intercorrela-
tion when the CYP3A4-mediated pathway shows high
clearance, and consequently the overall clearance becomes a
higher value. The incorporation of the intercorrelation into
a PBPKmodel produced a greater median CV of oral clearance
in the 10 trials of 10 virtual individuals than that in the
default virtual individuals (Figure 7A). However, the

difference in the median CV of oral clearance became small
when the number of trials was increased. This does not mean
that the increased number of trials in the default virtual pop-
ulation provided interindividual variability of oral clearance
similar to the virtual population assuming intercorrelation.
These findings suggested that the increased number of trials
led to increase in the risk of physiologically implausible as-
signment of higher CYP2C8 abundance in the default virtual
individuals with low hepatic CYP3A4 expression, resulting in
implausible contribution of CYP2C8-mediatated metabolism
to oral clearance. Oral clearance was slightly higher in virtual
individuals assuming intercorrelation than in the default in-
dividuals (Figure 3B). This may be associated with the im-
provement in simulated plasma concentration profiles of
repaglinide when considering the intercorrelation (Figure 4B
and 4D). These findings imply that a PBPK model ignoring a
significant positive correlation between two enzymes under-
estimates the interindividual variability of oral clearance.
These results are consistent with a previous report showing
that a PBPK incorporating CYP3A4–CYP3A5 intercorrelation

Figure 4
Simulated and observed plasma repaglinide concentration profiles after a single oral dose of 0.25 mg repaglinide without (A and B) and with pre-
treatment (C and D) of 600 mg gemfibrozil twice daily in virtual individuals generated assuming no correlation and correlation between CYP3A4
and CYP2C8. Simulations are presented as mean of all 10 trials (black solid lines) and 5th and 95th percentiles (grey areas). Observed data ex-
tracted from the literature [19] are presented as mean (closed circles) and standard deviation (error bars)
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predicted more physiologically realistic estimates of popula-
tion drug clearance and aided in the identification of extreme
individuals [13].

Previous studies have demonstrated that a repaglinide
PBPK model was useful to quantitatively predict several
repaglinide DDIs, including the complex interaction with

Figure 5
Predicted AUC ratio and Cmax ratio (DDI/control) of repaglinide for 100 trials in 10 virtual individuals generated assuming no correlation (A and C)
and correlation between hepatic CYP3A4 and CYP2C8 (B and D). Open and closed circles indicate simulated median (range) in each trial, and
observed mean (range) extracted from the literature [19], respectively. Dashed and dotted lines represent median and 5th/95th percentiles of
total simulated population, respectively
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gemfibrozil [28–30]. However, these PBPK approaches
focused on the prediction of average DDI effects. Here, we
examined the difference in the outcome of DDI prediction
using a repaglinide PBPK model between virtual populations
assuming and ignoring CYP3A4–CYP2C8 intercorrelation.
Even though the average DDI effect was comparable between
the two virtual populations, the interindividual variability of
DDI effect could be more reflective of realistic CYP2C8
abundance in a virtual population assuming the intercorrela-
tion (Figure 5). The DDI simulation in a virtual population
assuming intercorrelation also provided a smaller maximum
DDI effect than that in a virtual population ignoring the

correlation. Ignoring a CYP3A4–CYP2C8 intercorrelation
produced higher CYP2C8/CYP3A4 ratios in virtual individ-
uals with low CYP3A4 protein (Figure 2A). High CYP2C8/
CYP3A4 ratios correspond to a larger contribution of
CYP2C8-mediated pathway to repaglinide metabolism,
resulting in high sensitivity to inhibition of CYP2C8. These
findings suggest that the default model ignoring intercorrela-
tion may overestimate the maximum DDI effect. PBPK simu-
lation assuming intercorrelation between drug-metabolizing
enzymes may be an important approach to predict the theo-
retically conceivable extreme effects of DDI. These simula-
tions based on DDI with gemfibrozil do not account for the

Figure 6
Cumulative distribution plots for predicted oral clearance (CLoral), AUC ratio and Cmax ratio (DDI/control) of repaglinide for 1000 virtual individ-
uals generated assuming no correlation (dotted blue lines) and correlation (solid red lines) between hepatic CYP3A4 and CYP2C8. Predicted
values for CYP3A4–CYP2C8 correlation were normalized by the correspondingmean values for no correlation. Cumulative distributions are shown
as central tendency (5–95%; A, B, C), lower end (1–5%; D, E, F), and upper end (95–99%; G, H, I) in frequency distribution. Solid black lines rep-
resent cumulative distribution for observed oral clearance, AUC ratio and Cmax ratio which were normalized by the corresponding median values
for no correlation [19]
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impact of CYP3A4 inhibition on the intercorrelation be-
cause gemfibrozil is only an inhibitor of CYP2C8 and
OATP1B1. This effect can be explored using other dual
CYP3A4/CYP2C8 substrates, such as montelukast, pioglita-
zone and paclitaxel.

Theoretically conceivable interindividual variability in
DDI effect under various assumptions regarding the intercor-
relations was investigated and compared with clinical
observations [19]. CV of predicted DDI (as measured by
AUC ratio) was reduced from 46.0% in the absence of inter-
correlation between enzymes to 43.8% when the intercorre-
lation was incorporated into the virtual population (Figure 7).
These CVs were associated with 5th and 95th percentiles of
predicted DDI (2.48–11.29 vs. 2.49–9.69) (Figure 5). Distribu-
tions of the predicted AUC ratio were statistically different
in populations of 1000 virtual individuals generated
assuming no correlation and intercorrelation. The range of
predicted DDI was larger in the absence of intercorrelation
(1.55–77.06) than when incorporating intercorrelation
(1.79–25.15), which was closer to clinical observations
(2.6–12). Predicted DDI at more than 12-fold in AUC ratio,
which is the maximum observed in the clinical study [19],
was more frequent in the absence of intercorrelation. Some
of the extreme values might be an artefact of the model
leading to virtual individuals who do not exist in real popu-
lations, though this finding cannot be confirmed unless a
larger study is performed. This may be supported by other
clinical observations that the maximum of AUC0–∞ ratio
after pretreatment with 600 mg of gemfibrozil twice daily
is 15-fold even when including other clinical trial designs
[18, 19, 31]. Prediction of DDIs using PBPK models is usually
simulated in 10 (or 20) virtual trials which are used as an
indication of consistency between the model and
observed data rather than what the model can offer. The
lower CVs for predicted DDI considering the intercorrela-
tion were not changed by the increased number of trials
except for the opposite results in the minimum number
of trials (the 10 trials) (Figure 7B). This result suggests that
accurate prediction of interindividual variability in DDIs is
achieved by the incorporation of the intercorrelation into
a PBPK model rather than the increase in the number of
virtual trials.

PBPK modelling started out along the line of naïve
pooled average predictions, mainly because of computa-
tional limitations [32]. Precise prediction aiming to individ-
ualize dosing is becoming more important [1], and crucially
requires the ability to accurately describe interindividual
variability within PBPK modelling. Considering interindi-
vidual variability, a standard deviation is more informative
than just an average, and a probability distribution is even
more informative [33]. Accurate prediction of interindivid-
ual variability is an important challenge that PBPK model-
ling needs to address to expand into new areas of
application, such as precision dosing and virtual bioequiva-
lence [1, 33], but it requires proteomic data of sufficient
quality [11]. Data used in the present analysis of intercorre-
lation and variability of hepatic CYP3A4 and CYP2C8
abundances were comparable to published meta-analysis
data (n = 134) [12] (Spearman correlation, 0.62 vs. 0.68; CV
for CYP3A4, 77% vs. 81%; CV for CYP2C8, 87% vs. 68%)
[12, 20]. The influence of the regression parameter
estimates for intercorrelation on the predicted clearance
and DDI of repaglinide was confirmed using a regression
model produced by excluding the data point with the
highest value for CYP3A4. Although the regression parame-
ter under exclusion of the single extreme values for high

Figure 7
Coefficients of variation (CVs) in predicted oral clearance (CLoral),
AUC ratio and Cmax ratio (DDI/control) of repaglinide for 10 to 100
trials in 10 virtual individuals generated assuming no correlation
(dotted blue line and circles) and correlation between hepatic
CYP3A4 and CYP2C8 (solid red line and circles)
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abundance of enzymes resulted in slightly different values of
predicted oral clearance, they had a modest effect on
predicted interindividual variabilities in oral clearance,
AUC ratio and Cmax ratio. The present study does not rule
out other unidentified factors for accurate prediction of
interindividual variability in drug clearance and DDIs,
though it demonstrates the importance of hepatic enzymes
intercorrelations.

Many drugs are metabolized by more than one
drug-metabolizing enzyme, such as CYP and uridine
50-diphospho-glucuronosyltransferase (UGT) enzymes. Up-
take and efflux transporters also mediate drug disposition
through controlling membrane transport, such as absorption
in the small intestine, uptake into hepatocytes and renal se-
cretion. Therefore, knowledge of the protein expression of
drug-metabolizing enzymes and drug transporters is impor-
tant in predicting drug clearance and DDIs in more realistic
virtual populations. Statistically significant positive correla-
tions can be found in enzyme abundance between not only
CYP enzymes, but also between UGT enzymes and across
CYP and UGT families [20]. However, there is insufficient
data in the literature about intercorrelation between drug-
metabolizing enzymes and drug transporters and their ef-
fects. Therefore, it is unknown whether drug-metabolizing
enzymes correlate with OATP1B1, which is known to contrib-
ute to the disposition of repaglinide. Construction of com-
prehensive network information for intercorrelation
between pharmacokinetics-related proteins is expected to
generate more realistic virtual populations. The current ver-
sion of the Simcyp Simulator provides an enzyme intercorre-
lation module based on a simple regression analysis.
Regression analysis using centring may be adopted in future
studies because it would be useful to infer biological interpre-
tations for the intercept of the regression equation in relation
to mean abundance.

In conclusion, incorporation of intercorrelation between
the hepatic amounts of two drug-metabolizing enzymes into
a PBPK model could more accurately predict interindividual
variabilities of drug clearance and DDI, corresponding to
protein abundance generated assuming a significant positive
correlation between two enzymes in the liver. It is suggested
that DDI studies using virtual populations assuming inter-
correlation can help to estimate theoretically conceivable
extreme risk of DDIs. PBPK modelling and simulation
should be focused on improvement in prediction of not
only average values but also interindividual variability of
DDI effect. A middle-out approach to PBPK modelling is
used extensively with parameter estimation in order to
provide a reasonable characterization of clinical pharmaco-
kinetic data [34]. Without accurately considering intercorre-
lation, the estimated parameter variability would not be
reflective of ‘true’ variability. This produces an increased risk
of inaccurate prediction in other scenarios (e.g. DDIs) when
perturbing the model, except when simply fitting PBPK
models to observed clinical data. As the intercorrelations
more realistically reflect enzyme abundances, virtual popu-
lation studies involving PBPK and DDI should avoid using
Monte Carlo assignment of enzyme abundance indepen-
dently, when robust information on correlation exists. In
the absence of information on intercorrelation of the
enzyme abundance, implications of potential correlation

for predicted variability should be borne in mind, where
the potential impact can be evaluated as per the approach
described herein.
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