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Cardiovascular profiles in African Americans and European Americans

African Americans (AfAms) and European Americans (EuAms) display differences in 

cardiovascular risk factors and mortality from cardiovascular disease (CVD). AfAms show a 

higher prevalence than EuAms in most cardiovascular risk factors1. These include high 

blood pressure1–3, left ventricular hypertrophy1, obesity1 and type 2 diabetes mellitus1,4. 

National US epidemiological data indicate that dyslipidemia is less prevalent in AfAms than 

EuAms1. However, based on the Multi-Ethnic Study of Atherosclerosis (MESA), AfAms 

and EuAms have a similar prevalence of dyslipidemia, which is less controlled in AfAms5. 

Other studies also found lower rates of cholesterol testing, dyslipidemia awareness, 

treatment, and therapeutic goal attainments among AfAms than EuAms6,7. In some of these 

studies, ethnic disparities were attenuated by adjustment for social factors and healthcare 

access5, while in other studies they were not7. Notably, compared with EuAms and 

Mexican-Americans, AfAms displayed a higher risk of having one or two of the three major 

cardiovascular risk factors, i.e., diabetes, dyslipidemia and hypertension; compared with 

EuAms, AfAms were also more likely to have all three conditions8. While these ethnic 

differences might account for the higher CVD mortality in AfAms than EuAms9,10, the 

ethnic differences cannot explain consistent observations of less atherosclerosis in the form 

of plaques, arterial calcifications and occluded coronary arteries in AfAms than in EuAms 

(Table 1)1,11–13. This applies to individuals without or with similar cardiovascular risk 

factors.12–18.
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Key Tenet

Here we propose that longer telomeres in AfAms than EuAms19–21 may attenuate the 

atherosclerotic risk in AfAms and explain in part the mortality cross-over between elderly 

AfAms and EuAms. First, however, we provide a brief background on the biology, 

epidemiology and evolution of telomeres.

Telomere length dynamics

Comprising TTAGGG tandem repeats and their telomere-binding protein complex 

(shelterin), mammalian telomeres safeguard the ends of the chromosomes22. As somatic 

cells divide, their telomeres undergo progressive shortening, a process that ultimately leads 

to cessation of replication, i.e., replicative senescence23. In humans, embryonic stem cells 

express the enzyme telomerase, a reverse transcriptase that adds telomere repeats to the ends 

of the chromosomes, thereby preventing telomere shortening during early intra-uterine 

life24. However, as telomerase is repressed in somatic tissues during extra-uterine life, age-

dependent telomere shortening in these tissues largely reflects the replicative histories of 

stem cells/progenitor cells on top of the somatic cell hierarchy25. In this way, TL in skeletal 

muscle, a minimally proliferative tissue, is longer than TL in leukocytes, which represent the 

highly proliferative hematopoietic system26. Moreover, to accommodate the demands of the 

growing soma, stem cell/progenitor cell replication is much faster during growth and 

development. Therefore, the rate of telomere shortening is much faster in childhood than 

during adulthood26,27.

Most epidemiological studies have used leukocyte TL (LTL) as a proxy for TL in other 

somatic tissues, given that TL is ‘proportional’ across somatic tissues within the individual, 

i.e., a person with short (or long) TL in one somatic tissue has short (or long) TL in other 

somatic tissues26, regardless of the replicative history of these tissues. This is because at 

birth and throughout the life course the variation in TL, which is highly heritable28, across 

individuals is much wider than TL variation across somatic tissues within the individual.

Telomere length evolution across mammals

Why is TL in humans as long as it is? Moreover, is this length arbitrary or is it determined 

by evolutionary principles? TL is short and telomerase activity in somatic tissues is 

repressed in long-lived, large mammals compared with short-lived, small mammals29. One 

potential explanation for these findings is that short telomeres and repressed telomerase 

diminish cancer risk by curtailing replicative potential25,30,31. The trade-off might be 

diminished tissue repair through cell replication and therefore increased propensity to 

degenerative diseases. Thus, across long-lived, large mammals, telomeres might converge to 

an optimal length that strikes a balance between cancer and degenerative diseases during the 

life course of animals from a given species.

TL is short in humans compared to most mammals29. Still, TL variance across the general 

population is considerable, amounting to 3–4 kilobases (kb)27,32. Detrimental mutations in 

telomere maintenance genes can result in specific diseases that are the outcome of extremely 

short TL29, but these diseases are relatively rare. The question then is whether in the general 
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population, individuals with constitutively short telomeres have a higher risk for 

degenerative diseases. This might be the case for atherosclerosis, which is perhaps the main 

degenerative disease that afflicts contemporary humans.

Telomere length and atherosclerosis

Two meta-analyses concluded that short LTL is associated with CVD, based on data from 

individuals of principally European ancestry33,34. In general, short LTL is associated with 

arterial aging, as expressed in arterial stiffness35, coronary artery calcifications36,37, and 

severity of atherosclerotic plaques in the coronary arteries38,39 and the carotid arteries40–43.

What might be the explanation for these associations? For years, the dominant thinking in 

telomere epidemiology has been that LTL is a passive biomarker of the cumulative burden of 

inflammation and oxidative stress during adult life. Thus, individuals with a higher burden 

of inflammation and oxidative stress, including obese individuals, smokers, patients with 

diabetes and those with atherosclerotic CVD, were presumed to have a faster age-dependent 

LTL shortening during adult life44.

However, the variation in LTL across adults of the same age are largely the outcome of the 

inter-individual variation in LTL during the first two decades of life27,32 rather than inter-

individual variation in the rate of LTL attrition during adulthood45. Thus, short LTL might 

precede by several decades the manifestations of atherosclerotic CVD and related metabolic 

risks46,47. For instance, short LTL is observed long before the onset of carotid lesions and 

predicts their progression over time40. Short LTL also precedes the clinical manifestation of 

insulin resistance47,48. Moreover, not only short LTL, but also single nucleotide 

polymorphisms (SNPs) associated with short LTL39,49 are associated with increased 

propensity for atherosclerotic CVD. These findings principally exclude reverse causality. 

i.e., atherosclerotic CVD engenders short LTL, supporting the thesis that short LTL 

antecedes the clinical manifestations of atherosclerotic CVD.

Longer leukocyte telomere length in individuals of recent African ancestry 

than in individuals of recent European ancestry

In light of the short LTL-CVD association, it is noteworthy that compared with EuAms, 

AfAms display not only a longer LTL19–21,50, but also a higher prevalence than EuAMs of 

SNPs associated with a longer TL51. Although the underlying reasons are not well 

understood, findings that LTL of sub-Saharan Africans is even longer than that of AfAms 

suggest that the northbound migration from equatorial Africa might have resulted in TL 

shortening in Europeans20. One potential cause of telomere shortening in Europeans might 

be melanoma. Previous investigators had excluded melanoma as an evolutionary force52. 

However, given that not only longer LTL but also alleles associated with longer LTL are 

over-represented in patients with melanoma53,54, without evolutionary-driven telomere 

shortening, whites of European ancestry would have been more susceptible to melanoma 

than they are at present20.
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Telomere length and “mortality crossover” between AfAms and EuAms

Overall, AfAms have a shorter life expectancy than EuAms. However, after the age of 80, 

AfAms display a longer life expectancy than EuAms– a phenomenon referred to as the 

“mortality crossover”55,56. Corti et al.55 reported that after the age of 80 AfAms had a 25% 

lower risk of all-cause mortality than EuAms, a difference that was attributed to a 55% lower 

atherosclerotic coronary heart disease mortality in AfAms. Other studies suggested that 

socio-economic status and other environmental factors explain the mortality crossover 

between AfAms and EuAms56,57. However, in most of these studies the mortality crossover 

remained significant after adjustments for environmental factors55. Thus, the mortality 

crossover might be related to different trajectories of coronary heart disease, which could be 

partially explained by the longer LTL in AfAms vs. EuAms.

Conclusions and perspectives

Since the inception of the discipline of telomere epidemiology, LTL has been regarded as a 

passive “biomarker” of aging and atherosclerotic CVD. However, an emerging body of 

research points to an active role of TL in atherosclerosis, which is reason enough to seek 

further insights into the potential role of TL in the different propensities of AfAms and 

EuAms to atherosclerotic CVD. The longer LTL in AfAms than EuAms might partially 

explain the less susceptibility of AfAms than EuAms to atherosclerosis and their longer life 

expectancy after the age of eighty years. Perhaps, the first step towards gaining further 

insight into these intriguing ethnic differences is to perform large-scale genome-wide 

association studies of LTL in multiple ethnic groups. Identifying new LTL- associated SNPs 

might help construct a comprehensive genetic map leading to mechanistic insights into the 

role of TL, as expressed in LTL, in a host of human diseases..
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