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Abstract

Background—Snoring has been shown to be associated with adverse physical and mental 

health, independent of the effects of sleep disordered breathing. Despite increasing evidence for 

the risks of snoring, few studies on sleep and health include objective measures of snoring. One 

reason for this methodological limitation is the difficulty of quantifying snoring. Conventional 

methods may rely on manual scoring of snore events by trained human scorers, but this process is 

both time- and labor-intensive, making the measurement of objective snoring impractical for large 

or multi-night studies.

Methods—The current study is a proof-of-concept to validate the use of support vector machines 

(SVM), a form of machine learning, for the automated scoring of an objective snoring signal. An 

SVM algorithm was trained and tested on a set of approximately 150,000 snoring and non-snoring 

data segments, and F-scores for SVM performance compared to visual scoring performance were 

calculated using the Wilcoxon signed rank test for paired data.

Results—The ability of the SVM algorithm to discriminate snore from non-snore segments of 

data did not differ statistically from visual scorer performance (SVM F-score=82.46 ± 7.93 versus 
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average visual F-score=88.35 ± 4.61, p=0.2786), supporting SVM snore classification ability 

comparable to visual scorers.

Conclusion—In this proof-of-concept, we established that the SVM algorithm performs 

comparably to trained visual scorers, supporting the use of SVM for automated snoring detection 

in future studies.
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Introduction

Snoring is one of the most commonly reported sleep complaints among adults, with 

prevalence rates approaching 50% for men and 30% for women during middle age [1, 2]. 

Snoring impacts both physical and mental health. Compared to non-snorers, self-reported 

snorers endorse greater daytime sleepiness, elevated depressive and anxiety symptoms, and 

poorer quality of life [3–5]. Self-reported snoring frequency has also been associated with 

increased risk for cardiovascular and cardiometabolic outcomes, including markers of 

preclinical risk, such as altered baroreflex sensitivity [6] and autonomic function [7–9], and 

myocardial infarction [10], stroke [11], ischemic cerebral infarction [12], and the metabolic 

syndrome [13]. However, the few studies that have directly compared subjective and 

objective snoring found no significant correlation between the two measures [14–16], 

suggesting that self-reported snoring may be a proxy for another construct, such as sleep 

disordered breathing. To date, however, few studies have examined whether objective 

measures of snoring are associated with adverse health outcomes. One recent study reported 

that objectively-assessed heavy snoring is associated with increased carotid plaque 

prevalence, independent of sleep disordered breathing [17]. Converging evidence suggests 

that simple snoring, or snoring that occurs in the absence of sleep apnea, may be an 

independent risk factor for daytime impairments, as well as adverse health outcomes [17–

19]. More studies are needed to better understand the impact of simple snoring, measured 

objectively, on health. In addition, research is needed to better understand the effects of 

louder, “heavier”, or more frequent snoring on health, in light of Hedner and colleagues’ 

[20] model of snoring-induced oscillatory pressure waves, which suggests that the vibrations 

caused by snoring travel through nearby tissues, triggering endothelial damage and 

inflammatory responses in these tissues. As a result, it may be critical to not only quantify 

presence or absence of snoring, but the intensity and frequency of snoring as well.

One of the largest barriers to conducting such studies is the fact that there is currently no 

established definition of snoring [21], nor does a gold standard for the objective 

measurement or scoring of snoring exist. Snoring is typically measured with microphones or 

piezoelectric sensors [15]. The resulting snore signals are most often analyzed by visual 

scoring, spectral analysis, or acoustic analysis [22]. Visual scoring relies on a priori 
parameters to identify snore events. Parameters include amplitude, duration, number of 

events per breath, and co-occurrence with other respiratory signals. This visual scoring 

method allows for the integration of information from multiple polysomnographic channels, 
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as well as a moment-to-moment assessment of each candidate event against the scoring 

parameters, similar to the visual scoring methodology for apneic and hypopneic events.

While the use of visual scoring criteria addresses many of the limitations of self-reported 

snoring, it is time-consuming and inefficient, requiring careful, epoch-by-epoch analyses of 

entire nights of PSG-recorded sleep. In addition, assessment of reliability across scorers 

poses significant time and cost burden to researchers and clinicians. We hypothesized that 

machine learning algorithms, such as support vector machines (SVMs), can be used to 

identify unique characteristics of snore events. These characteristics, known as features, can 

then be used to automate the identification of snoring events in a reliable, efficient, and cost 

effective manner. The machine learning approach offers several advantages over visual 

scoring or automated proprietary software scoring of snore events. First, machine learning 

algorithms are trained to learn from experience, allowing for flexibility in classification, and 

they generate person-specific or group-specific models. In addition, if machine learning 

algorithms prove to be useful in the classification of snoring events, future algorithms could 

be developed to quantify the intensity or duration of snoring events as well. Second, machine 

learning features are obtained from characteristics of the snoring signals, including 

amplitude variations in the time and frequency domains of the signal; this allows for greater 

precision in scoring compared to the threshold-based identification of visual scoring. Third, 

machine learning allows for automated discrimination of snore events from artifact, 

including background noise and non-snore sounds. Fourth, the machine learning method can 

be used efficiently with larger sample sizes or multiple sleep nights per participant. Finally, 

the machine learning method is completely transparent, allowing researchers to know the 

precise features of the signal that are used to identify snore events, a unique advantage over 

the “black box” scoring algorithms of commonly-used proprietary software packages.

The present study is a proof-of-concept for the application of machine learning methods for 

objectively-assessed snore scoring. The aim of this study was to compare the performance of 

SVMs to visual scoring for the detection of objective snore events in one night of overnight 

polysomnography (PSG) in a small sample of midlife women.

Methods

Participants

Data were drawn from a larger, community-based cohort of women who participated in the 

Study of Women’s Health Across the Nation (SWAN) Sleep I Study, a cross-sectional 

examination of sleep in midlife women. Details about the study design and sample 

population have been described elsewhere [23,24]. Briefly, this cohort included community-

based women in the menopausal transition; women were not selected on the basis of snoring 

or apneic status. Exclusion criteria for our proof-of-concept study were current menopausal 

hormone replacement therapy (HRT) use; current chemotherapy or radiation; regular 

shiftwork; current oral corticosteroid use; current use of medications affecting sleep; and 

missing or unusable snore channel data. All participants provided written informed consent. 

Eight participants from the SWAN Sleep I Study were selected for inclusion in the present 

proof-of-concept study on the basis of four characteristics known to be associated with 

snoring prevalence: race (n=4 Caucasian participants; n=4 African American participants), 
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body mass index (BMI; n=3 non-obese and n=4 obese participants), presence or absence of 

sleep disordered breathing as defined by participants’ apnea-hypopnea indices (AHI; n=4 

with AHI <5 and n=4 with ≥5), and self-reported weekly snoring frequency (n=2 reported 

“Never” snoring, n=2 reported “Infrequent” or <3 nights per week snoring, n=3 reported 

“Frequent” or ≥3 nights per week snoring, and n=1 reported “Don’t Know”). Where 

possible, we aimed to have balance cell sizes within groups for each characteristic. Given the 

aim of the present study, to test whether a machine learning algorithm can perform 

comparably to visual scorers for snoring identification, we believed it to be important to test 

both visual scorers and the support vector machine algorithm on varying degrees of snoring 

presentation. To do so, we first identified participants with various combinations of these 

four characteristics in the larger study cohort; from these lists, we then selected at random 

eight individuals meeting permutations of these characteristics for inclusion in this proof-of-

concept study (see Table 1). In order to maximize the amount of snore and non-snore data 

for training and testing the algorithm, we divided each participant’s objective sleep 

recording into segments of approximately 200 samples at a sampling rate of 64 Hz, resulting 

in an average of 18,000 data segments without snoring and 200 data segments with snoring 

for each participant. The SVM model was, therefore, tested on a total of approximately 

150,000 segments generated by the study sample of 8 participants.

Measures

Sociodemographic information including age and self-identified race/ethnicity (Black or 

African American and non-Hispanic White) were obtained by self-report at the beginning of 

the SWAN Sleep I Study. Menstrual bleeding patterns were used to characterize menopausal 

status (premenopause/early perimenopause, late perimenopause, and postmenopause/

surgical menopause) according to World Health Organization criteria [25]. Body mass index 

(BMI, kg/m2) was calculated using height and weight collected at the SWAN visit closest to 

the participant’s sleep study. Health behavior variables, including caffeine, alcohol, and 

cigarette use, use of medications affecting sleep, and physical activity data, were drawn from 

sleep diaries (Pittsburgh Sleep Diary) [26] completed over a period of 14 to 35 days, 

depending on participants’ menstrual cycle length, and averaged across all days of the study.

In-home polysomnographic assessment of sleep disordered breathing, including snoring 

measures, were conducted on one night using Vitaport-3 (TEMEC VP3) ambulatory 

monitors. Polysomnography signals included bilateral central referential EEG channels (C3 

and C4, referenced to linked A1–A2), submentalis electromyogram (EMG), 

electrooculogram (EOG), electrocardiogram (EKG), nasal pressure cannula, oral-nasal 

thermistors, fingertip oximeter, and abdominal and thoracic respiratory effort, measured by 

inductance plethysmography. Airflow was measured using nasal pressure, and the apnea/

hypopnea index (AHI) was scored according to standard guidelines [27]. Processing and 

scoring of all sleep records, including visual sleep staging, were performed at the University 

of Pittsburgh Neuroscience Clinical and Translational Research Center (N-CTRC) according 

to standard guidelines [27]. Total sleep time was calculated as the total minutes of any stage 

of sleep after sleep onset. Raw data from the snore channel were archived for later scoring.
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Snoring Measure and Scoring Parameters

The snore signal was collected using an uncalibrated microphone placed on the participant’s 

skin over the pharyngeal region, which translated snoring-induced vibrations into an 

electrical signal that oscillated in proportion to air pressure variations. The raw signal, 

collected in millivolts (mV), captured both duration (length of snoring event) and amplitude 

(strength of vibration pressure) over time (Figure 1). Visual scoring criteria were established 

a priori on the basis of previously published snoring literature [17,28]. Due to the lack of 

gold-standard criteria for snore scoring, no validated visual snore scoring criteria exist at 

present. All of the following criteria had to be met for the positive identification of a snoring 

event on the snoring channel: 1) duration of ≥ 0.4 seconds; 2) ≥ 300% change in amplitude 

from baseline millivolt (mV) signal (established individually per participant on the basis of 

the average baseline amplitude derived from the biocalibration signals at the beginning of 

the PSG recording); 3) occurring only once per breath, as established by respiratory PSG 

signals; 4) occurring during inspiration or expiration, to exclude signal artifacts; and 5) 

occurring only during epochs scored as NREM or REM sleep (i.e., wake was excluded). All 

scorers were trained to identify changes in the snoring signal that occurred during 

biocalibration and conversation with the sleep technician in order to visually distinguish 

signals associated with breathing and talking from snoring events. Due to natural variations 

in the baseline signal across the night, all visual scoring accounted for the baseline 

amplitude in the local epochs in which the snoring event was scored, although variability in 

baseline amplitude across the night was minor for all participants. All scoring was done 

using Harmonie® software (Stellate System, Montréal, Québec, Canada). Total snores were 

summed across one night of sleep for each participant.

The scoring methodology was adapted from that used by Lee et al. (2008) for uncalibrated 

signals [17]. The duration parameter represented a sufficient period for snoring 

accompanying inspiration or expiration and was deemed sufficiently long to eliminate 

artifacts of sleep, such as sighing, rustling, and snorts. The amplitude parameter was 

established to eliminate non-snoring sleep artifacts, including labored breathing and non-

snoring sounds, such as murmurs or mumbles. Because the snore channel was not calibrated 

to a standardized baseline voltage before recording, the baseline signal was established 

independently for each individual using the bio-calibrations performed at the beginning of 

the night’s recording period. Since snoring occurs with either the inspiration or expiration 

phase, and occasionally throughout both phases, only events occurring in one of these 

phases were counted as snore events, pursuant to convention [29,30]. Snoring events 

occurring during both the inspiration and expiration phase were scored as a single event. 

Only NREM and REM sleep epochs were scored. Putative events occurring immediately on 

or before sleep-to-wake transitions were excluded as candidate events and not scored, as 

they may have been artifacts of wake. To ensure that these parameters were satisfied, the 

snore channel was visually compared to the corresponding respiration (thoracic, abdominal 

effort), oxymetry, submentalis EMG, and EEG (C4) channels.

Visual Scoring

The first author (LS) was designated as the “gold standard” or “ground truth scorer” and 

trained five additional scorers (“trained scorers”). Training involved group instruction of the 
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visual scoring parameters on sample snoring channel data not derived from the eight 

participants included in the present study, independent labeling of snore versus non-snore 

events, and reconciliation of discrepancies through guided group re-scoring.

Snoring channel data for each of the eight participants’ records were duplicated and 

independently scored by all six scorers according to the visual scoring criteria above. To 

evaluate the inter-rater reliability of the visual scoring paradigm, the scored snore events of 

the five “trained scorers” were compared to the “ground truth scorer” labels (F-score mean 

89.13 ± 4.34). To test the robustness of the scoring paradigm, five additional permutations 

were run with each “trained scorer” serving as the “ground-truth” scorer. Given that no other 

snoring data were collected (e.g., sound microphone of snore sounds), we were unable in the 

present study to validate the snoring events scored on the physiological snoring channel 

against another objective measure of snoring.

Machine Learning Scoring

A support vector machine (SVM) is a pattern recognition, or machine learning, model that 

seeks to separate a set of training vectors into two separable classes. In the present study, the 

goal of SVM in scoring objectively-assessed snoring was to find the maximum margin of 

separation between two classes of events: “snore” and “non-snore”. The development of the 

SVM algorithm involved two phases: 1) training phase; and 2) testing phase. The first step 

of the training phase was to extract features from the snoring channel data. This step 

optimizes the ability of the SVM algorithm to fit the data by choosing the best parameters (C 

and gamma). Due to variability in feature ranges, all features were first normalized to means 

of zero and standard deviations of one. For the purpose of training and testing the SVM, the 

entire snoring channel signal was next broken into segments of “snore” and “non-snore” 

segments based on the visually-scored events, as described above. We needed signal 

segments corresponding to “snore” and “non-snore” events in order for the algorithm to 

learn the differences in patterns between the two and understand the similarities within the 

two categories. Also, due to our limited number of subject for this pilot study, this method 

maximized the utility of the overnight PSG data. The duration of each of the segments was 

approximately 200 samples (~3 seconds) and the sampling rate for the signal was 64Hz (i.e., 

64 sampling points needed to represent 1 second). There were on average approximately 

18,000 “non-snore” segments and 200 “snore” segments per participant sleep night. 

Different sets of parameters were then assessed using WEKA software (The WEKA Data 

Mining Software (3.6). Waikato, New Zealand: WEKA, 2009) in order to identify the SVM 

parameters that best characterized the data.

The selected features were then applied to the data to identify the optimal classifier for 

determining whether a segment should be classified as “snore” or “non-snore”. The best 

classifier for identifying a snoring event was chosen based on the outcome of a 10-fold 

cross-validation accuracy method. In this 10-fold cross-validation approach, the entire SVM 

training set was divided into ten subsets, and training was done on 9 data subsets and tested 

on the single left-out subset. In the present study, the subsets of data were generated 

automatically using Matlab, where the data sets are shuffled in random order and divided 

into 10 sets for the cross-vadliation. This process was repeated ten times with each 
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permutation of training and testing subsets, resulting in a 10-fold cross-validation. The SVM 

parameters were finalized once the machine learning classifier with the highest cross-

validation accuracy was produced.

For the feature reduction for our data, 19 optimal features were selected for classification 

using the ranker method in WEKA (see Table 2). In this method, the features with the 

highest variability between two classes and the lowest variability within a class were ranked 

based upon their ability to classify, and the highest ranked features were selected. Upon 

finalization of the feature set, the classifier was generated using LIBSVM, a publicly 

available SVM library [31]. For this classification problem, the detection of snoring events 

using SVM was formulated as a binary classification (Snore/Non-Snore). The same 

parameters and same subset of features were used to generate SVMs using each of the six 

visual scorers as the “ground truth” scorer in turn.

Data Analysis

To evaluate the SVM algorithm, the predicted snore event labels (Snore/Non-Snore) 

generated by the algorithm were compared to the events scored by visual scoring. This 

process was repeated six times to compare the predicted SVM algorithm snore labels to each 

of the six visual scorers’ snoring events.

Performance evaluation of the SVM algorithm was based on true positive (TP), false positive 

(FP), false negative (FN), and true negative (TN) events. A TP was scored when a snoring 

event was accompanied by a snoring label, a FP when a non-snoring event received a 

snoring label, a FN when a snoring event was not accompanied by a snoring label, and a TN 

for all segments lacking both snoring event and snoring label. Based on these values, we 

calculated the precision (P), recall (R), and overall F scores for each participant. Precision 

(P) represents the positive predictive value and is defined as the proportion of true positives 

to all the positive results [TP/(TP+FP)]. Recall (R), also known as sensitivity, represents the 

true positive rate of the algorithm and is defined as the ratio of true positives to predicted 

positives [TP/(TP+FN)]. The F-score is a measure of the test's overall accuracy and is 

calculated using both precision and recall [2(Precision)(Recall)/(Precision+Recall)]. The 

resulting F-scores are measures of the overall concordance between the SVM algorithm and 

the six visual scorers. Analyses were conducted using a 1-second buffer on either side of the 

ground truth label to account for variability in placement of the event marker between visual 

scorers, as some scorers placed the event marker at the beginning of the snoring event, while 

others placed the marker in the center or at the end of the event. Depending on the length of 

the snoring episodes, event marker placement could vary by one second or longer. Future 

scoring should standardize event marker placement. To determine whether the SVM 

performed comparably to visual scoring, we compared the SVM F-score to the computed 

average F-score of each scorer against the ground truth scorer using the Wilcoxon signed 

rank test for paired data.

Results

Sample characteristics are shown in Table 3. Participants ranged in age from 48 to 54 years 

(mean 51.00 ± 1.93 years). As expected given the a priori criteria for participant selection, 
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there was a broad range for both body mass index (BMI mean 32.89, range 20.32–46.99) 

and apnea-hypopnea index (AHI mean 11.19, range 0.50–50.08). Mean daily alcohol 

consumption was very low (mean 0.08 ± 0.17 units per day), and all participants denied 

current cigarette use during the study.

Validation of SVM for Objective Snore Scoring

Table 4 shows the F-scores for all comparisons. First, overall reliability among the six visual 

scorers was high across all permutations (F-score mean 88.31 ± 6.12, with a perfect F-

score=100). To test the performance of the SVM algorithm, its performance was compared 

to each of the six visual scorers in turn, resulting in a total of 48 permutations across the 

eight participants. Across all permutations, overall performance of the SVM algorithm in 

identifying snore events was high (F-score mean 82.43 ± 8.29), with a range comparable to 

visual scorers (63.49 to 93.41, see Table 4). Statistical analysis of the SVM F-score 

compared to the computed average F-score of the visual scorers was computed using the 

Wilcoxon signed rank test for paired data. The ability of the SVM algorithm to discriminate 

snore from non-snore segments of data did not differ statistically from visual scorer 

performance (SVM F-score=82.46 ± 7.93 versus average visual F-score=88.35 ± 4.61, 

p=0.2786), supporting SVM snore classification ability comparable to visual scorers.

Figure 2 provides visual representations of the overall performance of the SVM algorithm to 

visual scorers across all eight records, using LS as the ground-truth scorer. On average, the 

SVM algorithm slightly underperformed in comparison to the visual scorers, although the 

mean performance of the two scoring methods did not differ statistically. Appendix A 

presents visual representations of the F-score values for each record across all permutations 

of the six visual scorers as the ground-truth scorer.

Discussion

This paper presents proof-of-concept methods and results for an objective machine learning 

scoring alternative to human visual scoring of snore events. The SVM algorithm extracted 

key features of signals that discriminate a snore event from a non-snore event, as an 

alternative to visual scoring. In this proof-of-concept analysis, an SVM model performed 

comparably to human visual scoring for the identification of snoring in polysomnographic 

records. These data support the use of SVM for objective assessment of snoring.

A recent guideline on snoring from the German Society of Otorhinolaryngology, Head and 

Neck Surgery [21] notes the lack of objective parameters defining “respiration-dependent 

acoustic phenomena” (i.e. snoring). The present study used a criterion-based visual scoring 

paradigm that demonstrated good inter-rater reliability. However, even reliable visual 

scoring methods pose two major limitations. First, the method requires a significant time 

investment for both training and scoring. The initial training period for scorers can be 

lengthy, and it requires that all scorers score identical reliability files to assess inter-rater 

reliability. Adjustments to scoring technique necessitate back-and-forth between the gold 

standard scorer and all trainees, which can be a time-consuming process. Furthermore, it can 

take up to two hours for one trained snore scorer to visually score one 8-hour night of PSG-

recorded snoring; this scoring is in addition to routine PSG scoring of sleep stages, sleep-
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disordered breathing, and limb movements, and the resulting time necessary for such 

thorough visual scoring can be cost prohibitive. Second, visual scoring of snoring, like all 

human PSG scoring, is subject to rater drift and error.

The use of SVMs addresses both of these limitations. First, SVM is more time-efficient. The 

initial training phase of the SVM algorithm requires an initial investment of time, but the 

availability of online machine learning software such as WEKA makes the use of SVM for 

snore scoring feasible and efficient. Once the algorithm has been trained, it can score an 

entire 8-hour night of PSG-recorded snoring in minutes. In the present study, our algorithm 

was able to score one night of PSG in 15–20 minutes (Software: Matlab 8, The MathWorks 

Inc., Natick, MA, 2000; Hardware: Intel, Core i5, Windows 7 OS), compared to an average 

of 2 hours for visual scoring. The time necessary for the algorithm to score a night of PSG 

may be even less, depending on the hardware and software used. The SVM relies on features 

extracted from the physiologic channel to determine the optimal classifier to label a snore 

event, and the 10-fold cross-validation training technique ensures that the classifier does not 

over-fit, i.e. it learns the data rather than just memorizing it. Once the SVM algorithm has 

been trained using cross- validation on a small test sample, the algorithm generalizes to 

newer data, which can then be scored using the established classification features. While the 

SVM algorithm developed in the present study relied fully on comparisons to visually-

scored snoring data, unsupervised SVM algorithms can be developed in the future that 

would eliminate the need for human labeling. These advantages of machine learning SVM 

make it well-suited for objectively-assessed snoring, particularly with large or 

epidemiological studies or across multiple nights of PSG-assessed sleep. Furthermore, the 

SVM pattern recognition algorithms can be far more readily adapted to better and more 

sensitive snoring-detection technologies than visual scoring, allowing this scoring method 

greater flexibility while retaining efficiency. For example, while the scope of our present 

proof-of-concept study was to develop an algorithm solely for dividing a signal into two 

different categories, i.e. “classification”, machine learning algorithms could also be used to 

predict continuous data, also known as “regression”. For example, using the regression 

machine learning technique, we could utilize to predict continuous variables such as snore 

intensity or esophageal pressure; this is the focus of a follow-up study currently underway.

The present study has several limitations. First, as this was a proof-of-concept study, only 

eight participants were used to examine the feasibility of machine learning methods for 

objective snore scoring, potentially resulting in reduced power. However, it is important to 

note that each participant’s 8-hour night of sleep was segmented into 20,000 approximately 

3-second data segments, resulting in a total of approximately 150,000 data segments for 

analysis. Second, our study examined snoring in a sample of Caucasian and African 

American midlife women, limiting the generalizability of our findings. Given certain 

physiological underpinnings of snoring, there may be differences in the objective snoring 

signal characteristics due to sex, age, or race/ethnicity. Future validation of machine learning 

methods for snore scoring should be repeated in males and across age and race/ethnic 

groups. It should also be noted that the SVM performance was not equal or superior to the 

performance of all of the visual scorers across all participant records. This may be attributed 

to the robustness of the algorithm features, which were obtained on the basis of the average 

morphology of the snoring signal during the training phase. This made it difficult for the 
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SVM algorithm developed in this proof-of-concept study to adapt to variability in snoring 

patterns across participants, which is particularly noticeable in Record 5 (see Appendix A). 

However, the machine learning algorithm did perform well within each subject’s recording 

night, as the algorithm was able to learn the variability within a subject but had greater 

difficulty accounting for between-subject variability. This can readily be addressed in future 

studies by training and testing on a larger sample size and utilizing different features that 

allow for greater inter-individual variability. Furthermore, we discovered significant 

variability in types of snoring patterns even within the eight records used in the current 

study. By studying these various patterns of snoring, using template matching and 

correlation, we might further improve the predictive ability of our algorithm to classify snore 

events. Also, using sets of features that incorporate most of these snoring pattern variations 

will make the pattern recognition algorithm more adaptable. Additionally, more complex 

SVM algorithms that incorporate other channels, such as airflow, pressure, or 

electroencephalogram, may be useful. For example, snoring events during inspiration may 

be defined by a different set of features than snoring events during expiration; while we were 

unable to test this hypothesis due to our small sample size, future research to develop 

snoring algorithms that incorporate multiple channels can and should be done. Due to data 

blinding prior to scoring and our small sample size, we were also unable to compare SVM 

performance for apneic compared to non-apneic participants in the present study, but future 

studies using more participants that incorporate data from other respiratory signals can test 

the performance of SVM for apneic and non-apneic snorers.

Given our growing understanding of the importance of snoring for cardiovascular and 

metabolic health outcomes, and the disparate published findings that may result from the use 

of varied snoring assessments, we recommend that future studies include objective 

assessments of snoring. The results of this preliminary report support the use of SVM for the 

scoring of objective, PSG-assessed snoring signals. Although the signal we collected was 

uncalibrated, we propose that similar methods may be reliably used for the scoring of 

objectively-assessed and calibrated snoring data. The SVM algorithm learned to identify 

snore and non-snore events based upon the visual scoring; hence, it is only when the SVM 

performs identically to the ground truth scorer that we will achieve ideal performance (100% 

congruity). However, in the present study, this was difficult to achieve due to the noise of the 

real-time physiological snoring channel data and the high variability between snoring 

signals. Furthermore, we purposefully tested the SVM algorithm against all possible 

permutations of visual scorers, and we were able to demonstrate that the algorithm 

performance was similar to or greater than at least one of the experts when compared to 

ground truth. Future work should be done to demonstrate that the performance of the 

machine learning algorithm can improve with additional experience, just as human expertise 

improves with additional training and testing. We have demonstrated that the SVM method 

is both valid and feasible and offers a significant reduction in time compared to the visual 

scoring paradigm. Importantly, the SVM method is flexible and can be adapted to include 

features of accompanying PSG signals or improved technologies, allowing for 

improvements in snoring pattern recognition over time.
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Appendix A

Visual Comparisons of F-score Values for All Records.
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Results for Record 1
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Results for Record 2
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Results for Record 3
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Results for Record 4

Samuelsson et al. Page 16

Sleep Breath. Author manuscript; available in PMC 2018 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results for Record 5
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Results for Record 6
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Results for Record 7
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Results for Record 8
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Fig. 1. 
Sample objective snoring signal with identified snore events.
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Fig. 2. 
Comparison of F-score Values for All Records with Scorer 1 as Ground Truth Scorer.
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Table 1

Participant characteristics for reliability file records.

Participant Race BMI AHI Self-Reported
Snoring

Frequency

1 Caucasian 35.27 12.60 Never

2 Caucasian 40.45 50.08 Frequent

3 Caucasian 20.32 10.27 Frequent

4 Caucasian 27.68 4.98 Infrequent

5 African American 46.99 1.17 Frequent

6 African American 39.84 9.15 Never

7 African American 22.45 0.50 Infrequent

8 African American 30.14 0.78 Don't Know

Totals Caucasian = 4 Non-obese = 3 Non-SDB = 4 Never = 2

African American = 4 SDB = 4 Infrequent = 2

Obese = 5 Frequent = 3

Don’t Know = 1

Notes: BMI categorization: Non-obese BMI<30; Obese BMI≥30. AHI categorization: Non-SDB AHI<5; SDB AHI≥5.

Self-reported snoring categorization based on responses to PSSQ “frequency of loud snoring” question. BMI=body mass index; AHI=apnea-
hypopnea index; SDB=sleep disordered breathing; PSSQ=Pittsburgh Sleep Symptom Questionnaire.

Sleep Breath. Author manuscript; available in PMC 2018 April 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Samuelsson et al. Page 24

Table 2

Support Vector Machine (SVM) Features Selected for Generating the Classifier.

FEATURES EXTRACTED

Raw signal Minimum(1), Maximum(2), Standard deviation(3), root mean square(4)

First Derivative of Raw Signal Minimum(5), Maximum(6)

Area Under the Curve (7)

Width Between Peaks (8)

Number of Peaks (9)

Autocorrelation Maximum (10)

Cepstrum of Raw Signal Minimum(11), Maximum(12), Standard deviation(13), Mean(14)

First Derivative of Cepstrum Minimum(15), Standard deviation(16)

Z score Minimum(17)

Complex Cepstrum Mean(18)

Power Spectrum of Raw Signal Maximum(19)
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Table 3

Participant characteristics.

Total sample
Mean (SD)

Age (years) 51.00 (1.93)

Body mass index (BMI) 32.89 (9.35)

Apnea-hypopnea index (AHI) 11.19 (16.39)

Total snores 1007.88 (982.01)

Total sleep time (min.) 365.83 (81.48)

Mean daily servings of caffeine 1.30 (0.80)

Mean daily # of cigarettes 0 (0.0)

Mean daily servings of alcohol 0.08 (0.17)

% days exercise performed 66.67 (47.14)

% days sleep-affecting medication used 3.03 (10.05)
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