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Abstract

Background—Plasma amino acid measurements have been extensively investigated in 

individuals with autism spectrum disorder (ASD). Results thus far have been inconclusive as 

studies generally disagree on which amino acids are different in individuals with ASD versus their 

typically developing (TD) peers, due in part to methodological limitations of several studies.

Method—This paper investigates plasma amino acids in children and adults with ASD using data 

from Arizona State University’s Comprehensive Nutritional and Dietary Intervention Study. 

Measurements from 64 individuals with ASD and 49 TD controls were analyzed using univariate 

and multivariate statistical techniques.

Results—Univariate analysis indicated increased median levels of glutamate (+21%, p=0.014) 

and serine (+8%, p=0.043), and increased mean levels of hydroxyproline (+17%, p=0.018) for the 

ASD cohort, although these differences were insignificant after correcting for multiple 

comparisons. A multivariate approach was used to classify study participants into ASD/TD 

cohorts using Fisher discriminant analysis (FDA) and its nonlinear extension, kernel Fisher 

discriminant analysis (KFDA). Model fitting with FDA using all available measurements produced 

Type I and Type II errors of 27.0% and 27.8%, respectively. KFDA was most effective when using 

hydroxyproline, leucine, and threonine as inputs; however, leave-one-out cross-validation with this 

nonlinear model only resulted in 70.3% sensitivity and 77.6% specificity.
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Conclusions—The finding of elevated glutamate in ASD is in agreement with several other 

studies. Overall, however, these results suggest that plasma amino acid measurements are of 

limited use for purposes of ASD classification, which may explain some of the inconsistencies in 

results presented in the literature.
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1. Introduction

Amino acids, commonly referred to as the building blocks of proteins, have important roles 

in cell metabolism, neurotransmission, immune system regulation, and cell signaling (Wu, 

2009). A number of published studies have measured amino acid concentrations in the 

plasma of individuals with autism spectrum disorder (ASD) and found differences from 

measured concentrations in typically developing (TD) controls. While an overall consensus 

among these studies is that some plasma amino acid levels differ between TD individuals 

and those on the autism spectrum, there is a general disagreement as to what these 

differences are. The inconsistencies in results can possibly be attributed to several challenges 

in study design, primarily small sample sizes, the use of non-age-matched or non-gender-

matched controls, a lack of overnight fasting by study participants, and/or failure to correct 

for multiple hypothesis testing. The use of age- and gender-matched controls is important as 

both age and gender have been found to influence plasma amino acid composition (Lepage, 

McDonald, Dallaire, & Lambert, 1997; Proenza, Cresp, Roca, & Palou, 2001; Caballero, 

Gleason, & Wurtman, 1991). Overnight fasting by participants is also a necessary study 

design component as it minimizes the short-term influence of diet on blood measurements.

Only two recent studies (after 2011) were found to address all four of these study design 

components. A previous study in Arizona analyzed concentrations of 41 amino acids and 

amino acid metabolites in the plasma of 55 children with ASD and 44 TD children, and 

detected significantly elevated glutamate and significantly decreased tryptophan in the ASD 

cohort (Adams et al., 2011). Additionally, a study in China measured glutamate in the 

plasma of 51 children with ASD and 51 TD controls, and found mean glutamate levels to be 

significantly higher in the children with ASD (Cai, Ding, Zhang, Xue, & Wang, 2016), 

consistent with the study by Adams et al. (Adams et al., 2011).

A potential physiological connection between amino acids and ASD status could perhaps be 

found in the investigation of folate-dependent one-carbon metabolism (FOCM) and 

transsulfuration (TS), two metabolic pathways of particular importance to the study of ASD 

that are associated with the regulation of epigenetic gene expression and intracellular redox 

status in the body (James et al., 2006). The interactions of nutritional/environmental factors 

with genetic irregularities in FOCM and TS are believed to contribute to a decreased 

capacity for DNA methylation and increased levels of intracellular oxidative stress in 

individuals with ASD (Deth, Muratore, Benzecry, Power-Charnitsky, & Waly, 2008). 

Mathematical modeling of these pathways and estimation of model parameters using clinical 
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FOCM/TS metabolite data has revealed significant differences in several metabolic reaction 

rate parameters between TD individuals and those on the autism spectrum (Vargason, 

Howsmon, Melnyk, James, & Hahn, 2017). Multivariate statistical modeling of clinical 

measurements related to DNA methylation and redox status has also suggested a strong 

ability to distinguish individuals with ASD from their TD peers and predict severity of ASD-

related symptoms based on the activity in these pathways (Howsmon, Kruger, Melnyk, 

James, & Hahn, 2017). Given that the amino acids methionine and glycine feature in FOCM, 

while serine, cysteine, glutamate, and glycine contribute to the TS pathway, there may be 

correlations between these amino acids and the metabolic abnormalities that have been 

observed in ASD.

Amino acids also influence brain activity by serving various roles as neurotransmitters or as 

precursors to such in the central nervous system (Fernstrom, 1994). There is evidence to 

suggest that the activity of certain neurotransmitters is abnormal in individuals with ASD, 

indicating another potential link between amino acids and the disorder. Glutamate and γ-

aminobutyric acid (GABA), for example, are the primary excitatory and inhibitory 

neurotransmitters in the brain, and a reduced GABA/glutamate ratio in the brain has been 

reported in ASD (Harada et al., 2011). It has also been observed that the synthesis of 

serotonin, of which tryptophan is a precursor, is regulated differently during early childhood 

brain development in children with ASD compared to their TD peers (Chugani et al., 1999). 

While the presence of the blood-brain barrier makes it difficult to directly assess the 

relationships between amino acid levels in plasma and neurotransmitter activity in the 

central nervous system, there are some indicators of what these relationships are. Changes in 

brain serotonin levels, for one, have been suggested to be closely linked to changes in 

plasma tryptophan levels (Fernstrom & Wurtman, 1971; McDougle et al., 1996). At the 

same time, tryptophan’s uptake by the brain is affected by its competition for transport with 

the other large neutral amino acids, i.e., isoleucine, leucine, phenylalanine, tyrosine, and 

valine (Fernstrom & Wurtman, 1972).

All of this information considered, the relationships between plasma amino acids and ASD 

pathophysiology are still unclear. The use of multivariate statistical methods for 

differentiating individuals with ASD from their TD peers using plasma amino acid 

measurements may elucidate certain aspects of these relationships (Vargason, Howsmon, 

McGuinness, & Hahn, 2017). Previous work has demonstrated the utility of multivariate 

methods, namely Fisher discriminant analysis (FDA) and its nonlinear extension kernel 

Fisher discriminant analysis (KFDA), for performing this ASD/TD classification task using 

biochemical data (Adams et al., 2017; Howsmon et al., 2017). Therefore, after performing a 

detailed univariate analysis, the current work will apply these multivariate statistical 

methods to the analysis of data from the Comprehensive Nutritional and Dietary 

Intervention Study at Arizona State University (Adams et al., 2017), which addresses the 

aforementioned challenges associated with previous plasma amino acids studies by featuring 

a larger sample size, age- and gender-matched controls, overnight fasting, and correction for 

multiple hypothesis testing.
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2. Methods

2.1 Study participants

The plasma amino acid data for this work comes from the Comprehensive Nutritional and 

Dietary Intervention Study, a 12-month nutritional and dietary intervention study at Arizona 

State University. Only data from the baseline measurements (i.e. before the start of 

treatment) are described and analyzed in this work. Enrollment criteria and participant 

characteristics from the study are described in detail by Adams et al. (Adams et al., 2017). 

Participants in the study included 67 individuals on the autism spectrum (37 of which 

received the treatment and 30 that did not) and 50 age- and gender-matched TD controls. As 

plasma amino acid measurements were unavailable for a few study participants, only 64 and 

49 participants from each study group, respectively, were included in the analysis for the 

present work. The characteristics of this subset of participants are summarized in Table 1.

All participants in the ASD cohort had a previous diagnosis of ASD. The Autism Diagnostic 

Observation Schedule and/or Childhood Autism Rating Scale were also used by staff at 

Arizona State University to confirm the ASD diagnosis. A number of additional assessments 

of ASD-related symptoms and behaviors were also conducted (Adams et al., 2017); these 

were the Severity of Autism Scale, Aberrant Behavior Checklist, Autism Treatment 

Evaluation Checklist, Pervasive Developmental Disorders Behavior Inventory, Social 

Responsiveness Scale, Short Sensory Profile, and Parent Global Impressions. The IQ of 

participants in the ASD cohort was also evaluated using the Reynolds Intellectual 

Assessment Scales, consisting of the Verbal Intelligence Index, Nonverbal Intelligence 

Index, Composite Intelligence Index, and Composite Memory Index. The outcomes of these 

evaluations for participants in the ASD cohort are available in the supplementary data.

In the ASD cohort, 29 participants (45.3%) were reported to be taking at least one 

medication at the time of the study. This was also the case for 4 participants (8.2%) in the 

TD cohort. However, the study’s inclusion criteria (Adams et al., 2017) required that 

participants did not have any significant changes to their medical treatment in the two 

months prior to the study, or have any intention to make such changes during the study 

period.

2.2 Amino acid measurements

Blood samples were collected after an overnight fast, and plasma concentrations of amino 

acids and amino acid metabolites were measured according to a protocol previously 

described (Adams et al., 2011). In total, forty-two plasma amino acids and related amino 

acid metabolites were measured in the clinical study. Concentrations of the nine essential 

amino acids histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, 

tryptophan, and valine were measured. Additionally, the concentrations of the eleven non-

essential amino acids alanine, arginine, asparagine, aspartate, cystine (the oxidized form of 

cysteine), glutamate, glutamine, glycine, proline, serine, and tyrosine were quantified. 

Concentrations of eight secondary amino acids (i.e. those that are not essential or non-

essential) were also evaluated: α-amino-N-butyrate (AABA), β-alanine, citrulline, GABA, 

homocystine (the oxidized form of homocysteine), hydroxyproline, methionine sulfoxide, 
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and ornithine. The fourteen measured amino acid metabolites (hereafter referred to as amino 

acids, for brevity) were 1-methylhistidine, 3-methylhistidine, α-aminoadipate, ammonia, 

anserine, β-aminoisobutyrate, carnosine, cystathionine, ethanolamine, 

phosphoethanolamine, phosphoserine, sarcosine, taurine, and urea. The data for these amino 

acids are available in the supplementary information.

2.3 Univariate hypothesis testing

Student’s t-test, Welch’s t-test, or the Mann-Whitney U test were used to compare the 

central tendencies of each plasma amino acid measurement between the ASD and TD 

cohort. Preliminary statistical tests were performed to evaluate the distributional 

assumptions of these location tests (i.e. statistical test of mean or median as appropriate) and 

determine which was most suitable for each measurement. Normality of a measurement’s 

distribution in each cohort was first assessed with the Anderson-Darling test (Anderson & 

Darling, 1954). If a measurement was found to be normally distributed in both cohorts, 

equality of variance of the distributions was evaluated using the two-sample Brown-Forsythe 

test (Brown & Forsythe, 1974). For measurements in which the two normal distributions 

were found to have equal variances, the two-sample Student’s t-test (Student, 1908) was 

used to test for a significant difference in the means of the two distributions. Measurements 

in which the variances of the two distributions were found to be unequal were instead 

evaluated with the two-sample Welch’s t-test (Welch, 1938) to test for a significant 

difference in means.

For measurements whose distributions were non-normal in either or both cohorts, the two-

sample Kolmogorov-Smirnov test (Massey, 1951) was used to compare the shapes of the 

distributions in the ASD and TD cohorts. If the shapes of the two distributions were 

determined to be similar, the Mann-Whitney U test (Mann & Whitney, 1947) was then used 

to test for a significant difference in medians between the distributions. Measurements that 

did not follow identical, but shifted, distributions in the two cohorts were evaluated with 

Welch’s t-test.

All hypothesis tests were performed at significance level α = 0.05. Two-sample location 

tests were two-tailed and the outcomes of these tests were adjusted for multiple comparisons 

using Bonferroni correction. Differences indicated by a p-value less than 0.05 were defined 

as possibly significant, while differences indicated by a p-value less than the Bonferroni-

adjusted significance level were defined as significant.

2.4 Effect sizes and confidence intervals

The effect size for each amino acid was quantified as the median value in the ASD cohort 

minus the median value in the TD cohort. Bootstrap resampling with 10,000 replications 

was used to obtain a distribution of the effect size for each amino acid, and the 95% 

confidence interval (CI) for the effect size was then estimated by measuring the 0.025 and 

0.975 quantiles of this bootstrap distribution (Banjanovic & Osborne, 2016).
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2.5 Multivariate statistical analysis

The multivariate analytical methods used in the current study were implemented with 

previously-developed MATLAB code (Adams et al., 2017), but adapted for the 

measurements of this work. For classification, the data were normalized such that all sample 

values for each plasma amino acid had a mean of zero and a standard deviation of one.

2.5.1 ASD classification—Classification of individuals as belonging to the ASD or TD 

cohort was performed using FDA and KFDA. The aim of FDA is to determine the linear 

combination of plasma amino acid measurements that best separates the samples of the ASD 

study cohort from the samples of the TD study cohort, where each sample consists of the 

amino acid concentrations for a given study participant. FDA uses a set of measurements 

stored in a matrix X, where each row in X corresponds to an individual measurement of x 
and each column represents a single measurement of all data points. In this matrix, a subset 

of data points X1 belong to the ASD cohort and the remaining subset X2 belong to the TD 

cohort. FDA determines the projection vector w such that calculation of discriminant scores t 
from the dot product t = w · x, for all x, will best separate the values of t for data points in 

the ASD cohort from the values of t for the points in the TD cohort. This is done by 

maximizing the difference between the mean value of t for each class while simultaneously 

minimizing the variance of t within each class (Fisher, 1936). The ratio to be maximized, J, 

is defined by the objective function

J =
(t1 − t2)2

s1
2 + s2

2

also known as the Fisher criterion (Bishop, 2006). In this ratio, t̄1 and t̄2 are the sample 

means for t = w · x of the ASD and TD cohorts, respectively, while s1
2 and s2

2 are the 

variances in discriminant scores for the ASD and TD cohorts, respectively.

Linear FDA calculates w to best separate the samples x between the ASD and TD cohorts. 

KFDA, a nonlinear extension of FDA, first maps each x to a higher-dimensional feature 

space f through the nonlinear transformation f = φ(x) and then calculates w to maximize 

separation (quantified by J) of the discriminant scores t between the two cohorts as 

calculated by t = w · f (Mika, Ratsch, Weston, Scholkopf, & Mullers, 1999). Although linear 

in the higher-dimensional space, the projection vector w is applied to the feature space. 

Nonlinear relationships and interactions between variables in the data are then able to be 

examined to yield a nonlinear classifier. A radial basis function kernel was used for the 

KFDA analysis performed in this work.

2.5.2 Kernel density estimation—For distinguishing the participants in the ASD and 

TD cohorts during classification, kernel density estimation was used to estimate the 

probability density functions (PDFs) of the discriminant scores for both groups. The aim of 

kernel density estimation is to determine the underlying probability distribution that a set of 

observed data points were drawn from (Silverman, 1986). Use of density estimates requires 
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the selection of a value for the bandwidth parameter, which determines the smoothness of 

the PDF. For this work, the mean integrated squared error (Marron & Wand, 1992) was used 

as the criterion for choosing this parameter. The PDFs were estimated for each cohort’s 

discriminant scores resulting from FDA/KFDA model evaluation.

2.5.3 Null hypothesis for classification—For classification, the null hypothesis H0 

states that an individual is TD and the alternative hypothesis H1 states that an individual has 

ASD. The Type I error for the null hypothesis is the probability of incorrectly classifying a 

TD participant as having ASD. Similarly, the Type II error is the probability of incorrectly 

classifying a participant with ASD as being TD. These errors are calculated based on a 

threshold chosen to separate the PDFs for the ASD and TD cohorts. Since there is overlap 

between the two PDFs, adjusting this threshold to reduce one error will typically cause 

increases in the other error. Selection of the classification threshold is thus dependent on the 

shapes of the PDFs as well as desired diagnostic outcomes. For this study, the threshold will 

be chosen so as to minimize the absolute difference between the Type I and Type II errors.

2.5.4 Leave-one-out cross-validation—As the overall goal of classification is to be 

able to evaluate new samples that were not used during model development, leave-one-out 

cross validation (Kohavi, 1995) was used to provide an independent assessment of model 

performance. Leave-one-out cross-validation involves removing the first sample from the 

data set containing N samples and then training the discriminant model using the remaining 

N-1 samples. The model is then used to predict the discriminant score for the first sample 

that was left out of the data set. This prediction is recorded and the first sample is then 

returned to the data set. The process is repeated such that each sample is individually 

removed from the data set once and subsequently evaluated with the trained model. The 

outcome is a set of N discriminant scores resulting from cross-validation that are then 

analyzed.

To evaluate classification accuracies and misclassification errors resulting from cross-

validation, the discriminant scores for each of the N-1 samples included for model training 

were first used to estimate PDFs for the ASD and TD cohorts. The left-out validation sample 

was then evaluated with the trained model and its resulting discriminant score was plotted 

with the estimated ASD and TD distributions from the training samples. The overlap of the 

validation sample with its own cohort’s PDF (the correct PDF) was then calculated as the 

proportion of the correct PDF’s area falling between the validation sample and the tail of the 

correct PDF closest to the other cohort’s PDF (the incorrect PDF); this value was taken to be 

the sample’s classification accuracy. Similarly, the proportion of the incorrect PDF’s area 

falling between the validation sample and the tail of the incorrect PDF that was closest to the 

correct PDF was considered to be the misclassification error for the sample. Samples with a 

classification accuracy less than or equal to 0.05, or with a misclassification error greater 

than 0.05, were considered to be poorly predicted by the classifier.
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3. Results

3.1 Omission of select measurements

Upon conclusion of the 12-month study period, sixteen amino acid measurements in the 

subset of participants in the ASD cohort that did not receive any treatment were found to be 

significantly changed from their baseline values (according to the paired t-test or Wilcoxon 

signed-rank test, depending on which was appropriate for the distribution of the data; results 

not shown). As this group of participants did not receive any intervention, the measurements 

should not have exhibited a large change for these amino acids; therefore, the data for these 

specific amino acids were deemed unreliable and not considered for further analysis in the 

present work. These omitted measurements included two essential amino acids (lysine, 

tryptophan), three non-essential amino acids (alanine, asparagine, aspartate), two secondary 

amino acids (homocystine, methionine sulfoxide), and nine amino acid metabolites (3-

methylhistidine, α-aminoadipate, β-aminoisobutyrate, ethanolamine, phosphoethanolamine, 

phosphoserine, sarcosine, taurine, urea). Four additional measurements contained at least 

90% of values in both the ASD and TD cohorts that were below their respective detection 

limits (anserine, carnosine, cystathionine, GABA), and therefore were also omitted. The 

remaining twenty-two measurements did not have any values below the detection limit and 

were included for all further analyses.

3.2 Univariate analysis of amino acids

Comparisons of the twenty-two included measurements in the ASD and TD cohorts are 

provided in Table 2; these include the results of the appropriate location tests, along with 

effect sizes and their 95% confidence intervals. Of these measurements, the Mann-Whitney 

U test found the median levels of glutamate (+21%, p = 0.014) and serine (+8%, p = 0.043) 

to be possibly different in the ASD cohort compared to TD controls. Welch’s t-test also 

showed the mean level of hydroxyproline (+17%, p = 0.018) in the ASD cohort to be 

possibly different from the mean level in the TD cohort. It should also be reiterated that all 

measurements in this table had no values that were below the detection limit.

After correcting for multiple comparisons (α/22 = 0.002), none of the measurements 

presented a statistically significant p-value. Glutamate was the only measurement with a 

95% confidence interval for effect size that did not contain zero, indicating it to have the 

only significant effect size by our definition. However, the overlap between cohorts in these 

measurements demonstrates that univariate statistics are not useful for differentiating the 

ASD and TD cohorts in these data.

Given the observation of elevated glutamate in the ASD cohort, as well as the observation 

that plasma amino acid levels vary with age (Lepage et al., 1997), glutamate was then 

plotted as a function of age separately in each study cohort (Figure 1). The age of each 

individual used for this analysis was adjusted such that any individual with a clinical age 

greater than 21 years was assigned an age of 21 years. This adjusted age was used because 

most participants were under age 21, and amino acid levels are highly age-dependent for 

children while levels generally become more stable at older ages (Lepage et al., 1997; 

Caballero et al., 1991); therefore, compressing the data for those over age 21 allowed for 
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plots that were less sparse. Linear regression of this glutamate-versus-age relationship 

revealed no significant association between glutamate and age for either cohort, 

accompanied by a poor fit for each regression model.

3.3 Classification with FDA

To next explore the possibility of distinguishing the two study cohorts using multiple plasma 

amino acid measurements, an FDA model was first fit to all twenty-two included 

measurements under consideration. The fitted discriminant scores output by this analysis and 

the estimated PDFs of these scores in the two cohorts are shown in Figure 2; the Type I and 

Type II errors associated with the shown threshold are 27.0% and 27.8%, respectively. Table 

3 demonstrates the trade-off between the Type I and Type II errors with these PDFs. The 

large errors suggest only weak linear relationships between measurements that are useful for 

distinguishing the ASD and TD cohorts. Cross-validation results are not reported for this 

linear analysis as the results for fitting already show poor separation between the ASD and 

TD cohorts that would be even worse after cross-validation.

3.4 Classification with KFDA

Nonlinear KFDA was then employed to assess whether any nonlinear relationships between 

plasma amino acids are present that could offer improvements to classification performance. 

Two factors that must be considered when using KFDA are that its computational cost is 

significantly greater than that of FDA, and that it is more prone to model overfitting when a 

greater number of input variables are used. To address both of these concerns while 

identifying the subset of measurements with the best KFDA classification performance, all 

combinations of up to five plasma amino acids were analyzed; in other words, variable sets 

containing more than five plasma amino acids were not considered.

A KFDA model was first fit to each of these candidate subsets of measurements, with the 

output value of J, the Fisher criterion, being recorded for each combination. For each subset 

size, the 1000 measurement combinations that produced the greatest value of J were then 

evaluated with leave-one-out cross-validation; in the cases with fewer than 1000 total 

combinations, all combinations were tested with cross-validation. Figure 3 shows the 

combination of measurements for each subset size that performed best under cross-

validation, presenting both the percentage of samples that had poor classification accuracy 

and the percentage of samples that had high misclassification error. Each of these 

combinations minimized the sum of these percentages for its respective subset size. Using 

three input variables (hydroxyproline, leucine, threonine) produced the best overall results 

with both of these percentages at 25.7% of samples. These three variables were thus 

analyzed further with KFDA.

Fitted discriminant scores and PDFs resulting from the aforementioned KFDA model, as 

well as the predicted discriminant scores resulting from cross-validation, are presented in 

Figure 4. It is clear from these plots that the Type I error (4.2%) and Type II error (5.0%) 

from KFDA fitting are small compared to the fitting errors observed with FDA; however; 

these smaller fitting errors are not representative of the classification performance observed 

after model cross-validation. Additionally, it should be noted that some cross-validated 
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discriminant scores had very large positive or negative values and thus could not be 

appropriately presented; the samples with these extreme values are shown as darker points at 

the bounds of the plot, but were not manipulated for the analysis. Figure 5 then provides the 

individual samples’ classification accuracies and misclassification errors resulting from 

cross-validation with this KFDA model. 25.7% of samples had a classification accuracy less 

than or equal to 0.05 and 25.7% of samples also had a misclassification error greater than 

0.05. Finally, the confusion matrix for classification into the ASD and TD cohorts after 

cross-validation is given in Figure 6. Despite these results being for the best-performing 

KFDA model, the sensitivity was only 70.3% and the specificity was marginally better at 

77.6%. Combined, these results indicate that the classifier can correctly predict 73.5% of 

samples as belonging either to the ASD or TD cohort, which makes these amino acid 

measurements insufficient as a biochemical marker for ASD by themselves.

4. Discussion

Measurements from the Comprehensive Nutritional and Dietary Intervention Study indicate 

possibly elevated concentrations of glutamate, hydroxyproline, and serine in the plasma of 

individuals with ASD. The finding of elevated glutamate, in particular, is consistent with 

findings from other recent studies (Adams et al., 2011; Shimmura et al., 2011; Tirouvanziam 

et al., 2011; Tu, Chen, & He, 2012; Hassan et al., 2013; Naushad, Jain, Prasad, Naik, & 

Akella, 2013; El-Ansary & Al-Ayadhi, 2014; Cai et al., 2016; El-Ansary, 2016; Zaki, Abdel-

Al, & Al-Sawi, 2017), suggesting a potential role for glutamate in ASD pathophysiology. 

Glutamate is the most abundant neurotransmitter and the primary excitatory neurotransmitter 

in the human nervous system (Meldrum, 2000). It contributes to synaptic plasticity with 

significant roles in learning and memory formation (Nakanishi, 1992). Overstimulation of 

glutamate receptors can lead to excitotoxicity and subsequent neuronal damage or death, 

which are thought to be linked to a number of chronic neurologic disorders such as 

Huntington’s disease, Parkinson’s disease, and epilepsy (Sheldon & Robinson, 2007); 

elevated plasma glutamate in ASD may indicate a similar condition of excitotoxicity. Some 

studies have also found increased plasma glutamate levels to be correlated with the severity 

of certain ASD-related behaviors and symptoms (Adams et al., 2011; Cai et al., 2016). Our 

finding of glutamate being independent of age (in both the ASD and the TD cohort) may be 

indicative of a lifelong elevation of plasma glutamate in individuals with ASD. However, 

this finding is in disagreement with that of Lepage et al. (Lepage et al., 1997), who reported 

plasma glutamate concentrations to decrease notably between 0 and 18 years of age.

Aside from glutamate, our findings conflict with some of the studies in the literature that 

focus on plasma amino acid measurements in individuals with ASD. As mentioned 

previously, a likely explanation for this discrepancy is the varying degree to which these 

studies addressed the study design challenges associated with small sample size, use of age- 

and gender-matched controls, overnight fasting, and corrections for multiple hypothesis 

testing. One or more of these methodological limitations are present in most recent studies 

(after 2011) that have compared the plasma amino acid measurements of individuals on the 

autism spectrum to those of their TD peers. Two studies were identified (El-Ansary & Al-

Ayadhi, 2014; El-Ansary, 2016) where the only limitation was an insufficient sample size 

(i.e. less than 25 participants in each study cohort). Two other studies were found to only 
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lack correction for multiple hypothesis testing (Naushad et al., 2013; Zaki et al., 2017). Five 

identified studies were affected by two of the aforementioned limitations (Shimmura et al., 

2011; Tu et al., 2012; Hassan et al., 2013; Kuwabara et al., 2013; Bugajska, Berska, Wojtyto, 

Bik-Multanowski, & Sztefko, 2017), and three others were limited by three of these study 

design challenges (Tirouvanziam et al., 2011; ElBaz, Zaki, Youssef, ElDorry, & Elalfy, 

2014; Bala et al., 2016).

While it is difficult to compare the results of studies that do not account for these factors, a 

comparison to the two studies that did address all four components will be offered. In their 

previous study in Arizona, Adams et al. (Adams et al., 2011) detected significantly elevated 

mean levels of glutamate (+18%, p = 0.001), an insignificant increase in hydroxyproline 

(+9.6%, p-value not significant), and a possibly significant increase in serine (+10%, p = 

0.04) in the ASD cohort, along with a significantly decreased mean concentration of 

tryptophan (−19%, p = 0.001) that was not seen in the current data. That study did not use 

measurements for classification and so it is unknown whether those data would be useful for 

predicting ASD. In the second study, Cai et al. (Cai et al., 2016) measured only glutamate 

levels and found them to be significantly higher (+53%, p < 0.0001) in the cohort of ASD 

patients relative to healthy controls; that difference was sufficiently significant to achieve an 

area under the receiver operating characteristic curve of 0.92 using glutamate as the only 

predictor variable. Based on this finding, glutamate may potentially offer stronger predictive 

ability than was indicated with our data.

It is also worth discussing the two studies that lacked only an adjustment for multiple 

comparisons, as they still provide insight into which plasma measurements may be elevated 

or reduced in individuals with ASD. The first of these studies, by Naushad et al. (Naushad et 

al., 2013), detected significantly increased mean plasma levels of glutamate (+45%, p = 

0.01) and asparagine (+81%, p = 0.0001) in their ASD cohort, along with significant 

decreases in the mean levels of four amino acids that included tryptophan (−41%, p = 

0.0001). In the other study, Zaki et al. (Zaki et al., 2017) reported significantly elevated 

median levels of plasma glutamate (+517%, p = 0.031) and hydroxyproline (+900%, p = 

0.022), plus three other amino acids, in individuals with ASD; their study also found median 

levels of thirteen amino acids, including serine (−48%, p = 0.032) and tryptophan (−92%, p 
= 0.03), to be significantly lower in their ASD cohort.

Despite our finding of possible differences in glutamate, hydroxyproline, and serine 

measurements between the ASD and TD cohorts, clear discrimination of the cohorts was not 

possible using these data. Fitting an FDA model to all available measurements yielded large 

Type I and Type II errors, indicating that a linear classifier is not adequate for uncovering 

meaningful patterns in the data. Further nonlinear analysis with KFDA was also unable to 

reveal a robust set of measurements for predicting which individuals had ASD, as indicated 

by the model’s poor predictive performance under cross-validation. Together, these results 

suggest that any differences in plasma amino acid measurements in ASD are not sufficiently 

significant by themselves to accurately distinguish individuals with the disorder from their 

TD peers. However, it is possible that they could be used as part of a larger biomarker set.
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Although glutamate and other amino acids, such as methionine, have been found by other 

studies to be important in ASD etiology, these measurements did not appear in our best 

model for the classification task. While a model using hydroxyproline, leucine, and 

threonine produced the best overall results for KFDA, the model predictions were still poor 

when cross-validation was involved. This suggests that these amino acids likely do not serve 

any significant biochemical roles in the pathophysiology of ASD, but further investigation of 

their relevance may still be warranted. It is also worth highlighting that some studies have 

reported significant associations between certain ASD-related symptom/behavior 

assessments (Adams et al., 2011; Kuwabara et al., 2013; ElBaz et al., 2014; Cai et al., 2016) 

and individual plasma amino acids while others have reported these relationships to be 

insignificant (Shimmura et al., 2011; Tirouvanziam et al., 2011). In the interest of evaluating 

any such associations in our data, linear regression was used to model the relationships 

between each ASD assessment (as detailed in Section 2.1) and each individual amino acid in 

the individuals with ASD. The strongest relationship identified by linear regression was 

between the Reynolds Intellectual Assessment Scales Verbal Intelligence Index and the 

amino acid isoleucine (R2 = 0.096). Given the generally poor fit of these regression models, 

there do not appear to be any strong relationships.

Considering the roles of amino acids in FOCM/TS and the highly accurate prediction of 

individuals with ASD previously achieved using plasma measurements from these pathways, 

it at first seems surprising that the current classification results were so poor. However, the 

reason for this disagreement is actually quite clear. The accurate classification presented by 

Howsmon et al. (Howsmon et al., 2017) was achieved using a set of epigenetic and oxidative 

stress markers derived from FOCM/TS measurements, with minimal contribution from the 

amino acid measurements themselves; only the ratio of oxidized free cysteine to reduced 

free cysteine (a measure of extracellular redox status) was determined to be in the final set of 

predictor variables, and even then this does not rely on a single measured quantity. This 

suggests that the amino acid measurements themselves are not strong predictors of ASD. 

Much greater value is offered by instead taking into account the physiological contexts of 

the amino acids and perhaps by incorporating other physiologically-relevant quantities, e.g., 

FOCM biomarkers, into the classification procedure.

4.1 Limitations

The current study is not without limitations. For one, all study participants were from 

Arizona, so observed plasma amino acid profiles may be affected by the geographic region. 

A study including participants from other regions would provide a more general description 

of these profiles and help to address this potential bias. Another limitation is the broad age 

range, which is a problem since some amino acid levels are reported to change greatly with 

age; a narrower age range may yield more significant results. The heterogeneity of ASD may 

also make it more difficult to identify a biomarker for the disorder that is applicable to all 

individuals. Additionally, omitting twenty out of forty-two amino acid measurements from 

multivariate analysis may have removed potentially important information that could have 

helped to classify the ASD and TD cohorts with greater accuracy. However, it could also be 

argued that finding so many amino acids to be undetectable or significantly changed from 

baseline in a non-treatment ASD group is reflective of the large variability in plasma amino 
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acid levels at the individual level, and highlights the general caution with which amino acid 

measurements should be interpreted by themselves.

The sample size of our study also might not be regarded as a substantial improvement over 

those studies that have been previously discussed. However, our sample size is still more 

than double that of most similar studies. For example, other recent studies have used cohort 

sample sizes of 23 ASD and 22 TD (Shimmura et al., 2011); 27 ASD and 20 TD 

(Tirouvanziam et al., 2011); 20 ASD and 20 TD (Tu et al., 2012); 10 ASD and 10 TD 

(Hassan et al., 2013); 25 ASD and 28 TD (Kuwabara et al., 2013); 20 ASD and 20 TD 

(ElBaz et al., 2014); 20 ASD and 19 TD (El-Ansary & Al-Ayadhi, 2014); 21 ASD and 21 

TD (Bala et al., 2016); 20 ASD and 20 TD (El-Ansary, 2016); 42 ASD and 26 TD (Zaki et 

al., 2017); and 27 ASD and 13 TD (Bugajska et al., 2017). While some studies do have 

similar or larger sample sizes, such as with 55 ASD and 44 TD (Adams et al., 2011); 138 

ASD and 138 TD (Naushad et al., 2013); or 51 ASD and 51 TD (Cai et al., 2016), there are 

many more studies with small sample sizes than with comparable ones. Thus it is worth 

highlighting that our study features a larger sample size than is commonly seen in studies of 

plasma amino acids in ASD.

In addition, the use of medications by 45.3% of the ASD cohort and 8.2% of the TD cohort 

may have influenced the concentrations of certain plasma amino acids in these individuals. 

That being said, requiring participants to maintain the same medication regimen throughout 

the course of the study was intended to minimize any potential variability that may have 

arisen from the use of medications.

4.2 Implications

The results of this study suggest that some plasma amino acid measurements may be 

different in individuals with ASD compared to TD controls. However, this difference is not 

sufficient for clear discrimination between our two study cohorts. This may offer an 

explanation for the general disagreement across studies that have investigated plasma amino 

acid profiles in ASD (Zheng, Wang, Li, Rauw, & Baker, 2017); there may not be any 

consistent patterns in the measurements that are truly correlated to ASD incidence. Diverse 

roles for amino acids in the body may make it difficult to assess what a deficiency or excess 

of a particular amino acid in the plasma truly indicates in the context of ASD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Plasma amino acids from 64 children with ASD and 49 typically-developing 

(TD) peers were analyzed.

• No significant univariate differences were found between the ASD and TD 

cohorts.

• Multivariate analysis revealed poor ability to classify as ASD/TD with these 

data.

• Our findings suggest plasma amino acids are not a good predictor for ASD 

status.

Vargason et al. Page 17

Res Autism Spectr Disord. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Glutamate as a function of adjusted age (i.e. any individual with a clinical age greater than 

21 years is assigned an age of 21 years) and the results of linear regression of this 

relationship in (A) the ASD study cohort and (B) the TD study cohort.
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Figure 2. 
Results of fitting an FDA model to all twenty-two included amino acid measurements. 

Discriminant scores for each sample (A), as well as PDFs of these fitted scores for the ASD 

and TD study cohorts (B), are presented. The shown threshold corresponds to a Type I error 

of 27.0% and a Type II error of 27.8%.
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Figure 3. 
The best leave-one-out cross-validation results obtained across all possible combinations of 

different numbers of KFDA input variables. Cross-validation results are expressed as the 

percentage of samples that had a classification accuracy less than or equal to 0.05 and the 

percentage of samples that had a misclassification error greater than 0.05. The best 

combinations of variables were those that minimized the sum of these two percentages.
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Figure 4. 
Classification with KFDA using hydroxyproline, leucine, and threonine as inputs. Shown are 

(A) the discriminant scores from fitting, (B) the PDFs of these fitted scores for the ASD and 

TD study cohorts, and (C) the predicted discriminant scores resulting from leave-one-out 

cross-validation. The Type I and Type II errors from the fitted PDFs with the shown 

classification threshold are 4.2% and 5.0%, respectively. Discriminant scores outside the 

range of [-6, 6] are plotted as darker points at the respective bound, for visualization 

purposes only. Misclassification errors of the fitted scores are significantly smaller than 

those of the cross-validated results.
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Figure 5. 
Leave-one-out cross-validation results from classification with KFDA using hydroxyproline, 

leucine, and threonine as inputs. Shown are each individual sample’s (A) classification 

accuracy and (B) misclassification error. Samples with a classification accuracy less than or 

equal to 0.05, or with a misclassification error greater than 0.05, are considered to be poorly 

predicted.
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Figure 6. 
Confusion matrix showing the results of leave-one-out cross-validation with KFDA using 

hydroxyproline, leucine, and threonine as inputs. The sensitivity is calculated as the number 

of true positives divided by the total number of individuals with ASD, while specificity is 

the number of true negatives divided by the total number of TD individuals. Positive 

predictive value is equal to the number of true positives divided by the total number of 

individuals predicted to have ASD, and negative predictive value is defined as the number of 

true negatives divided by the total number of predicted TD individuals.
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Table 1

Characteristics of participants in the Comprehensive Nutritional and Dietary Intervention Study whose plasma 

amino acid measurements were included in the present work.

ASD Cohort TD Cohort

Total Participants 64 49

Males 52 (81%) 40 (82%)

Females 12 (19%) 9 (18%)

Age (years) 11.8 ± 8.5 12.2 ± 7.6

Children (ages 3–12) 45 (70%) 34 (69%)

Teens (ages 13–20) 13 (20%) 10 (20%)

Adults (ages 20+) 6 (9%) 5 (10%)
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