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Abstract

Humans are a diploid species that inherit one set of chromosomes paternally and one

homologous set of chromosomes maternally. Unfortunately, most human sequencing initia-

tives ignore this fact in that they do not directly delineate the nucleotide content of the mater-

nal and paternal copies of the 23 chromosomes individuals possess (i.e., they do not ‘phase’

the genome) often because of the costs and complexities of doing so. We compared 11 dif-

ferent widely-used approaches to phasing human genomes using the publicly available

‘Genome-In-A-Bottle’ (GIAB) phased version of the NA12878 genome as a gold standard.

The phasing strategies we compared included laboratory-based assays that prepare DNA in

unique ways to facilitate phasing as well as purely computational approaches that seek to

reconstruct phase information from general sequencing reads and constructs or population-

level haplotype frequency information obtained through a reference panel of haplotypes. To

assess the performance of the 11 approaches, we used metrics that included, among oth-

ers, switch error rates, haplotype block lengths, the proportion of fully phase-resolved

genes, phasing accuracy and yield between pairs of SNVs. Our comparisons suggest that a

hybrid or combined approach that leverages: 1. population-based phasing using the SHA-

PEIT software suite, 2. either genome-wide sequencing read data or parental genotypes,

and 3. a large reference panel of variant and haplotype frequencies, provides a fast and effi-

cient way to produce highly accurate phase-resolved individual human genomes. We found

that for population-based approaches, phasing performance is enhanced with the addition

of genome-wide read data; e.g., whole genome shotgun and/or RNA sequencing reads.

Further, we found that the inclusion of parental genotype data within a population-based

phasing strategy can provide as much as a ten-fold reduction in phasing errors. We also

considered a majority voting scheme for the construction of a consensus haplotype combin-

ing multiple predictions for enhanced performance and site coverage. Finally, we also identi-

fied DNA sequence signatures associated with the genomic regions harboring phasing

switch errors, which included regions of low polymorphism or SNV density.
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Author summary

Humans are a diploid species that inherit one set of chromosomes paternally and one set

of chromosomes maternally. Separating the nucleotide content of the maternally and

paternally-derived chromosomes for an individual, i.e., ‘phasing’ that individual’s

genome, is not trivial with today’s sequencing technologies. This is in part due to the fact

that most available sequencing technologies generate short sequencing reads that make it

hard to assemble individual homologous chromosome pairs. Phase information can be

crucial for putting into context the likely functional consequences of DNA sequence vari-

ants as well as certain evolutionary and population genetics phenomena. In order to assess

the reliability of current sequencing-based phasing strategies, we compared 11 different

approaches using a public domain reference genome as a test case. These phasing strate-

gies included laboratory-based experimental techniques as well as purely computational

approaches. Importantly, our comparisons show that a hybrid or combined approach that

leverages population-based phasing via the SHAPEIT software suite works well and can

be improved with the addition of genome-wide sequence read or parental genotype data.

Introduction

Whole genome sequencing (WGS) of individual human genomes has been made possible by

rapid advances in DNA sequencing technology (reviewed in [1]). In fact, an initial draft of an

individual’s genome, which results in spelling out over 3.2 billion base pairs, now costs approx-

imately $1,000. The exploitation of WGS in association and clinical studies has led to some

remarkable successes in the identification of disease-causing, overtly pathogenic variants [2] as

well as the use of these variants in diagnostic, prognostic and pharmacogenetic assessment set-

tings [3]. Unfortunately, due to inherent limitations in current sequencing technologies, such

as short DNA sequence read lengths, a number of issues remain. For example, sequencing

strategies are not error-free, making it possible that some nucleotides in an individual genome

are erroneously assigned. This error varies greatly among sequencing technologies [1,4]. In

addition, although virtually all sequencing technologies can capture simple single nucleotide

variants (SNVs), the identification of some forms of structural variation (e.g., moderately sized

insertion/deletion variants (indels) and complex copy number variants (CNVs)) have proven

difficult to identify in a straightforward manner [5,6]. Steady improvements in sequencing lab-

oratory protocols and computational workflows are beginning to overcome these issues [6],

but they also contribute to another, perhaps more fundamental issue surrounding the fact that

humans are diploid and possess two ‘genomes:’ one inherited maternally and one paternally as

a set of 23 chromosome pairs. Understanding how cis (i.e., near each other on the same chro-

mosome) and trans (far from each other or on opposite chromosomes) combinations of vari-

ants impact phenotypic expression is likely to be of crucial importance in human biology. This

activity depends critically on having phase information, i.e., knowing the unique nucleotide

content of each of the two chromosomes making up the 23 pairs.

Most genome sequencing strategies derive DNA sequence for the 23 chromosome pairs

simultaneously from a pool of maternally and paternally-derived DNA (e.g., from blood sam-

ples) and hence do not segregate the nucleotide content of each copy of a homologous chro-

mosome pair. Further, most strategies seek to identify nucleotides at each position of a

genome and, by comparing nucleotides of the sequenced genome to the sequence of nucleo-

tides for a vetted reference genome, identify SNVs and possibly other forms of variation. In

general, each SNV position is then recorded as having either one copy of a non-reference
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nucleotide and one copy of a reference nucleotide (i.e., ‘heterozygous’), two copies of a non-

reference nucleotide (i.e., ‘homozygous non-reference’), two copies of the ‘reference’ nucleo-

tide (i.e., ‘homozygous reference’), or, rarely, two different non-reference nucleotides. Note

that phase information is really only relevant for heterozygous loci (i.e., where there is a differ-

ence in the nucleotide content of homologous chromosome pair). Obtaining phase (or haplo-

type) information is often non-trivial, as reviewed by us and other research groups [7–9].

As noted, there are a number of very important genetically-mediated phenomena for which

characterization depends critically on phase information. For example, the phenomenon of

compound heterozygosity, in which two different mutations, one impacting the function of

paternally-inherited homologous copy of a gene and the other impacting the function of the

maternally-inherited homologous copy of that gene, can only be distinguished from situations

in which the two mutations reside on the same copy of the gene by having phase information

[7,10]. This is particularly important for the highly polymorphic human leukocyte antigen

(HLA) region of the genome. In addition, phase information is also required in dissecting

many evolutionary and population genetics phenomena, such as haplotype frequency differ-

ences across populations and linkage disequilibrium (LD) patterns. For example, LD patterns

around specific mutations are useful for determining the age of those mutations as well as

imputing variants to individuals that have not been sequenced or genotyped at the relevant

position in the sequence [11].

A number of strategies have been, or are being, developed to generate phase information

[7,8]. Some of these strategies involve elaborate laboratory protocols, others rely on de novo
assembly computational methods, and yet others make use of population haplotype frequency

information. Sequencing read lengths and the depth (i.e., coverage) of sequencing for a

genome play large roles in the ability to phase a genome. By far the most straightforward,

most often-used, and most-intuitive strategy for obtaining phase information from genome

sequencing involves sequencing the parents (and/or other relatives) of an individual whose

genome is to be phased. This way, Mendel’s laws can be used to essentially observe which vari-

ants were inherited from each of the parents. Unfortunately, even with parental sequence

information there are problems that can plague obtaining phase information. For example, if

the mother, father, and offspring are all heterozygous at a locus, the parental origin of the vari-

ants in the offspring cannot be determined, and the phase information for variants at that

locus will remain ambiguous.

We compared a variety of methods for phasing entire human genomes leveraging the

publicly available genome of a European (i.e., ‘CEU,’ per community conventions) female

individual NA12878. The NA12878 ‘Genome-In-A-Bottle (GIAB)’ reference was constructed

based on multiple-platform arbitrated genotype [12] and haplotype information by multiple

research groups at Illumina, Inc. and Real Time Genomics, Inc. using a suite of techniques and

sequence information available from the relatives of NA12878 [13,14]. To actually compare

the performance of the different phasing strategies, we considered laboratory-based phasing

methods by analyzing previously published datasets (i.e., we used what was published, since

we did not have access to the raw material and laboratory protocols to recreate them), as well

as computational phasing strategies that we were able to put together based on available soft-

ware. We recognize that the use of publicly available genomes could be biased since the

research groups generating the data may have used many protocols and workflows that are not

necessarily available to the public, but we argue that our analyses of those public domain

phased genomes provides an ‘upper bound’ (i.e., best case scenario) on their accuracy. We

benchmarked the accuracy of the laboratory and computational phasing approaches using a

variety of metrics including switch error rates, haplotype block lengths, and the proportion of

fully phase-resolved genes. Our results suggest that hybrid computational approaches to
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phasing a single genome are accurate and cost-effective, and exhibit a performance that nearly

matches or surpasses laboratory-based approaches.

Methods

Source of data

Gold standard variants and haplotypes for the NA12878 genome. We obtained

genome-wide variant data and phase-resolved haplotype information for the reference individ-

ual NA12878 from the GIAB v0.2 VCF file, available from the National Institute of Standards

and Technology (NIST) Genome-In-A-Bottle (GIAB) consortium FTP site [15]. A total of

1,697,789 phase-resolved heterozygous SNVs on 22 autosomes were extracted from the GIAB

v0.2 VCF file and used as the gold standard in our phasing performance analyses. For the X

chromosome, 55,108 phase-resolved heterozygous SNVs were extracted and used for a sepa-

rate analysis since the phased data for the X chromosome were not available for all phasing

approaches we considered and special independent processing steps are required for some

approaches to evaluate the X chromosome. The GIAB v0.2 VCF file included the NIST-GIAB

multiple-platform arbitrated genotype calls [12] integrated with haplotype calls from the Illu-

mina Platinum and Real Time Genomics (RTG) independent phasing efforts. These variant

calls incorporated data from multiple sequencing platforms and leverage the genotype and

sequence data available on NA12878’s extended pedigree [13,14]. We compared different

phasing strategies by obtaining genotype data, whole genome shotgun DNA reads, RNA-Seq

reads available for NA12878, as well as parental genotype, applying different phasing methods

to these data, and then comparing the accuracy of each phasing method against the GIAB v0.2

VCF phase-resolved variant calls.

NA12878 sequence data and parental genotype. All sequence data for NA12878 were

obtained from the NCBI internet resource (Sequence Read Archive), including: PacBio reads

(SRR1947646, SRR1950266-SRR1950290; 50X coverage [16]), Illumina paired-end DNA reads

(SRR2052404, SRR2052414-SRR2052424; 45X coverage), and Illumina paired-end RNA reads

(SRR1153470, SRR1258218, ERR356372; 300 million PE reads). The genotype data for the

parents (NA12891 and NA12892) were obtained from Illumina BaseSpace [17].

In-house variant calls for NA12878. We generated an in-house genome-wide variant

dataset for NA12878 using standard bioinformatics methods to benchmark and compare

various phasing strategies. The in-house set of NA12878 variant calls was generated with the

reference human genome GRCh37 coordinates with the Illumina paired-end DNA reads

(45X coverage, 148 bp), using BWA-MEM [18] for read mapping and GATK [19] for variant

calling.

Phasing methods compared

We compared 11 different approaches for phasing the NA12878 genome. The approaches con-

sidered are briefly described below with references provided where appropriate. We also refer

the reader to websites associated with the commercial groups whose products enable some of

these approaches. The descriptions below consider the laboratory-based methods first, fol-

lowed by computational methods.

1. 10X Genomics (10X). This commercially available approach uses micro-droplet-based dilu-

tion methods to randomly compartmentalize DNA molecules into partitions carrying

ultra-low genome equivalents (~0.002 genome per partition). The 10X strategy uses a rela-

tively higher number of distinct barcodes than other laboratory-based phasing methods

(i.e., ~100,000 in 2015 when the data were made available) and a minimal amount of
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haploid genome equivalents per partition. The approach reduces the chance of DNA

molecules in a given partition originating from the same genomic loci [20]. Data for the

NA12878 haplotypes determined by 10X Genomics method were downloaded from the

GIAB FTP site [21].

2. Contiguity Preserving Transposon (CPT-seq). This strategy uses a proprietary two-tiered

dilution-based method developed by Illumina, Inc. [22]. High molecular weight DNA is

first tagged with 96 different transposon tags and pooled. The pooled samples are further

indexed with 96 sets of PCR primers to produce roughly 10,000 virtual compartments. All

compartments are then mixed, sequenced as a single sample, de-multiplexed, and mapped

to the reference genome to determine long range linkage information. Data for the CPT

phased NA12878 were obtained from Illumina (Steemers et al., Illumina, Inc. personal

communication).

3. Fosmid-pool-based Phasing Strategy. This method [23] uses 40-kb haploid DNA segments

from fosmid pool-based NGS. Reads were assembled using the ReFHap software [24].

Assembled haplotype data were downloaded from the Max Planck institute website [25].

For comparison with the NA12878 GIAB gold standard and other phasing approaches,

genomic coordinates from NA12878 fosmid study were converted from NCBI36 (hg18) to

GRCh37 (hg19) using the liftOver tool [26].

4. Moleculo. The Moleculo approach uses a proprietary dilution-based method developed by

Illumina, Inc. for phasing genomes [27]. A complexity reduction approach is used to obtain

sequence information from pools of roughly 10 kb genomic fragments that belong to differ-

ent parts of the genome. Data for the phased Moleculo NA12878 genome were downloaded

from the Illumina BaseSpace website (Steemers, Illumina, Inc. personal communication)

[28].

5. Beagle (version 4.0 r1399). This computational phasing algorithm represents one of the

early HMM-based approaches. It essentially samples different possible haplotype arrange-

ments to find the most likely haplotype pair for an individual conditional on the individu-

al’s genotypes [8]. The algorithm scales quadratically with input data. Beagle was one of the

tools used to estimate haplotypes for the 1000GP phase 1 array-based genotype data [29].

6. Eagle2 (version v2.3.1). This is a recent reference-based computational phasing algorithm

that efficiently leverages information from large external reference panels. The computa-

tional efficiency of this approach is realized through a data structure based on positional

Burrows-Wheeler transform and a rapid search algorithm that explores only the most rele-

vant paths through a hidden Markov model (HMM) [30].

7. SHAPEIT (version v2.r837, also referred to as SHAPEIT2). This computational phasing

algorithm uses an HMM-based approach to estimate an individual’s haplotypes based on

genotype data from a population [31]. Given an individual’s genotype data, all possible hap-

lotypes are represented in a graphical model. Population-based constraints are then applied

to find a pair of paths through the graph to determine the haplotype of the individual. The

approach is fast and efficient as the algorithm has a linear complexity with the number of

SNVs and possible haplotype space. SHAPEIT has been used to estimate haplotypes for the

1000 Genomes Project (1000GP) [32] and we used the available genotype data from this

effort for our analyses. In addition, the SHAPEIT algorithm can be further supplemented

with sequence read data or parental genotype for improved performance, as described

below.
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8. SHAPEIT with WGS reads and/or RNA-Seq Reads. In addition to using the NA12878

genotype information available in the public domain, we applied the SHAPEIT program

with the addition of WGS reads (Illumina or PacBio) and/or RNA-Seq reads data after

mapping.

9. SHAPEIT with Parental Genotype Data. In addition to the individual’s genotype to be

phased, the parental genotype data were supplied and phased together using a haplotype

reference panel.

10. HapCUT (version 0.7 updated on 9/11/2013) with the WGS Reads. This computational

phasing algorithm addresses haplotype phasing as a haplotype assembly problem using

DNA sequence fragments rather than population genotypes. HapCUT reconstructs the

haplotypes of an individual’s genome based on overlapping sequence fragments that carry

two or more variant sites. Sufficient sequencing depth and large overlaps are the major fac-

tors for reconstructing long haplotypes with the HapCUT program. The HapCUT algo-

rithm uses a graph-based approach to represent overlaps among sequence fragments and

tries to minimize an error score of the reconstructed haplotypes by iteratively computing

high-scoring cuts in the graph [33]. We used the HapCUT algorithm with the Illumina

paired-end or PacBio long WGS DNA reads.

11. Majority Vote Phasing. We developed a simple majority vote approach to combine multi-

ple haplotype predictions described above to test for any enhanced phase resolution that

could arise from a consensus analysis. In this approach, heterozygous SNV sites are incre-

mentally phased with respect to previously phase-determined upstream sites using pre-

dicted phase information from multiple methods. For a given site to be phased, the

upstream site, which may be different for each method, also needs to be considered. There

are 2 possibilities for the phase at the target site with respect to the upstream site. Each

phasing method casts a vote to the 2 possibilities, and the combined phase is simply deter-

mined by majority voting. The same procedure is repeated on each chromosome for all

heterozygous SNVs.

Haplotype reference panels

Population-based phasing, such as those strategies implemented in Beagle, Eagle2, and SHA-

PEIT software packages, makes use of a haplotype reference panel for haplotype frequency

information. For this study, the 1000GP phase 3 reference panel dataset was used and contains

2,503 individuals excluding individual NA12878. We also used the Haplotype Reference

Consortium (HRC) panel dataset which contains 22,690 individuals excluding individual

NA12878 [34]. The HRC reference panel included WGS datasets from over 20 studies to

develop a large combined haplotype reference panel, currently with predominantly European

ancestry. The HRC reference panel also included the 1000GP individuals. The 1000GP refer-

ence panel for Beagle and SHAPEIT runs were obtained from the corresponding project web

sites of the phasing tools [35,36]. The HRC reference panel was obtained from the European

Genome-Phenome Archive (EGA) (Dataset ID: EGAD00001002729) [37].

Metrics for phasing performance

We considered five different metrics to assess phasing performance. All have been used in pre-

vious research to assess how well individual genomes can be phased. Each of these metrics is

described briefly below. The datasets and scripts used for comparing the phasing methods is

available at https://github.com/ywchoi/phasing.
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Percentage of phased single nucleotide variants (SNVs). We compared the results of

each of the phasing strategies with the gold standard GIAB genome (which harbored ~1.7 mil-

lion heterozygous SNVs) and determined the percentage of SNVs that could be phase-resolved

into a haplotype by the strategies we considered.

Switch error rate (SER). Phasing accuracy is typically measured by counting the number

of ‘switches’ between known maternal and paternal haplotypes that should not occur if indi-

vidual maternal and paternal chromosomal nucleotide sequence content has been accurately

characterized. If an inconsistency is identified, then it is called a ‘switch error.’ These switch

errors manifest themselves as induced and false recombination events in the inferred haplo-

types compared with the true haplotypes. To identify switch errors, the phase of each site is

compared with upstream neighboring phased sites. The switch error rate (SER) is defined

as the number of switch errors divided by the number of opportunities for switch errors.

Switch errors were further classified into three categories: long, point, and undetermined. A

long switch appears as a large-scale pseudo recombination event; that is, there are no other

switches in the local neighborhood around the long switch (e.g., no other switches within

three consecutive heterozygous sites). On the contrary, a small-scale switch error appearing as

two neighboring switch errors is considered as a point switch (e.g., two switches within three

consecutive heterozygous sites, with the pair of switches counted as a point switch). The

remaining switches are considered undetermined (e.g., only two sites phased in a small phas-

ing block, so the switch error could not be classified into long or point).

Haplotype block length. As introduced by Duitama et al. [23], we used Quality Adjusted

N50 (QAN50) haplotype block length to characterize the completeness and quality of phased

haplotypes. Phasing approaches typically produce chromosomes that are broken into one or

more phasing blocks. A phasing block is a region that is declared completely phased by the

approach but potentially contains switch errors. Individual phasing blocks were further broken

up, at every error site, into multiple sub-blocks. Then each sub-block length was first com-

puted as the number of nucleotides from the first to last sites. The sub-block length was then

adjusted by multiplying by the proportion of phased sites within the sub-block. These lengths

were referred to as the ‘quality adjusted (QA) haplotype block lengths.’ QAN50 is defined as

the largest QA haplotype block length such that 50% of all heterozygous sites represented

in the gold standard are contained in haplotype blocks of quality adjusted length at least

QAN50.

Pairwise SNVs phasing accuracy and phasing yield. In addition to the overall switch

error rate, to assess phasing performance with respect to the distance between a pair of SNVs,

pairwise phasing yield and accuracy were measured as a function of the distance between the

SNV pairs as described previously [8,22]. Ultimately, phasing accuracy was assessed as the

probability that a pair of SNVs in the same phasing block was phased correctly as a function of

the distance between the pair. In addition, phasing yield represents the probability that a pair

of SNVs are phased in the same phasing block as a function of the distance between the pair.

Percentage of genes fully phased. Out of the 19,430 protein coding genes on the autoso-

mal chromosomes (i.e., 1 to 22) annotated in the Ensembl gene annotation resource (Release

75), a total of 12,814 genes carried more than one heterozygous variant in the NA12878

genome. This set of 12,814 autosomal genes was used as a reference baseline to compute the

percentage of fully phased genes by the various phasing strategies compared in this study. A

gene is considered fully phased in a phasing approach if all heterozygous SNVs on the gene are

correctly phased with respect to the GIAB gold standard.

SER as a function of haplotype diversity. Haplotype diversities were estimated using the

1000GP reference panel. Given a set of haplotypes from the 1000GP population within a non-

overlapping window of size 1000bp on a chromosome, the haplotype diversity is defined as the
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probability of having different haplotypes when two haplotypes are randomly drawn [38].

SERs were computed separately for each non-overlapping interval of haplotype diversity (i.e.,

from 0 to 0.05, from 0.05 to 0.1, etc., and ultimately from 0.95 and 1).

Shared switch error sites. For every pair of phasing approaches, we computed the num-

ber of switch errors that occurred at the same position. To measure the similarity of the two

approaches, the Jaccard index [39] was calculated as the number of common errors divided by

the size of the union of the total errors sites.

Results

Comparison of phasing strategies

A total of 11 phasing approaches were compared based on the NIST-GIAB reference genome

NA12878. Laboratory-based experimental phasing previously reported from 10X Genomics,

CPT-seq, fosmid sequencing, and Moleculo were collected from the literature and public data-

sets. Computational phasing results were generated in-house for the NA12878 genome using

Beagle [32], Eagle2 [30], SHAPEIT [31], and HapCUT [33] with one or more combinations of

the following as input data for the relevant computations: the haplotype reference panels from

the 1000 Genomes Project (1000GP) with 2.5k individuals or the haplotype references from

the Haplotype Reference Consortium (HRC) with 23k individuals, conventional WGS reads

generated from the Illumina or PacBio sequencing platforms, RNA-Seq reads, or parental

genotype.

Laboratory-based phasing approaches. Among the laboratory-based phasing methods

analyzed, conventional fosmid sequencing and the genome reduction dilution-based Moleculo

approach produced haplotype blocks of moderate QAN50 lengths, ~0.4 and ~0.3 Mb, respec-

tively. More recently developed dilution-based approaches, such as CPT-seq and 10X Geno-

mics, further reduce the required haploid genome equivalents in individual partitions using

various laboratory constructs that dramatically increase the range of the genome that could be

‘barcoded’–and hence have the potential to be phased—by orders of magnitude, effectively

enabling ultra-high-throughput processing and pooling. The CPT-seq and 10X Genomics

approaches produced haplotype blocks surpassing mega-base QAN50 lengths (1 and 7 Mb,

respectively) with low switch error rates (SER) (0.17 and 0.06%, respectively) (Fig 1A, Table 1

and S1 Fig).

Computational population-based approaches. For population-based computational

phasing approaches, predefined haplotypes from a reference panel of individuals are leveraged

to predict the haplotypes for the NA12878 genome. With the 1000GP reference panel, Beagle,

Eagle2, and SHAPEIT, produced modest size haplotype blocks with QAN50 between 0.4 and

0.5 Mb, and SER of 1.53%, 0.86%, 1.03%, respectively. Using the HRC reference panel, which

consists of about 10 times more individuals than the 1000GP panel, Beagle, Eagle2 and SHA-

PEIT produced increased haplotype block QAN50 sizes by about 2 to 5 times to ~1 to 2 Mb

and the SER was reduced to 0.49%, 0.19% and 0.30%, respectively (Fig 1A and 1B, Table 1 and

S1 Fig).

Computational read-based approach. Read-based phasing uses conventional whole

genome sequencing (WGS) reads as input data to extract physical linkage information and

then reconstructs haplotypes based on overlapping sequence fragments carrying two or more

variant sites. HapCUT is a read-based phasing method and produced relatively short haplotype

block sizes at 1 kb in our study, and with low errors and an SER of 0.10% when using Illumina

WGS reads. Longer haplotype blocks in the range of ~0.1 Mb with an SER of 1.01% were pro-

duced when using PacBio WGS reads instead (Fig 1A and 1B, Table 1 and S1 Fig). HapCUT

like any other read-based approaches does not require reference haplotypes and therefore
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would have the advantage of being able to resolve variants specific to the individual in

question.

Hybrid population and read-based approaches. In addition to the statistical approach

based purely on haplotype frequency data from a reference panel of genomes, the SHAPEIT

algorithm can also incorporate physical linkage information provided by conventional WGS

reads. Phase-informative reads (PIRs) were extracted from the initial set of NA12878 Illumina

or PacBio WGS reads providing physical linkage information between neighboring variants.

The inclusion of Illumina (45X) or PacBio (50X) WGS reads to SHAPEIT phasing with the

HRC panel improved the QAN50 lengths from ~1.94 Mb for SHAPEIT alone to ~2.4 Mb with

the inclusion of Illumina reads or ~3.5 Mb with PacBio reads (Fig 1B, Table 2, and S1 Fig).

The SER was reduced from 0.30% for SHAPEIT alone to 0.21% after including Illumina WGS

reads and 0.14% with PacBio WGS reads. Importantly, the hybrid approach of SHAPEIT phas-

ing with the inclusion of WGS data improved QAN50 length by up to 85% and reduce SER by

up to 53%.

We also explored the added values of RNA-Seq reads for this hybrid approach. The assump-

tion is that RNA-Seq reads would provide the added advantages of spanning adjacent exon

sequences and linking long range variants. Phase-informative reads (PIRs) were extracted

from an NA12878 RNA-Seq run (300 million PE reads) for SHAPEIT phasing with the

1000GP reference panel. The QAN50 length was 0.44 Mb for SHAPEIT alone, 0.45 Mb with

added RNA reads, and 0.68 Mb with added Illumina WGS reads. Considering the proportion

Fig 1. Summary of phasing performance as shown by switch error rates, Quality Adjusted N50 (QAN50), and the percentage of fully

phased genes. (A) All phasing methods tested, and (B) SHAPEIT phasing making use of different combinations of reference panels, WGS/RNA

read data, and parental genotype.

https://doi.org/10.1371/journal.pgen.1007308.g001
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of correctly phased genes with ≧90% sites phased, the performance was 74.9% (9,594 genes)

for SHAPEIT alone, 75.9% (9,721 genes) for added RNA reads, and 80.1% (10,262 genes) for

added Illumina WGS reads. Overall, we observed no appreciable differences in terms of haplo-

type block length improvements with the addition of RNA-Seq reads to SHAPEIT phasing.

Considering the total number of correctly phased genes, there was a gain of ~100 genes with

the addition of RNA reads to SHAPEIT phasing.

Hybrid population and trio-genotype approach. In rare genetic disorders parent off-

spring trios are often sequenced altogether, for example for screening recessively inherited de
novo mutations. We considered another hybrid phasing approach by making use of a reference

panel of haplotypes and the parents’ genotype data for SHAPEIT phasing (i.e., we included

genotype data from the parents of NA12878 (i.e., NA12891 and NA12892)). A SHAPEIT phas-

ing run was performed using the HRC panel as background with the inclusion of the NA12878

parental genotypes. This run produced 19 Mb haplotype blocks, compared to only 1.9 Mb for

SHAPEIT alone, or 3.5 Mb for SHAPEIT with PacBio reads (Fig 1B, Table 2, and S1 Fig). As

for the SER, the inclusion of parental genotype reduced overall errors from 0.30% for SHA-

PEIT alone to 0.03%. The inclusion of parental genotype also corrected substantially more

long switches compared to point switches. Importantly, the addition of parental genotype data

drastically improved both the haplotype block length and SER 10 times, which was also the

longest haplotype blocks and lowest SER across all phasing approaches tested in this study.

Family trios are traditionally phased by transmission following the application of Mendel’s

laws, but for sites that are heterozygous across all members they are non-resolvable by Men-

del’s laws alone. To estimate the proportion of sites that are non-resolvable in the NA12878

family trios, we scanned the genotypes of the trio and summed all triply heterozygous sites (i.e.

sites that are heterozygous for all 3 individuals). Among 2.5 million heterozygous SNV sites in

NA12878, a total of 360k sites were found to be heterozygous in both parents, and an addi-

tional 464k sites were found to have no variant called in both parents (S1 Table). Thus, a total

of 824k heterozygous SNV sites of the NA12878 individual are non-resolvable by inheritance.

In other words, at most 67% of the heterozygous SNV sites in the NA12878 individual can be

resolved relying on the conventional parent offspring transmission alone. This further high-

lights the important favorable utility of parental genotype data in the context of enhancing

population-based phasing accuracy as demonstrated above.

Phasing accuracy for rare variants. Because statistical phasing of rare variants is gener-

ally more difficult for population-based phasing strategies given the need for accurate variant

frequency and linkage disequilibrium (LD), we investigated the accuracy of phased-resolved

rare variants when the minor allele frequency (MAF) was below 1%. SER was computed at

each given MAF cutoff from 0.1, 0.2, 0.5 to 1% and above (Fig 2). As expected, for laboratory-

based methods that solely rely on efficient partitioning of haploid DNA fragments and physical

linkage of sites rather than population information, such as 10X, fosmid, CPT, and Moleculo,

the SER remain largely stable at 0.1, 0.3, 1.2, and 1.3% respectively, even when the MAF is less

than 0.1% (Fig 2A). In addition, the read-based approach HapCUT and our majority vote

approach (described in the next section) also showed stable SERs at low MAF sites (Fig 2B).

Across population-based methods, using either the 1000GP or the HRC reference panel, the

SER in general increased about 2-fold as the MAF cutoff decreased from 1 to 0.1%. Switching

from the 1000GP to the HRC reference panel, which is 10 times larger and also inclusive of the

1000GP panel, greatly reduced the SER at low MAFs. When we made use of the HRC panel, at

MAF cutoff of 1 and 0.1% the SER for Eagle2 was 1.1 and 0.8% and those for SHAPEIT was 2.8

and 1.4%, respectively (Fig 2C). The addition of Illumina or PacBio WGS reads to the SHA-

PEIT phasing run also reduced SER for rare variants with MAF less than 1%, with perfor-

mance approaching laboratory-based methods (Fig 2D). Importantly, SHAPEIT phasing

Phasing human genomes

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007308 April 5, 2018 12 / 26

https://doi.org/10.1371/journal.pgen.1007308


supplemented with the parental genotype (as described above) also outperformed laboratory-

based methods with SER improvement not only among common variants but also rare vari-

ants with MAF less than 1% (Fig 2E).

A majority vote approach to enhance phasing performance. To investigate whether

combining haplotype prediction from multiple methods can boost phasing performance, we

developed a majority vote approach. Different phasing methods likely cover different, but

overlapping, subsets of SNV sites for any one genome suggesting that combining them may

yield more accurate phasing. In our majority voting approach, heterozygous SNV sites are

incrementally phased with respect to already phased upstream sites using all available pre-

dicted phase information from multiple methods. We combined the predicted haplotypes

from 8 phasing methods including 4 lab-based and 4 computational methods. The phasing

methods considered were 10X, CPT, fosmid, Moleculo, Beagle (HRC), SHAPEIT (HRC),

Eagle2 (HRC), and HapCUT (Illumina), which produced SERs in the range of 0.06% (10X) to

0.50% (Moleculo), the proportion of phased SNVs between 79.1% (fosmid) and 97.9% (10X),

and fully phased genes between 4.3% (HapCUT/Illumina) and 71.6% (10X) (S2 Fig). The new

combined SER obtained from majority voting was 0.09%, with 99.6% SNVs phased, and 89.1%

fully phased genes. In summary, using the majority voting approach to combine predicted

Fig 2. Switch error rates across phasing strategies as a function of minor allele frequency. (A) Laboratory-based phasing, (B) Read-based and

majority voting, (C) Population-based phasing, (D) Hybrid population and read-based, and (E) Hybrid population and familial data from

parental genotype.

https://doi.org/10.1371/journal.pgen.1007308.g002
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haplotypes from multiple methods can boost phasing performance. As an example, our major-

ity vote approach was able to fully phase-resolve 11,416 out of 12,814 phasable genes (i.e. genes

having 2 or more heterozygous SNVs), compared to 9,174 genes by the best available individ-

ual phasing approach.

Phasing accuracy and yield across pairs of SNVs. We measured phasing accuracy and

yield measures across pairs of SNVs as in the study by Snyder et al. [8] (Fig 3). As shown in Fig

3A, the pairwise SNV phasing accuracy of the 10X, CPT-seq, and fosmid sequencing strategies

stayed above 99% (i.e. 1 error out of 100 heterozygous sites) for distances of>100 kb between

SNV pairs. At 99% phasing accuracy, the majority vote approach was up to 124 kb. Further-

more, if an even higher phasing accuracy of 99.9% was considered, the 10X method achieved a

distance of 362 kb. For the strategy leveraging SHAPEIT along with the HRC panel and the

PacBio reads, the same level of phasing accuracy (99.9%) was obtained for distances up to ~7

kb. Importantly, a tremendous improvement was observed with the SHAPEIT approach with

the inclusion of parental genotype and using the HRC panel as background, which produced a

99.9% phasing accuracy for much longer distances up to ~429 kb (Fig 3A). Fig 3B depicts the

phasing yield and represents the probability that a pair of SNVs are phased in the same phasing

block as a function of the distance between the pair. Considering a 100 kb phasing yield dis-

tance, most lab-based methods are at or below 86% phasing yield including Moleculo, CPT,

and fosmid, whereas 10X, Beagle(1000GP), Eagle2(1000GP), SHAPEIT(1000GP), and also

majority voting are above 94% phasing yield.

Proportion of fully phase-resolved genes. In fully phased genes, haplotype blocks span

the entire gene lengths, thus providing critical information on gene-based haplotypes. Such

information could be especially useful for recessive disease variant analyses. Despite the large

range of haplotype QAN50s generated by the different phasing approaches, a high proportion

of fully phased genes (i.e., all heterozygous SNVs within a gene were correctly phased) was pro-

duced across laboratory- and population-based phasing methods including 10X and SHAPEIT

approaches with the 1000GP panel and parental genotype at 70% or higher. The remaining

SHAPEIT approaches using the 1000GP panel (reference panel alone or with read data)

achieved 61 to 68%. This was followed by HapCUT using PacBio reads and Eagle2 based on

the 1000GP panel, in which about 52% of genes were completely phased (Fig 1A, Tables 1 and

2, and S1 Fig). As described above the majority voting approach produced 89.1% fully phased

genes.

The number of incorrectly phased or unphased sites for a group of disease-associated

genes with extensive gene spans from 15 to 305 kb including MEFV, DHODH, MYPN, APC,

CFTR, and TTN are shown in Table 3. For this gene set, using metrics that measures the total

number of incorrectly phased or unphased sites from the 6 genes, among the best performing

approaches are the majority vote approach (1 erroneous site), followed by 10X (4 sites) and

SHAPEIT approaches (6 sites).

Properties of switch errors. As noted, switch errors occur when a variant location is

incorrectly phased with respect to its neighboring variants. Among the phasing approaches

tested, as shown in Table 4, the number of switch errors ranged from 1,050 to 25,077. To fur-

ther understand the distribution of switch errors, we asked whether the same switch error sites

are observed across phasing methods, and whether certain genomic regions are more prone to

switch errors. A pairwise comparison of switch errors based on genomic positions is shown in

Table 4. Overall, population-based phasing approaches (i.e. all the strategies involving SHA-

PEIT, whether leveraging WGS reads or not, as well as Beagle and Eagle2) shared the highest

proportion of switch error sites in common. This is probably related to the fact that these

approaches all rely on a reference panel to provide statistical support for resolving phase. Note

that the majority voting approach reduced the number and proportion of switch errors that
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were commonly shared among the population approaches, which highlights the advantage of

combining multiple phasing prediction.

Next, we assessed the specific DNA sequence context, including SNV density, haplotype

diversity and repeat regions such as LINE, SINE, LTR and others, and their potential correla-

tion with switch errors. SNV density was assessed indirectly by measuring the distance

Fig 3. Phasing performance comparison based on pairwise SNV haplotype assignment. (A) Phasing accuracy. Probability that a pair of SNVs

on the same phasing block is correctly phased with respect to each other as a function of the distance between the pair. (B) Phasing yield.

Probability that a pair of SNVs are phased in the same phasing block as a function of the distance between the pair.

https://doi.org/10.1371/journal.pgen.1007308.g003
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between a given heterozygous site and its immediate upstream phased heterozygous site. In all

approaches tested, the switch error rate rises as the distance to upstream site increases, and the

increase in error rate is more dramatic for strategies leveraging the HapCUT algorithm (Fig

4A). This may be due to the fact that unlike population-based phasing approaches, which

make use of reference haplotypes, HapCUT only relies on the physical linkage information

provided by sequencing reads. For SHAPEIT population-based approaches, using a larger

reference panel (i.e. the HRC panel instead of 1000GP panel) or parental genotype helped

reduce error rate for long distances (Fig 4B). Fig 5 shows that variations in haplotype diversity

Fig 4. Phasing accuracy and SNV density. (A) Basic phasing approaches. (B) SHAPEIT phasing supplemented with reference panel, sequence

read, or parental genotype information. Switch error rates for various phasing strategies are shown as a function of distance between a

heterozygous site and its upstream phased site.

https://doi.org/10.1371/journal.pgen.1007308.g004
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(derived from 1000GP data) are also associated with switch errors. Specifically, regions with a

low haplotype diversity have a higher number of switch errors. This is consistent with the

assumption that regions with low haplotype diversity usually carry a smaller number of SNVs

and therefore a low SNV density. Finally, we also showed that switch errors are in general con-

sistently distributed across the LINE, SINE, and LTR repeat regions (S3 Table).

The effects of reference panel composition and size

To determine what, if any, impact the composition of a reference panel had on the strategies

relying on population-based approaches, we examined the effects of the ancestral origins and

size of the reference panel using SHAPEIT. The SERs were measured using the same number

of individuals (n = 347) from each of well-known population ‘supergroups’ associated with the

1000GP data, namely AFR, AMR, EAS, EUR, and SAS, for the assessments of the SHAPEIT-

based strategies. The EUR supergroup, when used as the reference panel alone, produced the

lowest switch error rate (Fig 6A).

We further investigated the effect of ancestral subpopulations on phasing accuracy, by

dividing the EUR supergroup into well-known 1000GP subpopulations: CEU, FIN, GBR, IBS,

and TSI, with each group including the same number of individuals (n = 85). We compared

the phasing accuracy of the subpopulations against the supergroup EUR and the overall

1000GP mixed population at the same group size (Fig 6B). The SHAPEIT switch error rates

obtained for CEU, EUR, and 1000GP were 1.9, 2.0, and 2.8%, respectively. Given that the refer-

ence genome NA12878 belongs to the EUR population and the CEU subgroup, our results sug-

gest that a reference panel that contains matching ancestry with the query genome at the

Fig 5. Phasing accuracy and haplotype diversity. Switch error rates for various strategies are shown as a function of haplotype diversity of a

reference population based on the 1000GP reference panel.

https://doi.org/10.1371/journal.pgen.1007308.g005
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Fig 6. Phasing accuracy of SHAPEIT approaches and the choice of reference panels used. (a) Effect of population

supergroups on phasing accuracy. Five supergroups of the same size (n = 347) were collected from the 1000GP and used as the

reference panel for SHAPEIT (no read) phasing, or together with Illumina or PacBio reads for the NA12878 individual. The best

SER was achieved by EUR, to which the NA12878 individual belongs. (b) Effect of population subgroups on phasing accuracy.

Population subgroups of the same size (n = 85) were collected from the 1000GP, EUR, and each of five subpopulations in EUR

and used as the reference panel for SHAPEIT phasing of the NA12878 individual. No major improvement on SER was observed

among EUR and its 5 subgroups including EUR/CEU to which the individual NA12878 belongs. (c) Effect on phasing accuracy

as SER as a function of reference panel size, compared with the inclusion of WGS reads or familial information from parental

genotype. Reference panels containing up to 502 individuals from the 1000GP EUR group or 23k individuals from HRC were

used as the population background for SHAPEIT phasing of the NA12878 individual.

https://doi.org/10.1371/journal.pgen.1007308.g006
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supergroup (i.e. EUR) level, and not necessarily at the subpopulation level (i.e. CEU), was suffi-

cient to achieve excellent phasing performance.

We also examined the effect of reference panel size by randomly subsampling from each of

the 1000GP EUR (n = 502) and HRC (n = 22,690) panels. For both panels, the phasing accu-

racy was improved by increasing the reference panel size, and the improvement diminished as

the panel size increases in all SHAPEIT approaches with and without WGS reads or parents’

genotype data. Specifically, when 50X PacBio reads were supplied, only ~500 HRC individuals

were required to obtain the same accuracy as achievable by using the entire 23k HRC reference

panel alone (i.e. ~0.3% SER). Furthermore, when familial information from parental genotype

data was used, the SER obtained was 0.1% with 100 HRC individuals and as low as 0.03%

when using the entire panel of 23k HRC individuals (Fig 6C).

Discussion

Current human WGS strategies do not provide phase information by default. This creates

issues for identifying certain clinically-meaningful phenomena, such as compound heterozy-

gosity, as well as population-level phenomena such as haplotype diversity and LD patterns

that could help resolve migratory patterns and mutation origins. We evaluated 11 different

available strategies to resolve phase for human genomes. In general, these strategies fell into 3

different categories: those that rely purely on building haplotypic contigs from DNA sequenc-

ing reads or unique laboratory-based approaches through genome dilution, such as the 10X,

CPT, fosmid pools, and Moleculo; those that rely on purely population-based strategies in

which a reference panel of previously resolved haplotypes is leveraged to probabilistically

assign the most likely haplotype pair to an individual based on their genotype data (i.e. Beagle,

Eagle2, SHAPEIT); and those that rely on some combination of sequence read- and popula-

tion-based constructs, and/or parent offspring trios genotype information. Our results suggest

that: (1) the recently developed large comprehensive reference panel by the HRC greatly

enhance phasing performance; and (2) population-based phasing performance can be greatly

enhanced with family trio data that can match or surpass the precision of laboratory-based

methods. In all, laboratory-based methods are more expensive (e.g., $2,000 per genome using

the 10X Genomics approach [40]), and often require protocols that add complexity to work-

flows needed to use them but are likely to come down in costs. For cost-effectiveness, a combi-

nation of computational methods and input data types as shown in this study likely worth

considerations.

In our view, by far the most efficient and least expensive current approaches to phasing are

likely going to be based on computational methods leveraging large reference panels such as

the HRC. Our analyses showed that population-based phasing performance can be improved

if WGS/RNA read data are available. Long read-based strategies (e.g. PacBio) provide an addi-

tional advantage over other sequencing strategies for their ability to link kilobase-range long

distance variants. However, the best improvement to population phasing performance, which

involved a 10-fold reduction of errors and also a 10-fold increase in haplotype block lengths,

was the addition of parental genotype data. We also proposed a majority voting approach to

exploit the possibility of combining phasing strategies to improve the overall SNV site coverage

and the number of phase-resolved genes, and also to build consensus from multiple predicted

haplotypes to simplify downstream analysis. Traditional strategies to phasing genomes that

involve sequencing the parents (or relatives) or a target individual are enjoying a resurgence

because of that strategy’s ability to also help validate de novo or private mutations in clinical

contexts. Although such a strategy appears costly in terms of the amount of sequencing that

needs to be performed as it also depends on the availability of relatives, the continuous
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reduction in sequencing cost could favor the familial approach for improving the performance

of computational phasing methods.

With regard to the fosmid pool sequencing dataset, for comparison with the NA12878

GIAB gold standard and other phasing approaches we used the liftOver tool [26] to convert

the genomic coordinates from the NA12878 fosmid study from NCBI36 (hg18) to GRCh37

(hg19). As the liftover process for NA12878 fosmid data may have led to loss of some haplo-

type blocks, the fosmid-based phasing result for the European individual ‘‘Max Planck One”

(MP1) from a previous study is mentioned here for additional comparison. For the NA12878

individual, approximately 0.48 million fosmid clones were sequenced (i.e. 32 pools with 15,000

clones per pool), which was estimated to provide 5X coverage of the genome with 77% of

SNVs phased [10]. For the MP1 individual, deep sequencing of approximately 1.44 million fos-

mid clones (96 pools) equivalent to 14X coverage of the genome had led to 99% SNVs and 81%

genes phased [10].

We focused on phasing performance for the autosomal chromosomes. Because chromo-

some X has a number of specific features, such as variants within it exhibiting unique inheri-

tance patterns, it does contain genomic features, including the pseudo-autosomal regions

(PAR) and non-PAR segments, that would require special data handling and analysis modi-

fications to be accommodated in our analyses. For NA12878, who is a female, we attempted

a phasing comparison for the non-PAR region of chromosome X. The SER obtained with

10X and Moleculo was 0.15 and 0.60% respectively, which was about 2.43 and 1.19 times

higher than the autosomes. For chromosome X, SHAPEIT phasing produced haplotype

blocks with SER at 0.3%. The addition of parental genotype reduced the SER to 0.05%

(S4 Table).

Our analyses do raise some important questions. First, the accuracy of our results relies on

the NIST-GIAB gold standard variants used in this study. Recently, a further improved high

confidence NA12878 variant dataset (Platinum genotype calls) was developed and validated

using extensive family information spanning 3 generations and 17 members, and incorporat-

ing 6 different variant calling pipelines [41]. For the NA12878 individual, a total of 3.5 million

SNVs (heterozygous or homozygous) were identified in the Platinum variant dataset contain-

ing 800,564 additional SNVs not included in the NIST-GIAB set, and conversely a set of

62,946 SNVs in the NIST-GIAB set are not included in the Platinum dataset [41]. Nevertheless,

over 97.7% SNVs of the NIST-GIAB variant set used in this study overlapped with this high

confidence variant dataset and have high genotype concordance level (>99.99%) [41]. Using

the Platinum dataset [41] as a gold standard, we observed similar phasing performance for the

different approaches tested (S3 Fig). Second, we obtained phased genomes deposited in the

public domain by, e.g. 10X and Moleculo, and these were likely put together by the relevant

research teams to showcase these technologies. Thus, the results of these strategies may have

been pursued with some level of optimization that is not likely to be obtained with routine and

large-scale use of these strategies.

Finally, our analyses focused on SNVs and did not consider short insertion-deletion poly-

morphisms (indels) and structural variants such as moderate to large indels, copy number var-

iants (CNVs), inversions, or other forms of structural variations (SVs). Such variations have a

significant role to play in many diseases and are hence very important to consider. In addition,

certain combinations of SVs and CNVs might be very important to resolve for population-

based studies. For example, variants within different copies of a gene may help resolve the ori-

gins and recent evolution of those copies. Ultimately, since humans are indeed a diploid spe-

cies, the ability to phase human genomes using fast and low-cost computational approaches

will push diploid genome analysis to a new level.
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Supporting information

S1 Table. SNV genotype of NA12878 and the parents in chromosomes 1–22. Based on the

NA12878 parent offspring family trio genotype data, the total number unphasable sites by con-

ventional Mendelian segregation rules were estimated to include 360,241 triple heterozygous

sites and 463,995 sites with a heterozygous variant in NA12878 but no variant called (homozy-

gous reference or undetermined genotypes) in both parents. Thus, at best only 67% (824,236

out of 2,467,785) of NA12878 heterozygous SNV sites can be phase-resolved by the conven-

tional transmission approach.

(XLSX)

S2 Table. Switch error rate and percentage of phased SNVs breakdown by chromosome.

(XLSX)

S3 Table. Switch errors across the LINE, SINE, and LTR repeat regions.

(XLSX)

S4 Table. Switch error rate of 10X, Moleculo, and various SHAPEIT phasing approaches

for X chromosome.

(XLSX)

S1 Fig. Performance of all phasing methods compared in this study ranked by individual

metrics: (a) Switch error rate, (b) Haplotype block size (QAN50), and (c) Percentage of

fully phased genes.

(TIF)

S2 Fig. Performance of majority vote phasing compared to 8 individual phasing methods

ranked by individual metrics: Switch error rate, % phased SNVs, and % fully phased genes.

(TIF)

S3 Fig. Comparison of phasing performance using two different datasets as the gold stan-

dard. A total of 1,697,789 and 2,084,089 phase-resolved heterozygous SNVs on 22 autosomes

were contained in the NIST-GIAB and the Platinum datasets, respectively.

(TIF)
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