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Purpose: To develop a radiomics prediction model to improve pulmonary nodule (PN) classification
in low-dose CT. To compare the model with the American College of Radiology (ACR) Lung CT
Screening Reporting and Data System (Lung-RADS) for early detection of lung cancer.
Methods: We examined a set of 72 PNs (31 benign and 41 malignant) from the Lung Image Data-
base Consortium image collection (LIDC-IDRI). One hundred three CT radiomic features were
extracted from each PN. Before the model building process, distinctive features were identified using
a hierarchical clustering method. We then constructed a prediction model by using a support vector
machine (SVM) classifier coupled with a least absolute shrinkage and selection operator (LASSO).
A tenfold cross-validation (CV) was repeated ten times (10 9 10-fold CV) to evaluate the accuracy
of the SVM-LASSO model. Finally, the best model from the 10 9 10-fold CV was further evaluated
using 20 9 5- and 50 9 2-fold CVs.
Results: The best SVM-LASSO model consisted of only two features: the bounding box anterior–
posterior dimension (BB_AP) and the standard deviation of inverse difference moment (SD_IDM).
The BB_AP measured the extension of a PN in the anterior–posterior direction and was highly corre-
lated (r = 0.94) with the PN size. The SD_IDM was a texture feature that measured the directional
variation of the local homogeneity feature IDM. Univariate analysis showed that both features were
statistically significant and discriminative (P = 0.00013 and 0.000038, respectively). PNs with larger
BB_AP or smaller SD_IDM were more likely malignant. The 10 9 10-fold CV of the best SVM
model using the two features achieved an accuracy of 84.6% and 0.89 AUC. By comparison, Lung-
RADS achieved an accuracy of 72.2% and 0.77 AUC using four features (size, type, calcification,
and spiculation). The prediction improvement of SVM-LASSO comparing to Lung-RADS was sta-
tistically significant (McNemar’s test P = 0.026). Lung-RADS misclassified 19 cases because it was
mainly based on PN size, whereas the SVM-LASSO model correctly classified 10 of these cases by
combining a size (BB_AP) feature and a texture (SD_IDM) feature. The performance of the SVM-
LASSO model was stable when leaving more patients out with five- and twofold CVs (accuracy
84.1% and 81.6%, respectively).
Conclusion: We developed an SVM-LASSO model to predict malignancy of PNs with two CT
radiomic features. We demonstrated that the model achieved an accuracy of 84.6%, which was
12.4% higher than Lung-RADS. © 2018 American Association of Physicists in Medicine [https://
doi.org/10.1002/mp.12820]
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1. INTRODUCTION

Lung cancer is the leading cause of cancer death in the world.
The National Lung Cancer Screening Trial (NLST) showed a
clear survival benefit for screening with a low-dose computed
tomography (LDCT) in current and former smokers.1 The
early detection of lung cancer by LDCT can reduce mortality.
Recently, the Lung Imaging Reporting and Data System
(Lung-RADS) was developed by the American College of
Radiology (ACR) to standardize the screening of lung cancer
on CT images.2,3 However, LDCT dramatically increases the
number of indeterminate pulmonary nodules (PNs) and pro-
duces a high false-positive diagnostic rate, which leads to
overdiagnosis.4 Therefore, it is important to develop new
approaches to improve accuracy.

Computer-aided detection/diagnosis (CAD; specifically,
CADe for detection and CADx for diagnosis) systems have
been investigated to detect PNs and classify malignant and
benign PNs.5–10 In the mid-90s, Gurney and Swensen con-
ducted a PN characterization study with an artificial neural
network (ANN) and features that were subjectively assessed
by radiologists.11 Kawata et al. proposed quantitative surface
characterization to classify malignant and benign PNs.12

McNitt-Gray et al. proposed a pattern classification approach
to characterize PNs, which used quantitative features includ-
ing attenuation (intensity), size, shape, and texture.13 Aoyama
et al. proposed an automatic scheme which segment PNs
using dynamic programming technique and determine malig-
nant PNs using linear discriminant analysis (LDA) classifica-
tion.14 Armato et al. developed a serial approach PN
classification following automatic PN detection.15 A rule-
based scheme was applied to reduce PN candidates in the
detection, and two LDA classifiers were applied for the detec-
tion and the classification of PNs. Shah et al. investigated the
utility of a CAD system using volumetric and contrast
enhancement features.16 Suzuki et al. developed the massive
training ANN to filter out benign appearances in CT image.17

Way et al. developed an automatic 3D active contour seg-
mentation method and extracted surface features from the
segmented PNs.18,19 Lee et al. developed ensemble classifica-
tions using random subspace method or genetic algorithm
feature selection with LDA classifier.20 Han et al. investi-
gated texture feature analysis to differentiate malignant and
benign PNs.21 The early successes of the CAD systems illus-
trated that quantitative medical image analysis has the poten-
tial to improve the performance of detecting cancer on chest
CT.

Recently, radiomics studies, which extract a large number
of quantitative features from medical images and subse-
quently perform data mining, have been proposed for various
clinic applications.22–26 For instance, radiomics has been
studied for the prediction of tumor responses and patient out-
comes, resulting in more accurate prediction of local control
and overall survival.22–24,26–29 Lung cancer screening using
radiomics has also been studied.30–33 Hawkins et al. pro-
posed a random forest classifier30 using 23 stable radiomic
features.34,35 Ma et al. proposed a random forest classifier

using 583 radiomic features.31 Buty et al. developed a ran-
dom forest classifier using 4096 appearance features
extracted with a pretrained deep neural network and 400
shape features extracted with spherical harmonics.32 Kumar
et al. developed a deep neural network model using 5000 fea-
tures.33 Liu et al. proposed a linear classifier based on 24
image traits visually scored by physicians.36.

Despite the improved prediction accuracy reported in
these radiomics studies, there are limitations including the
possibility of overfitting the model to the data and lack of
clinical/biological interpretations of the intimidatingly large
number of radiomic features. To overcome these limitations,
we first identified distinctive radiomic features using hierar-
chical clustering and then constructed a support vector
machine (SVM) model with only two important features cho-
sen by a least absolute shrinkage and selection operator
(LASSO). We compared the performance of this model and
Lung-RADS on a public database.

2. MATERIALS AND METHODS

2.A. Dataset and Lung-RADS

The Lung Image Database Consortium image collection
(LIDC-IDRI) in The Cancer Imaging Archive (TCIA) con-
tains 1018 cases with low-dose screening thoracic CT scans
and marked-up annotated lesions.37 Four experienced tho-
racic radiologists performed contouring and image annota-
tion. A subset of cases (n = 157) has associated diagnostic
data regarding the screening CT scans. Of these 157 patients,
36 had benign lesions, 43 had malignant primary lung can-
cers, and the remainders were unknown or had metastatic
tumors. Forty-two malignant lung cancer cases and six
benign cases were diagnosed by biopsy or surgical resection,
and 18 benign diseases were determined by stability at 2-year
follow-up. Lastly, four cases (one malignant and three benign
cases) were determined by lesional progression or response.
However, five benign cases and two malignant cases had
missing PN contours. Thus, we evaluated 72 cases (31 benign
and 41 malignant cases) who had both diagnostic data and
PN contours. Each evaluated PN had at least one to four con-
tours delineated by the four radiologists. Figure 1 shows dis-
tributions of size, type, calcification, and spiculation of PNs
in the dataset.

The tube peak potential energy used for most scan acquisi-
tion was 120 kV (n = 71) and only one scan was 140 kV.
Tube current ranged from 80 to 570 mA (mean: 322.5 mA).
Slice thicknesses were 1.0 mm (n = 5), 1.25 mm (n = 13),
1.5 mm (n = 1), 2.0 mm (n = 11), and 2.5 mm (n = 42).
Reconstruction interval ranged from 0.625 to 2.5 mm (mean:
1.80 mm). The in-plane pixel size ranged from 0.547 to
0.898 mm (mean: 0.721 mm). Each axial slide of CT scan
was 512 9 512 pixels. While the convolution kernels used
for image reconstruction differ among manufacturers, these
convolution kernels may be classified broadly as “standard/
nonenhancing” (n = 43), “slightly enhancing” (n = 17), and
“over enhancing” (n = 12) (in order of increasing spatial
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frequencies accentuated by each class). Forty-four scans were
contrast-enhanced CT.

We performed Lung-RADS categorization based on the
PN contour and annotations made by the four radiologists in
the LIDC-IDRI dataset.2 A study radiologist (CL) reviewed
the categorization results. As shown in Table I, the Lung-
RADS categorization is mainly based on PN size (the average
of the longest and shortest diameters on axial slice) with
some consideration to calcification, PN type (solid, part-
solid, and nonsolid or ground glass nodule/GGN), and addi-
tional suspicious features. To match the original LIDC-IDRI
diagnosis, categories 3 and lower PNs are deemed as benign
and category 4 (4A, 4B, and 4X) PNs as malignant.

2.B. Radiomic features

Figure 2 shows the flowchart for the extraction of radio-
mic features and the construction of a prediction model. To
extract radiomic features from a CT, we built the following
image analysis pipeline using the Insight Segmentation and
Registration Toolkit (ITK, National Library of Medicine;
Bethesda, MD).38 First, we re-sampled the CT images to
make voxels isotropic (1 mm). Second, we generated a con-
sensus contour for each PN with 2 or more contours by using

FIG. 1. Distributions of pulmonary nodule size, type, calcification, and spiculation in the dataset. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. Summary of Lung-RADS categorization for baseline screening.

Category Baseline screening Malignancy

1 No PNs; PNs with
calcification

Negative
<1% chance of
malignancy

2 Solid/part-solid: <6 mm
GGN: <20 mm

Benign appearance
<1% chance of
malignancy

3 Solid: ≥6 to <8 mm
Part-solid: ≥6 mmwith
solid component <6 mm
GGN: ≥20 mm

Probably benign
1–2% chance of
malignancy

4A Solid: ≥8 to <15 mm
Part-solid: ≥8 mmwith
solid component ≥6 and
<8 mm

Suspicious
5–15% chance of
malignancy

4B Solid: ≥15 mm
Part-solid: Solid
component ≥8 mm

>15% chance of
malignancy

4X Category 3 or 4 PNs with
suspicious features (e.g.,
enlarged lymph nodes) or
suspicious imaging
findings (e.g., spiculation)

>15% chance of
malignancy
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the simultaneous truth and performance level estimation
(STAPLE).39,40 Third, we extracted 103 radiomic features
from each PN to quantify its intensity, shape, and texture
(spatial variations).23,27,41 Finally, we performed a univariate
analysis using Wilcoxon rank-sum test and the area under the
receiver operating characteristic curve (AUC) to evaluate the
significance of each feature. P-values were adjusted using
Bonferroni correction because we tested multiple features
(n = 103) for a single outcome.42

Three types of radiomic features were extracted for each
PN. Intensity features are first-order statistical measures that
quantify the level and distribution of CT attenuations in a PN.
Shape features describe geometric characteristics (e.g., vol-
ume, diameter, elongation, and flatness) of a PN. CT texture
features quantify the spatial patterns of tissue density, such as
homogeneity, coarseness, and correlation of CT intensity in a
PN by using Gray-level co-occurrence matrix (GLCM)43 and
gray-level run-length matrix (GLRM).44,45 For texture fea-
tures, the CT intensity was first normalized to the range of
contrast stretching to simplify the spatial complexity due to a
wide dynamic range of CT attenuation. The texture features
were then computed on the GLCM and GLRM of the nor-
malized volumes. The average value of each texture feature
was computed over all 13 directions to obtain rotationally
invariant features. Furthermore, the length of runs was

normalized by the diagonal length of the PN’s bounding box
to make the GLRM scale invariant.

2.C. Prediction model

Before constructing a prediction model, we identified dis-
tinctive radiomic features using Ward’s hierarchical cluster-
ing method,46 which maximized the total within-cluster
(Pearson) correlation (r). Each feature started in its cluster.
Pairs of clusters were merged if the total within-cluster corre-
lation was larger after merging than before merging, as one
moved up the hierarchy. This resulted in a hierarchical feature
cluster tree. The tree was then divided into several prominent
clusters (feature groups) by cutting using a threshold
r ≥ 0.85. If a feature was the representative feature of a fea-
ture group, which had the smallest within-cluster correlation,
or if a feature was independent to all other features, it was
identified as a distinctive feature. Other features were redun-
dant and were removed from subsequent analysis.

An SVM classifier was, then, constructed for the predic-
tion of PN malignancy coupled with a LASSO feature selec-
tion. All distinctive features were fed to the SVM classifier
in a manner of a tenfold cross-validation (CV). Within each
fold CV of the model building process, LASSO was applied
to select the ten most important distinctive features by using
another (inner loop) tenfold CV. An SVM classifier was
then constructed to predict PN malignancy. A radial basis
kernel function was employed in the SVM classifier, with its
parameters experimentally chosen: c = 0.001 and C = 64.
We repeated the outer-loop tenfold CV ten times to obtain
the model accuracy (10 9 10-fold CV). In each repetition,
all patients were randomly partitioned into a training set
(90% patients) and a testing set (10% patients). Finally, the
stability of the best model from the 10 9 10-fold CV was
evaluated using 20 9 5- and 50 9 2-fold CVs, in which
20% and 50% patients were partitioned into the testing set,
respectively.28 McNemar’s test was used to compare predic-
tion performance between the proposed radiomics model
and Lung-RADS.

3. RESULTS

The hierarchical clustering identified 44 distinctive fea-
tures from the total of 103 radiomic features. Among the 44
distinctive features, 14 were significant in univariate analysis
(P < 0.05 after Bonferroni correction). These included four
shape, eight texture, and two shape + intensity (intensity
weighted shape features using image moments) features
(Table S1).

Figure 3 shows that the model achieved the highest accu-
racy when two features were selected into the SVM classifier.
The two most frequently selected features were (a) the PN
bounding box (BB) anterior–posterior (AP) dimension
(BB_AP), and (b) the standard deviation (SD) of inverse dif-
ference moment (SD_IDM, a texture feature that measures
the directional variation of the local homogeneity feature
IDM,43 see Section 4.A). BB_AP and SD_IDM were selected

FIG. 2. A flowchart of the extraction of radiomic features and the construction
of a prediction model. [Color figure can be viewed at wileyonlinelibrary.com]
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as the first feature 57 times and 43 times, respectively. They
were selected as the second feature 43 times and 57 times,
respectively. Therefore, the two features were always selected
into the best SVM classifier. The best single-feature model
achieved 75.1 � 6.0% accuracy (0.75 � 0.04 AUC). When
adding the second feature in the model, the prediction accu-
racy was improved to 84.6 � 1.5% (0.89 � 0.01 AUC).
However, the performance was worse when adding more than
two features as shown in Fig. 3.

Figure 4 shows the difference between benign and malig-
nant PNs for the two features and the PN size. As expected,
the BB_AP was highly correlated with the PN size
(r = 0.94), and the larger the BB_AP, the more likely a PN
was malignant. The AP or left–right (LR) dimensions might
be a better predictor than the superior–inferior (SI) dimension
because of the typically higher axial resolutions (≤1 mm)
than the longitudinal resolution (2–3 mm) in CT. The
SD_IDM is a texture feature that measures the directional
variation of the local homogeneity feature IDM. The smaller
the SD_IDM, the more likely a PN was malignant.

Table II compares the prediction performance of Lung-
RADS and the SVM-LASSO model in 10 9 10-fold CV.
Figure 5 shows their ROC curves. The ROC curve for Lung-
RADS was generated by using each category as a cutoff for
malignancy classification. The ROC curve for the SVM-
LASSO model was generated by computing the probability
of nodule malignancy using the improved Platt’s method.47

The Lung-RADS achieved an accuracy of 72.2% with four
features (size, type, calcification, and suspicious features or
image findings). The SVM-LASSO model achieved an accu-
racy of 84.6% with two features (BB_AP and SD_IDM),
which represented a 12.4% improvement over the Lung-
RADS. The performance difference was statistically signifi-
cant (P = 0.026).

Figure 6 shows a scatter plot of the two features and the
classification curve by the SVM-LASSO model. All five
malignant PNs in the elliptical region a (red) were misclassi-
fied as benign by Lung-RADS since they were small

(size < 8 mm). Two example cases (c) and (d) were shown in
Fig. 7. Note that case (c) was part-solid with a solid compo-
nent of 4 mm, and was thus classified as Category 3. On the
other hand, all seven benign PNs in the elliptical region b
(green) were misclassified as malignant by Lung-RADS since
they were large (size ≥ 8 mm). Two example cases (a) and
(b) were shown in Fig. 7. The SVM-LASSO model correctly
classified these 12 PNs in both regions a and b by combining
a size feature (BB_AP) and a texture feature (SD_IDM).
There was one malignant case that was correctly classified by
Lung-RADS but misclassified by the SVM-LASSO model.
This case was indicated by arrow c in Fig. 6 and shown as
the case (e) in Fig. 7. This PN was correctly classified by
Lung-RADS as malignant (category 4B) based on its size.
Finally, nine cases were misclassified by both Lung-RADS
and the SVM-LASSO model. Overall, the SVM-LASSO
model showed a clear advantage over Lung-RADS. Figure 8
shows Lung-RADS categorization on the scatter plots for
solid and part-solid PNs, respectively.

The performance of the SVM-LASSO model was stable
when more patients were partitioned into the testing set with
five- and twofold CVs compared with tenfold CV (Table III).
Only a small reduction in each accuracy measurement was
observed, and even the accuracy of twofold CV (50% patients
in the training set and 50% in the testing set) was 6.3% higher
than that of the Lung-RADS.

4. DISCUSSION

We demonstrated that the SVM-LASSO model achieved
84.6% accuracy, which was 12.4% higher than that of the
Lung-RADS. Accurate diagnosis of malignant PNs on LDCT
screening is critical because LDCT dramatically increases the
number of indeterminate PNs, leading to overdiagnosis.4 This
model has the potential to spare individuals with benign
growths from the biopsies and 2-year multiple follow-up
examinations while allowing effective treatments to be imme-
diately initiated for lung cancer.

FIG. 3. Performance of the prediction model with increasing number of features in the CV. [Color figure can be viewed at wileyonlinelibrary.com]
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4.A. SD_IDM feature

IDM is a texture feature that measures the local homo-
geneity.43 The SD_IDM measures the directional variation
of the IDM in 13 directions. As shown in Figs. 9 and 10,
benign PNs appeared to be more homogeneous with gener-
ally higher IDMs in each direction as well as in the
Mean_IDM (average of IDMs in all 13 directions) than
malignant PNs of similar size. More importantly, benign

PNs tended to be more homogeneous with much higher
IDMs in AP and/or SI directions than in the other 12 or 11
directions. This led to a larger directional variation of the
IDM or higher SD_IDM for benign PNs. The SD_IDM
was even higher (≥0.041) for all four cases with diffuse
solid calcification (not shown), which is a typical pattern in
benign PNs (e.g., in PN with granulomatous inflammation).
For the studied cohort, SD_IDM showed a highly signifi-
cant difference between malignant and benign PNs
(P = 0.000038, Fig. 4) and provided complementary infor-
mation to size (Figs. 6 and 7). These observations sup-
ported using SD_IDM in addition to size in the
classification of PN malignancy.

FIG. 4. The box plots show the difference between benign and malignant for PN size and the selected features (BB_AP and SD_IDM). The Wilcoxon rank-sum
test obtained P-values. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE II. Prediction performance of Lung-RADS and the SVM-LASSO model.

Prediction model Sensitivity Specificity Accuracy AUC No. of features

Lung-RADS 80.5% 61.3% 72.2% 0.77 4

SVM-LASSO 87.2 � 1.4% 81.2 � 3.2% 84.6 � 1.5% 0.89 � 0.01 2

FIG. 5. ROC curve analysis on the best model of SVM-LASSO and Lung-
RADS for predicting malignant PNs. [Color figure can be viewed at wiley
onlinelibrary.com]

FIG. 6. Scatter plot of the two important features and the classification curve
(dashed line) by the SVM-LASSO model for all PNs. [Color figure can be
viewed at wileyonlinelibrary.com]

Medical Physics, 45 (4), April 2018

1542 Choi et al.: Radiomics analysis of pulmonary nodules 1542



4.B. Comparison with CADx systems

Table IV shows the comparisons with CADx systems for
lung cancer screening. The proposed method showed

comparable or better accuracy than others. For both compar-
isons with CADx systems (Table IV) and with radiomics
models (Table V), when not specified ground-truth was
obtained by biopsy, resection, or 2-year follow-up. Also it

FIG. 7. Cases misclassified by Lung-RADS but correctly classified by the SVM-LASSO model (a–d). A case correctly classified by Lung-RADS but misclassi-
fied by the SVM-LASSO model (e). The scale bar indicates 10 mm, window/level: 1400/�500 HU. The value in the parenthesis for size is the diameter of the
solid component of a part-solid PN. Spiculation is on a 1(no) to 5(marked) scale. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 8. Lung-RADS categorization on scatter plots for solid PNs (a) and part-solid PNs (b). The SVM-LASSO classification curve is approximately mapped on the
plots (green dashed line). Lung-RADS categorization is shown on top with black vertical dashed lines (the bold line indicates classification between benign and sus-
picious); PNs with calcification (category 1) are filled with dark gray, and PNs with spiculation (category 4X) are filled with light gray (red color online version).
[Color figure can be viewed at wileyonlinelibrary.com]
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should be noted that each method was evaluated on different
datasets or with different validation methods. Most methods
reported only AUC.

Aoyama et al.14 proposed segmentation-based scheme
which achieved 0.828 AUC (single slice) and 0.846 AUC
(multiple slice). The performance (AUC 0.882) of Suzuki’s
scheme17 based on the multiple massive training ANNs was
greater than that of Aoyama’s scheme14 for the same data-
base. Shah et al.16 applied contrast enhancement features
extracted from pairs of CTs without contrast and with intra-
venous contrast injection. They achieved AUCs from 0.69 to
0.92 in a leave-one-out CV. Way et al.19 developed novel sur-
face features, and the AUC was improved from 0.821 to
0.857 when the surface features were added to morphologi-
cal and texture features. Han et al.21 achieved the highest
AUC of 0.894, but it was the only study that ground-truth
was rated by radiologist’s assessment. LUNGx Challenge
reported the performance of 11 CAD systems (0.50–0.68
AUC) and six radiologists (0.70–0.85 AUC) for diagnosis of
PNs on CT scans.10 Only three CAD methods performed sta-
tistically better than random guessing. Three radiologists per-
formed statistically better than the best CAD system (0.68
AUC), which was based on SVM model.

4.C. Comparison with recently reported radiomics
models

Table V shows the comparisons with recently reported
radiomics models for lung cancer screening. The proposed
method showed comparable or better accuracy than others.
Some accuracy measurements were not reported in all
studies.

Hawkins et al. proposed a random forest classifier using
23 stable (high reproducibility – concordance correlation
coefficients ≥0.95 in test–retest) radiomic features.30 Ma
et al. proposed a random forest classifier using 583 radiomic
features.31 Its performance on the same LIDC dataset as used
in the present study was comparable to the proposed SVM-
LASSO model. However, the number of features used was
more than eight times of the number of patients, which may
cause a model overfitting problem.

Both Buty et al. and Kumar et al. applied deep learning
techniques to predict malignancy of PNs.32,33 Buty et al.
extracted 4096 appearance features using the pretrained deep
neural network (AlexNet48) and 400 shape features from
spherical harmonics. They fed these features into a random
forest classifier, which achieved an accuracy of 82.4%.32

Since the neural network was pretrained using general color
images, it is questionable that it can capture the salient fea-
tures of a PN in the LDCT images. Kumar et al. used a deep
neural network for both feature extraction and malignancy
classification. They extracted a total of 5000 radiomic fea-
tures and achieved an accuracy of 77.5%.33 Deep learning is
a rapidly emerging technology, but it needs large training
dataset to avoid model overfitting because an intimidatingly
large number of nodes and features are used. Liu et al.

TABLE III. Prediction performance of the SVM-LASSO using two features
BB_AP and SD_IDM on 10 9 10-, 20 9 5-, and 50 9 2-fold CVs.

Sensitivity Specificity Accuracy AUC

10 9 10-fold 87.2 � 1.4% 81.2 � 3.2% 84.6 � 1.5% 0.89 � 0.01

20 9 5-fold 86.5 � 2.5% 80.9 � 2.9% 84.1 � 2.0% 0.88 � 0.02

50 9 2-fold 85.7 � 4.5% 76.1 � 10.6% 81.6 � 5.7% 0.87 � 0.04

(a) (b) (c)

(d) (e) (f)

FIG. 9. IDM and SD_IDM for small benign and malignant PNs (BB_AP = 10 mm for both). The length of each arrow indicates IDM value for left–right (LR),
anterior–posterior (AP), and superior–inferior (SI) directions. [Color figure can be viewed at wileyonlinelibrary.com]
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applied 24 image traits scored by radiologists to predict
malignancy of PNs.36 They achieved an accuracy of 80.0%
and 0.81 AUC using four image traits that characterized PN
size, contour/margin, concavity, and PNs in nontumor lobes.
However, the image traits are semi-quantitative with inter-
and intra-observer variation depending on radiologists’ train-
ing and preferences.

Compared with the above methods, the main advantage of
our method was that we used only two important features in
the SVM-LASSO model while achieving comparable or bet-
ter accuracy.

4.D. Repeatability analysis

Using the group consensus contour from four manual seg-
mentations is a good way to reduce inter-observer variability;
however, it is not representative of clinical practice where an
automatic or semi-automatic segmentation method with man-
ual correction would be most likely used. In this study, we
used the manual segmentations readily available and con-
ducted a repeatability analysis across the four individual con-
tours and the group consensus contours. First, we evaluated
the inter-observer agreement by comparing the individual
contours and the consensus contour (Table S2). All the STA-
PLE-estimated sensitivity, specificity, and Jaccard index were
greater than 80% except the Jaccard index (77.7%) of R4. For
feature agreement evaluation, we examined Bland–Altman
plots49 for BB_AP and SD IDM (Fig. S1) and calculated the
intra-class correlation coefficient (ICC)50 between the con-
sensus and individual contours. Figure S1 shows that the
mean differences were close to zero, indicating that there was
no systematic error, there was no trend in the plots, and the

95% limits of agreement were small. The ICCs were 0.95 for
BB_AP and 0.78 for SD_IDM (Table S3), showing good
agreement.50 Lastly, Table S4 shows agreements in malig-
nancy predictions between the consensus contours and indi-
vidual contours. The predictions based on individual
contours (80.6–83.6%) were slightly less accurate than the
prediction based on the consensus contours (84.6%) but were
not significantly different (all P > 0.05). Overall, the
proposed method showed consistent results across different
contours.

4.E. Limitations

Limitations of the present study include that the model
was developed from a moderate-size cohort of 72 patients,
and there were no GGN cases in this cohort. Although ten-,
five-, and twofold CV showed that the model was not notably
affected by overfitting, the performance of the model should
be validated in a larger, independent patient cohort. Also,
there were no radiomic features that specifically characterized
lobulated or spiculated margins.

4.F. Future work

In this study, we applied a feature discovery approach,
which extracted a large number of image features (>100) first
and then selected the most valuable ones that are indepen-
dent, robust, and prominent in the data.24 We plan to add a
candidate feature approach, in which only a few important
features are selected based on prior knowledge of their physi-
ological, biochemical, or functional associations with the dis-
ease and therapy.24 For example, quantification of lobulated

(a) (b) (c)

(d) (e) (f)

FIG. 10. IDM and SD_IDM for large benign and malignant PNs (BB_AP = 17 mm for both). The length of each arrow indicates IDM value for the three direc-
tions. [Color figure can be viewed at wileyonlinelibrary.com]
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or spiculated margins is a good candidate feature because it is
known that a PN with smooth and well-defined margins is
more likely benign, while a PN with lobulated or spiculated
margins is more likely malignant.51 A more accurate PN seg-
mentation method is required to delineate lobulated or spicu-
lated margins, and advanced feature extraction methods are
needed to characterize such margins. Other potential candi-
date features include calcification, attachment, solidity, and
cavitation of a PN.

It was difficult to diagnose small PNs (diameter = 6–
15 mm and the probability of malignancy = 1–15%) based
on radiomics features only. Our model achieved an accuracy
of only 50% for PNs smaller than 15 mm. We showed that
when combining plasma biomarkers with clinical variables
and image features, the prediction was more accurate
(AUC = 0.91 in Ref. [52] and 0.95 in Ref. [53]). These stud-
ies suggested that the biomarkers, clinical variables, and
image features have complementary information. Therefore,
we plan to integrate all these parameters in the SVM-LASSO
model and expect further improvement in the prediction
accuracy, particularly for small PNs.

5. CONCLUSION

We developed an SVM-LASSO model to predict malig-
nancy of PNs with two CT radiomic features (the bounding

box anterior–posterior dimension and the directional varia-
tion of local homogeneity). We demonstrated that the model
achieved an accuracy of 84.6%, which was 12.4% higher than
that for Lung-RADS.
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Additional Supporting Information may be found online in
the supporting information tab for this article.

Table S1. The significant distinctive features by univariate
analysis. The two features in bold were selected in the final
model.

Table S2. Inter-observer variation in contouring the PN vol-
ume. The STAPLE-estimated sensitivity, specificity, and Jac-
card index measured the agreement between the individual
contours and the group consensus contours.
Table S3. The intra-class correlation coefficient (ICC)
among the individual contours and the group consensus con-
tours.
Table S4. Comparison between the predictions by the SVM-
LASSO model using features from the group consensus con-
tours and each radiologist’s contours. P-values were com-
puted by McNamer’s test between predictions based on the
consensus and individual contours.
Figure S1. Bland–Altman plots for the two selected features
between the group consensus contours and individual con-
tours. Blue line is average difference and red dashed lines are
95% limits of agreement.

Medical Physics, 45 (4), April 2018

1549 Choi et al.: Radiomics analysis of pulmonary nodules 1549


	1. Intro�duc�tion
	2. Mate�ri�als and meth�ods
	2.A. Dataset and Lung-RADS
	2.B. Radiomic fea�tures
	fig1
	tbl1
	2.C. Pre�dic�tion model

	3. Results
	fig2

	4. Dis�cus�sion
	fig3
	4.A. SD_IDM fea�ture
	fig4
	tbl2
	fig5
	fig6
	4.B. Com�par�ison with CADx sys�tems
	fig7
	fig8
	4.C. Com�par�ison with recently reported radiomics mod�els
	tbl3
	fig9
	4.D. Repeata�bil�ity anal�y�sis
	4.E. Lim�i�ta�tions
	4.F. Future work
	fig10
	tbl4

	5. Con�clu�sion
	 Acknowl�edg�ments
	 Con�flict of Inter�est
	$^var_corr1
	bib1
	bib2
	tbl5
	bib3
	bib4
	bib5
	bib6
	bib7
	bib8
	bib9
	bib10
	bib11
	bib12
	bib13
	bib14
	bib15
	bib16
	bib17
	bib18
	bib19
	bib20
	bib21
	bib22
	bib23
	bib24
	bib25
	bib26
	bib27
	bib28
	bib29
	bib30
	bib31
	bib32
	bib33
	bib34
	bib35
	bib36
	bib37
	bib38
	bib39
	bib40
	bib41
	bib42
	bib43
	bib44
	bib45
	bib46
	bib47
	bib48
	bib49
	bib50
	bib51
	bib52
	bib53

	 1.Intro�duc�tionLung cancer is the lead�ing cause of cancer death in the world. The National Lung Cancer Screen�ing Trial (NLST) showed a clear sur�vival ben�e�fit for screen�ing with a low-dose com�puted tomog�ra�phy (LDCT) in cur�rent and former smo...

