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Abstract

Parsing continuous acoustic streams into perceptual units is fundamental to auditory perception. 

Previous studies have uncovered a cortical entrainment mechanism in the delta and theta bands 

(~1–8 Hz) that correlates with formation of perceptual units in speech, music, and other quasi-

rhythmic stimuli. Whether cortical oscillations in the delta-theta bands are passively entrained by 

regular acoustic patterns or play an active role in parsing the acoustic stream is debated. Here we 

investigate cortical oscillations using novel stimuli with 1/f modulation spectra. These 1/f signals 

have no rhythmic structure but contain information over many timescales because of their 

broadband modulation characteristics. We chose 1/f modulation spectra with varying exponents of 

f, which simulate the dynamics of environmental noise, speech, vocalizations, and music. While 

undergoing magnetoencephalography (MEG) recording, participants listened to 1/f stimuli and 

detected embedded target tones. Tone detection performance varied across stimuli of different 

exponents and can be explained by local signal to noise ratio computed using a temporal window 

around 200 ms. Furthermore, theta band oscillations, surprisingly, were observed for all stimuli, 

but robust phase coherence was preferentially displayed by stimuli with exponents 1 and 1.5. We 

constructed an auditory processing model to quantify acoustic information on various timescales 

and correlated the model outputs with the neural results. We show that cortical oscillations reflect 

a chunking of segments, >200 ms. These results suggest an active auditory segmentation 
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mechanism, complementary to entrainment, operating on a timescale of ~200 ms to organize 

acoustic information.

Graphical Abstract

Parsing continuous natural sounds into perceptual units is fundamental to auditory perception. We 

used magnetoencephalography to investigate how the human auditory system groups sounds with 

1/f modulation spectra, which mimic modulation profiles of natural sounds and indicate irregular 

temporal structure. The results revealed an active chunking mechanism reflected by theta band 

oscillations.

Introduction

Cortical oscillations are entrained not only by strictly periodic stimuli but also by quasi-

rhythmic structures in sounds, such as the amplitude envelope of speech (Luo & Poeppel, 

2007; Kerlin et al., 2010; Cogan & Poeppel, 2011; Peelle et al., 2013; Zion Golumbic et al., 
2013; Doelling et al., 2014; Kayser et al., 2015) and music (Doelling & Poeppel, 2015), the 

frequency modulation envelope (Henry & Obleser, 2012; Herrmann et al., 2013; Henry et 
al., 2014), and even abstract linguistic structure (Ding et al., 2015). These studies have 

advanced our understanding of how the auditory system exploits regular temporal structure 

to organize acoustic information. It is not clearly understood, though, whether cortical 

oscillations tracking sounds are a result of neural responses passively driven by rhythmic 

structures or reflect a built-in constructive processing scheme, namely that the auditory 

system employs a windowing process to actively group acoustic information (Ghitza & 

Greenberg, 2009; Ding & Simon, 2014).

It has been proposed that cortical oscillations in the auditory system reflect an active parsing 

mechanism - the auditory system chunks sounds into segments of around 150 – 300 ms, 

roughly a cycle of the theta band, for grouping acoustic information (Ghitza & Greenberg, 

2009; Schroeder et al., 2010; Ghitza, 2012). A slightly different (but related) view 

hypothesizes that the auditory system processes sounds using temporal integration windows 
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of multiple sizes concurrently: within a short temporal window (~ 30 ms), temporally fine-

grained information is processed; a more ‘global’ acoustic structure is extracted within a 

larger temporal window (~ 200 ms) (Poeppel, 2003; Giraud & Poeppel, 2012). These 

frameworks are largely based on studying speech signals that contain these timescales as 

relatively obvious components: the temporal modulations of speech peak around 4–5 Hz 

(Ding et al., 2017). However, if such a segmentation scale or integration window exists at the 

timescale of ~ 200 ms in the auditory system intrinsically, then we should find evidence of 

its deployment even when the sounds have broadband spectra and are irregularly modulated 

over a wide range of timescales. In contrast, if cortical oscillations are solely or primarily 

stimulus-driven, one ought not to find robust oscillatory activity using such irregular sounds.

Natural sounds, such as environmental noise, speech, and some vocalizations, often have 

broadband modulation spectra that show a 1/f pattern: the modulation spectrum has larger 

power in the low frequency range and the modulation strength decreases as frequency 

increases (Voss & Clarke, 1978; Singh & Theunissen, 2003; Theunissen & Elie, 2014). This 

characteristic of modulation spectra can be delineated using a straight line at a logarithmic 

scale, with its exponent indicating how sounds are modulated across various timescales. For 

example, environmental noise has a relatively shallow 1/f modulation spectrum with an 

exponent of 0.5, while speech has a steeper spectrum with an exponent of f between 1 and 

1.5 (Singh & Theunissen, 2003). As 1/f spectra reflect acoustic dynamics across many 

timescales, and not rhythmic structure centered at a narrow frequency range, 1/f stimuli are 

well suited to test how the auditory system spontaneously organizes acoustic information 

across various timescales.

We generated frequency modulated sounds having 1/f modulation spectra with different 

exponents, to imitate irregular dynamics in natural sounds (Garcia-Lazaro et al., 2006) and 

inserted a tone of short duration (50 ms) as a detection target. We recorded participants’ 

neurophysiological responses while they listened to the 1/f stimuli and detected the 

embedded tones. We were interested to see what timescale of acoustic information is used to 

detect salient changes (i.e. embedded tones) and at what frequencies robust oscillatory 

activity is evoked by irregular 1/f stimuli. We then used an auditory processing model to 

quantify acoustic information over different timescales. By employing mutual information 

analysis, we determine the timescale over which acoustic information is grouped. By 

designing our experiment in this manner, we are able to investigate the temporal structure 

imposed by the neural architecture of the auditory system to sample information from the 

environment.

Materials and Methods

Participants

Fifteen participants (age 23 – 49, one left-handed, eight females) took part in the 

experiment. Handedness was determined using the Edinburgh Handedness Inventory 

(Oldfield, 1971). All participants had normal hearing and no neurological deficits. Written 

informed consent was obtained from every participant before the experiment. The 

experimental protocol was approved by the New York University Institutional Review 

Board.
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Stimuli and Design

We followed the methods used in Garcia-Lazaro et al. (2006) to generate similar (but 

modified) stimuli with modulation spectra of 1/f. A schematic plot of the stimulus 

generation process is shown in Fig. 1A.

We first generated spectral modulation envelopes with ‘random-walk’ profiles using an 

inverse Fourier method. We fit the modulation spectra to have a 1/f shape, with exponents at 

0.5, 1, 1.5 and 2 (Fig. 1A left panel) and converted the spectra from the frequency domain 

back to the temporal domain using inverse Fourier transformation. The phase spectra were 

obtained from pseudo-random numbers drawn uniformly from the interval [0, 2π]. Because 

we fixed stimulus length to 3 seconds and the sampling rate to 44100 Hz, we created 

modulation spectra of 44100 * 3 points with a frequency range of 0 – 22050 Hz. Using 

different random number seeds for the phase spectra, we were able to generate spectral 

modulation envelopes (Fig.1A middle panel) with different dynamics for each exponent. The 

modulation envelopes were normalized to have unit standard deviation.

Second, we created tone complexes comprising tonal components spaced at third-octave 

intervals and then used the spectral modulation envelopes generated as above to modulate 

the tone complexes. We set the fundamental frequency to 200 Hz and limited the frequency 

range of the stimuli to between 200 Hz to 4000 Hz, well within humans’ sensitive hearing 

range. The frequencies of each tonal component were modulated through the frequency 

range from 200 Hz to 4 kHz by the envelopes generated in the first step. Modulated tonal 

components outside this frequency range at one end would re-enter it at the opposite end so 

that the number and spacing of the tonal components within this frequency range was always 

constant.

We used the same random seed to generate one stimulus for each of four exponents, 0.5, 1, 

1.5, and 2, so that all four stimuli have the same phase spectrum but different modulation 

spectra. During the experiment, we presented these four stimuli 25 times, and we term these 

four the ‘frozen’ stimuli. Next, we used distinct random seeds to generate 25 ‘distinct’ 

stimuli with different phase spectra for each exponent. Each of these were presented once, 

creating four groups of ‘distinct’ stimuli. In total, there were eight stimulus groups, 

comprising four groups of ‘frozen’ stimuli and four groups of ‘distinct’ stimuli. In total, 200 

stimuli (25 stimuli×4 exponents×2 stimulus types) were used in the study.

A 1000 Hz pure tone of 50 ms duration was inserted into the ‘distinct’ stimuli, and the onset 

of the tone was randomly distributed between 2.2 and 2.7 s. The signal-to-noise ratio of the 

tone to these distinct stimuli was fixed at −15 dB, because in preliminary testing we 

determined that a tone at SNR −15 dB can be detected at an adequate rate (i.e. avoiding 

ceiling or floor effects). We applied a cosine ramp-up function in a window of 30 ms at the 

onset of all stimuli and normalized the stimuli to ~70 dB SPL (sound pressure level).

Stimulus Analysis

To characterize the spectral and temporal modulations in our stimuli, we computed 

modulation power spectra (MPS) for the four ‘frozen’ stimuli used in the experiment (Fig. 

1B) (Singh & Theunissen, 2003; Elliott & Theunissen, 2009). We first created time-
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frequency representations of the stimuli using the log amplitude of their spectrograms 

obtained with Gaussian windows. We then applied the 2D Fourier Transform to the 

spectrograms and created MPS by taking the amplitude squared as a function of the Fourier 

pairs of the time and frequency axes. As temporal modulations in our stimuli represent 

acoustic dynamics across timescales, we averaged the MPS across the spectral modulation 

dimension to show averaged temporal modulation spectra for each stimulus (Fig. 1C). 

Figure 1B shows that the prominent spectral modulation centers around 1.7 cycles per 1000 

Hz; specifically, at this modulation frequency there is increased modulation power from 

exponent 0.5 to 2. Figure 1C shows that the averaged temporal modulations vary with the 

modulation spectra we used to generate each stimulus. The stimulus with exponent 0.5 

shows a flat averaged temporal modulation spectrum and has low modulation power, 

whereas the stimulus with exponent 2.0 has the steepest averaged temporal modulation 

spectrum. Note, importantly, that the averaged temporal modulation spectra of all four 

stimuli show no peak of power density between 4 – 7 Hz (Fig. 1C).

MEG recording, preprocessing, and protocol

MEG signals were measured with participants in a supine position and in a magnetically 

shielded room using a 157-channel whole-head axial gradiometer system (KIT, Kanazawa 

Institute of Technology, Japan). A sampling rate of 1000 Hz was used, with an online 1–200 

Hz analog band-pass filter and a notch filter centered around 60 Hz. After the main 

experiment, participants were presented with 1 kHz tone beeps of 50 ms duration as a 

localizer to determine their M100 evoked responses (Roberts et al., 2000). 20 channels with 

the largest M100 responses in both hemispheres (10 channels in each hemisphere) were 

selected as auditory channels for further analysis for each participant individually.

MEG data analysis was conducted in MATLAB 2015b (The MathWorks, Natick, MA) using 

the Fieldtrip toolbox 20160106 (Oostenveld et al., 2011) and the wavelet toolbox in 

MATLAB. Raw MEG data were noise-reduced offline using the time-shifted principle 

component analysis (de Cheveigné & Simon, 2007). Trials were visually inspected, and 

those with artifacts such as channel jumps and large fluctuations were discarded. An 

independent component analysis was then used to correct for artifacts caused by eye blinks, 

eye movements, heartbeat, and system noise. After preprocessing, 0 to (at most) 5 trials were 

removed for each exponent of each stimulus type, leaving a minimum of 20 trials per 

condition. To avoid biased estimation of inter-trial phase coherence, we included exactly 20 

trials in the analysis for all exponents of all stimulus types. Each trial was divided into a 5 

second epoch, with a 1 sec pre-stimulus period and a 4 sec post-stimulus period. Each trial 

was baseline corrected by subtracting the mean of the whole trial prior to further analysis.

During MEG scanning, all stimuli, both ‘frozen’ and ‘distinct’, were presented in a pseudo-

randomized order for each participant. After each stimulus was presented, participants were 

required to push one of two buttons to indicate whether they heard a tone in the stimulus. 

Between 1–2s after participants responded, the next stimulus was presented. The participants 

were required to keep their eyes open and to fix on a white cross in the center of a black 

screen. The stimuli were delivered through plastic air tubes connected to foam ear pieces (E-

A-R Tone Gold 3A Insert earphones, Aearo Technologies Auditory Systems).
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Behavioral data analysis

Behavioral data were analyzed in MATLAB using the Palamedes toolbox 1.5.0 (Prins & 

Kingdom, 2009). For each exponent, there were 50 stimuli, half of which had a tone 

embedded. A two-by-two confusion matrix was created for each exponent by treating the 

trials with the tone embedded as ‘target’ and the other trials as ‘noise’. Correct detection of 

the tone in the ‘target’ trials was counted as ‘hit’, while reports of hearing a tone in the 

‘noise’ trials were counted as ‘false alarm’; d-prime values were computed based on hit rates 

and false alarm rates of each table. A half artificial incorrect trial was added to the table with 

all correct trials (Macmillan & Creelman, 2004).

Evoked responses to tones

We calculated the root mean square (RMS) of evoked responses to the onset of tones for 

each ‘distinct’ group across 20 auditory channels and across 20 trials. Baseline was 

corrected using the MEG signal from 200-msec pre-onset of the tone in each selected 

channel. After baseline correction, we averaged RMS across 20 auditory channels.

Evoked responses to stimulus onset

We calculated RMS of evoked responses to the onset of stimulus for each ‘frozen’ group and 

each ‘distinct’ group across 20 auditory channels and across 20 trials. Baseline was 

corrected using the MEG signal from 200-msec pre-onset of the stimuli in each selected 

channel. After baseline correction, we averaged RMS across 20 auditory channels.

Local SNR of the embedded tones

The exponents of stimuli result in different modulation profiles and can modulate local SNR 

of the embedded tones across stimuli. Because the differences of local SNR could 

potentially explain the behavioral performance of tone detection, we computed the local 

SNR of the embedded tones using rectangular temporal windows combined with equivalent 

rectangular bandwidth (ERB) at 1000 Hz (Glasberg & Moore, 1990). We chose five 

temporal window sizes, 50, 100, 200, 300 and 500 ms, and five bandwidths, 0.25, 0.5, 1, 1.5, 

and 2 ERB (33, 66, 133, 199 and 265 Hz). Across different bandwidths, we centered the 

temporal window in the middle of the tone – 25 ms after tone onset – and computed power 

of the ‘distinct’ stimuli without the tone in this temporal window. Then, to compute local 

SNR, we divided the power of the tone by the power of the ‘distinct’ stimuli within the 

temporal window and the narrow band. We transformed the values of local SNR into 

decibels by taking a log with base 10 and multiplying by 10.

Phase coherence and power analysis

To extract time-frequency information, single-trial data from each MEG channel were 

transformed using functions of Morlet wavelets embedded in the Fieldtrip toolbox, with 

frequencies ranging from 1 to 50 Hz in steps of 1 Hz. As all the stimuli used are 3 seconds 

long, to be able to extract low frequency oscillations (e.g. 1 Hz) and to balance spectral and 

temporal resolution of time-frequency transformation, window length increased linearly 

from 1.5 cycles to 7 cycles from 1 to 20 Hz and then was kept constant at 7 cycles above 20 
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Hz. Phase and power responses were extracted from the wavelet transform output at each 

time-frequency point.

The ‘inter-trial phase coherence’ (ITPC) was calculated for all eight groups of stimuli at 

each time-frequency point (details can be seen in (Lachaux et al., 1999). ITPC is a measure 

of consistency of phase-locked neural activity entrained by a stimulus across trials. ITPC of 

a specific frequency band is thought to reflect cortical entrainment to temporal modulations 

in sounds (Luo et al., 2013; Ding & Simon, 2014; Doelling et al., 2014; Kayser et al., 2015) 

and therefore can be used as an index to indicate temporal coding of each stimulus type at 

certain frequency band here. Although event-evoked responses and ITPC both measure 

evoked neural responses and are highly correlated (Mazaheri & Picton, 2005), evoked 

responses show energy that spreads across a broad frequency range (VanRullen et al., 2014) 

and are limited by event rates (Lakatos et al., 2013). Furthermore, phase reset of ongoing 

oscillations of certain frequency band is not always correlated with sensory events (Mazaheri 

& Jensen, 2006; 2010). Therefore, we chose to use ITPC in our current study.

The induced power response was calculated for all eight groups of stimuli and was 

normalized by dividing the mean power value in the baseline range (−.6 ~ −.1 s) and 

converted to decibel units.

The ITPC and power response for four groups of ‘frozen’ stimuli were averaged from 0.25 s 

to 2.8 s post-stimulus to avoid effects of neural responses evoked by the stimulus onset and 

offset. We applied the same calculation of ITPC and power response to four groups of 

‘distinct’ stimuli, but used the results as a baseline for the ITPC and power response of the 

‘frozen’ stimuli. The differentiated ITPC (dITPC) and differentiated induced power were 

obtained by subtracting the ITPC and power response for ‘distinct’ stimuli out from ‘frozen’ 

stimuli for each participant. These two indices reflect phase-locked responses to the repeated 

temporal structure in the ‘frozen’ stimuli.

Auditory Processing model

The 1/f stimuli have a broadband modulation spectrum and contain information across all 

timescales. To quantify acoustic information on each timescale and later to examine on what 

timescale the auditory system groups acoustic information, we constructed an auditory 

processing model inspired by the concept of cochlear-scaled entropy (Stilp & Kluender, 

2010; Stilp et al., 2010) using temporal filters of different sizes. By convolving temporal 

filters with the envelopes of the stimuli in each cochlear band, we can extract acoustic 

changes, which represent critical acoustic information on different timescales - and can be 

seen as an analogue to features in visual stimuli resulting from convolution with Gabor 

filters (Olshausen & Field, 2004). An illustration of this auditory processing model can be 

seen in Figure 4.

First, the stimuli were filtered using a gammatone filterbank of 64 bands. The envelope of 

each cochlear band was extracted by using Hilbert transformation on each band and taking 

the absolute values (Glasberg & Moore, 1990; Søndergaard & Majdak, 2013). We then 

convolved the envelope of each band with the temporal filters that we constructed (described 

below). The values calculated from the convolution were centered on the middle point of the 
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temporal filters and were normalized according to the length of the temporal filter used. We 

padded 500 ms time points at the beginning and the end of the stimuli. After convolution, we 

took out padded points and only saved the time points of the original stimuli. We then took a 

vector norm at each time point across 64 cochlear bands.

The temporal filter was constructed by multiplying a Gaussian temporal window with one 

period of a sinusoid wave. We chose Gaussian temporal windows of ten sizes: 20, 40, 60, 80, 

100, 140, 200, 300, 400, and 500 ms, with the mean centered in the middle of the temporal 

window and the standard deviation being one fifth of window length. We then created 

sinusoid waves from 0 to 2*pi with periods corresponding to each Gaussian temporal 

window. Then we multiplied one period of the sinusoid waves with 10 Gaussian temporal 

windows of corresponding sizes to create 10 temporal filters.

These temporal filters function as a one-dimensional filter that extracts changes in each 

cochlear band, which can be compared to narrowband spectral-temporal receptive fields 

often found in inferior colliculus (Escabí et al., 2003; Andoni et al., 2007; Carlson et al., 

2012). Within a temporal window in which the envelope fluctuates abruptly, the output of 

the convolution would give a large value. The calculation of the vector norm summarizes 

temporal changes across all cochlear bands and generates a value at each time point that 

represents broadband spectro-temporal changes within this temporal window. This is 

intended to roughly correspond to auditory processes of cortical areas employing spectral-

temporal receptive fields with broadband tuning properties (Theunissen et al., 2000; 

Machens et al., 2004; Theunissen & Elie, 2014). For example, if the frequency modulation 

changes abruptly and harmonics sweep across frequency bands within a temporal window, 

the convolution would generate large values that differ across frequency bands. Taking a 

vector norm would generate a high value. Therefore, we can quantify acoustic changes along 

both temporal and spectral domains using output from this model.

The model outputs calculated at each time point indicate the presence of acoustic changes on 

the timescale corresponding to the temporal filter size. We refer to the model outputs as 

Acoustic Change Index (ACI). Finally, we down-sampled the ACI from 44100 Hz to 100 Hz 

to match the sampling rate of the phase series in the MEG signals (100 Hz).

Differentiated mutual information between ACI and phase series

To determine at what timescale acoustic information is extracted by the auditory system, we 

computed mutual information between phase series of MEG signals and ACI. Mutual 

information is an index to quantify how much information is shared between two time series 

and suggests correlation between two series (Cogan & Poeppel, 2011; Gross et al., 2013; Ng 

et al., 2013; Kayser et al., 2015). We chose to compute mutual information instead of a 

linear correlation because ACI is an index of real numbers while the phase series is both 

circular and derived from imaginary numbers. A linear correlation cannot correctly measure 

the relationship between these two metrics. While ITPC cannot tell us which features in the 

stimulus drive robust phase coherence, if the phase series in the theta band is found to have 

high mutual information with ACI of this stimulus at a timescale of 200 ms, we can 

reasonably conclude that the auditory system extracts acoustic information in this stimulus 

on a timescale of 200 ms.
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We computed the mutual information between the phase series of each frequency (1 – 50 

Hz) collected under the frozen stimuli and ACI of different timescales for each 

corresponding ‘frozen’ stimulus type. Then we computed the mutual information between 

phase series collected under the ‘distinct’ stimuli and ACI of different timescales for each 

corresponding ‘frozen’ stimulus type. Next, we calculated the differences between the 

mutual information using trials collected under ‘frozen’ stimuli and the mutual information 

using trials under ‘distinct’ stimuli. By doing this, we subtracted out mutual information 

contributed by spontaneous phase responses evoked by sounds in general, and also 

normalized the mutual information across frequencies to remove the effects caused by 1/f 

characteristics of neural signals (He et al., 2010; He, 2014). This differentiated mutual 

information, resulted from using trials collected under ‘distinct’ stimuli as a baseline, 

highlighted the mutual information between the structure of ACI and the phase series of 

MEG signals. For example, we computed the mutual information between ACI for a frozen 

stimulus of exponent 1 and 20 phase series collected under this frozen stimulus from MEG 

signals, and then computed the mutual information between ACI for this frozen stimulus and 

20 phase series collected from MEG signals when subjects were listening to 20 ‘distinct’ 

stimuli of exponent 1. We took a difference between these two values of mutual information 

and used this difference as the differentiated mutual information.

Mutual information was calculated with the Information Breakdown Toolbox in MATLAB 

(Pola et al., 2003; Magri et al., 2009). For each frequency of the MEG response, the phase 

distribution was composed of six equally spaced bins: 0 to pi/3, pi/3 to pi * 2/3, pi * 2/3 to 

pi, pi to pi * 4/3, pi * 4/3 to pi * 5/3, and pi * 5/3 to pi * 2. The ACI was grouped using 8 

bins equally spaced from the minimum value to the maximum value. Eight bins were chosen 

to have enough discrete precision to capture changes in acoustic properties while making 

sure that each bin has sufficient counts for mutual information analysis, since the greater 

number of bins would lead to zero counts in certain bins.

The estimation of mutual information is subject to bias caused by finite sampling of the 

probability distributions because limited data was supplied in the present study. Therefore, a 

quadratic extrapolation embedded in the Information Breakdown Toolbox was applied to 

correct bias. Mutual information is computed on the data set of each condition. A quadratic 

function is then fit to the data points, and the actual mutual information is taken to be the 

zero-crossing value. This new value reflects the estimated mutual information for an infinite 

number of trials and greatly reduces the finite sampling bias (Montemurro et al., 2007; 

Panzeri et al., 2007). The mutual information value of each frequency was calculated for 

each subject and for each channel across trials before averaging.

Results

Tone detection performance increases with exponent though SNR is constant

Behavioral results—Subjects detected tones inserted into the ‘distinct’ stimuli. The 

behavioral results (Fig. 2A) demonstrate that participants’ sensitivity to tones (d-prime) 

increased to sounds with increasing exponent, although, importantly, the SNR is the same 

across all stimuli. The behavioral performance in detecting tones was examined using a 

repeated measures one-way ANOVA (rmANOVA) with the main factor of Exponent. There 
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is a significant main effect of Exponent (F(3,42) = 34.07, p < 0.001, ηp
2 = .709), and a linear 

trend test showed a significant upward trend (F(1,14) = 59.19, p < 0.001, ηp
2 = .809).

RMS of Tone Evoked Responses—As the listeners’ performance on detecting tones 

varied across stimuli with different exponents of the 1/f stimuli, we examined whether the 

evoked responses elicited by the tones also show an effect of Exponent (Fig. 2B, upper 

panel). We calculated the RMS of the MEG signal elicited by tones, averaged over 20 

auditory channels, and conducted, on each time point from the onset point of tones to 250 

ms after tone onset, a one-way rmANOVA with Exponent as the main factor. After adjusted 

FDR correction, we found a significant main effect of Exponent from 120 ms to 175 ms (p < 

0.01) after tone onset. To investigate this further, we averaged across this window and found 

a significant linear trend (F(1,14) = 25.16, p < 0.001, ηp
2 = .642). The result is shown in 

Figure 2B (lower panel). The RMS results correspond to behavioral results and demonstrate 

that exponents do modulate detection of tones. The behavioral results are not likely caused 

by response bias.

Local SNRs—The behavioral results and RMS results demonstrate that tone detection 

varies with exponent. Although the global SNR was matched across the stimuli with 

different exponents, local SNR varies with exponent and could cause differences of tone 

detection performance across different stimuli. Therefore, we computed local SNR using 

rectangular temporal windows of different sizes combined with ERBs of different 

bandwidths across all 25 trials for each of four exponents. The trial number marched the 

trails used in behavioral analysis. Pearson’s correlation between behavioral results and the 

local SNRs across four exponents was then calculated to assess whether the local SNR can 

explain tone detection performance.

We found high correlation coefficients (> 0.8) between behavioral results and local SNR 

computed using all combinations of temporal window sizes and ERB bandwidths (Fig. 2D). 

To rule out spurious correlations, we established a significant threshold by using a shuffling 

procedure. We first shuffled the labels of the four types of ‘distinct’ stimuli and generated a 

new set of stimuli, and then computed local SNR of each type of stimuli. We then correlated 

the local SNR with behavioral results to get a correlation coefficient for each combination of 

temporal window size and ERB bandwidth. We repeated this shuffling procedure 1000 times 

and used a right-sided alpha level of 99% as the significance threshold level. Significant 

correlations between behavioral results and local SNR were found for the temporal window 

sizes between 140 and 250 ms, combined with ERB bandwidths from 1 to 2. We plotted 

local SNR against tone detection performance on each exponent separately for the 

significant peak correlation computed using each ERB bandwidth (Fig. 2E). These results 

show that tone detection performance can be explained by the local SNR modulated by 

exponents. The acoustic structure of the stimuli becomes sparser with larger exponents and, 

therefore, local SNR increases, which facilitates tone detection in the stimuli. Most 

importantly, the local SNR computed using the temporal window of around 200 ms can best 

capture the behavioral variance. This suggests that a temporal window of ~ 200 ms is used 

by the auditory system to group acoustic information and extract salient changes in acoustic 

streams.
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Exponent modulates onset responses and differentiated inter-trial phase coherence in the 
delta and theta bands

RMS of onset responses—As the acoustic structures of the 1/f stimuli vary with 

exponents, we examined whether the onset responses to the stimuli also show an effect of 

Exponent (Fig. 3A). We calculated the RMS of the MEG signal elicited by eight stimulus 

groups (four ‘frozen’ groups and four ‘distinct’ groups), averaged over 20 auditory channels, 

and conducted a one-way rmANOVA with Exponent as the main factor, separately for the 

‘frozen’ stimuli and the ‘distinct’ stimuli. The one-way rmANOVA was conducted on each 

time point from the onset point to 250 ms after stimulus onset. After adjusted FDR 

correction, we found a significant main effect of Exponent for the ‘frozen’ stimuli from 90 

ms to 115 ms and for the ‘distinct’ stimuli from 95 ms to 105 ms and from 115 ms to 130 ms 

(p < 0.01). The RMS results demonstrate that onset responses increase with exponents. As 

onset responses are sensitive to acoustic structures of sounds and are modulated by spectral 

complexity (Shahin et al., 2007), the results here are likely caused by the spectral sparsity – 

as the exponent increases, spectral modulation of the stimuli becomes more centered (Fig. 1) 

and, therefore, spectral sparsity increases with exponents.

Differentiated inter-trial phase coherence—The dITPC, the difference of phase 

coherence between the ‘frozen’ stimuli and the ‘distinct’ stimuli on the independently 

defined auditory channels, was calculated from 1 to 50 Hz. The results are shown in Figure 

3B. We observed robust phase coherence in the theta band (5 – 7 Hz) for stimuli of all four 

exponents and some degree of selectivity for the stimuli with exponents 1 and 1.5. In the 

delta band (1 Hz) there was a preference in phase coherence for the stimuli with exponent 2. 

The topographies of dITPC for four exponents in the delta and theta bands are shown in 

Figure 3C.

To measure the effects of exponent on dITPC across frequencies, we conducted a one-way 

rmANOVA with Exponent as the main factor from 1 to 50 Hz. After adjusted FDR 

correction, this revealed a main effect of Exponent from 5 – 7 Hz (p < 0.05), which is in the 

theta band range, and a main effect at 1 Hz (p < 0.05), which is in the delta band. We then 

averaged dITPC within two frequency ranges separately and conducted a two-way 

rmANOVA with factors of Exponent and Frequency band (delta: 1 Hz; and theta: 5 – 7 Hz) 

on dITPC. We found a main effect of Exponent (F(3,42) = 5.24, p = 0.004, ηp
2 = .273) and 

an interaction between Exponent and Frequency band (Greenhouse-Geisser corrected: 

F(3,42) = 11.64, p < 0.001, ηp
2 = .454). A one-way rmANOVA with a factor of Exponent 

conducted separately for each frequency band shows a main effect both in the delta band 

(Greenhouse-Geisser corrected: F(3,42) = 7.69, p < 0.001, ηp
2 = .355) and in the theta band 

(F(3,42) = 8.28, p < 0.001, ηp
2 = .372). A post hoc paired t-test conducted in the theta band 

(5 – 7 Hz) showed that dITPC of stimuli with exponents 1 and 1.5 are significantly larger 

than the stimuli with exponent 0.5 (exponent 1: t(14) = 4.27, p = 0.006, d = 2.28; exponent 

1.5: t(14) = 4.08, p = 0.006, d = 2.18) after Bonferroni correction. Comparison of dITPC for 

stimuli of exponents 1 and 1.5 with stimuli of exponent 2 were significant but did not 

survive correction for multiple comparisons (exponent 1: t(14) = 2.31, p = 0.036, d = 1.23; 

exponent 1.5: t(14) = 2.34, p = 0.035, d = 1.25). In the delta band (1 Hz), the paired t-test 

shown that dITPC of stimuli with exponent 2 is significantly larger than the stimuli with 
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exponent 0.5 (t(14) = 7.12, p < 0.001, d = 3.81) and exponent 1.0 (t(14) = 4.16, p = 0.006, d 
= 2.22).

Because dITPC reflects the difference of phase coherence between the ‘frozen’ stimuli and 

the ‘distinct’ stimuli, a one-sample t-test against zero on dITPC of each stimulus type in 

each band tests whether there is robust phase-coherence across trials evoked by the ‘frozen’ 

stimuli. In the delta band (Fig. 3B, right upper panel), we found dITPC was significantly 

above zero when the exponent is 2 (t(14) = 6.80, p < 0.001, d = 3.63). In the theta band (Fig. 

3B, right lower panel), we found significant dITPC above zeros across all exponents 

(Exponent 0.5: t(14) = 3.59, p = 0.024, d = 1.92; Exponent 1.0: t(14) = 5.45, p < 0.001, d = 

2.91;Exponent 1.5: t(14) = 6.63, p < 0.001, d = 3.54; Exponent 2.0: t(14) = 4.64, p < 0.001, 

d = 2.48). Bonferroni correction was applied in each band.

In summary, the results show that all four types of ‘frozen’ stimuli evoked robust phase 

coherence in the theta band. This supports the hypothesis that phase coherence observed in 

the theta band (and in many studies) is not solely a result of stimulus driven entrainment, as 

no regular temporal modulation exists in the stimuli.

The stimuli with exponent 1 and 1.5 revealed higher phase coherence values than the stimuli 

with exponent 0.5. This phase coherence pattern in the theta band showed a similar pattern 

to findings in ferrets using single unit recording (Garcia-Lazaro et al., 2006). Our results 

further show that this coding preference comes from the theta band, which indicates an 

underlying auditory process on a timescale of ~150 ms – 250 ms. The auditory processing 

on a timescale of 150 – 250 ms, reflected by robust phase coherence in the theta band, may 

be critical and is possibly the reason for the preference found in Garcia-Lazaro et al (2006).

Surprisingly, we observed in the delta band that the stimuli of exponent 2 evoked robust 

phase coherence. The differences of dITPC patterns between the theta and delta bands 

indicate that the auditory system independently tunes to information on the timescales 

corresponding to the theta and delta bands (Cogan & Poeppel, 2011).

Differentiated Induced Power shows no effect

We examined effects of exponents on induced power from 1 to 50 Hz by conducting a one-

way rmANOVA with Exponent as the main factor. We found no significant effect on 

Exponent from 1 to 50 Hz after adjusted FDR correction (p > 0.05). This suggests that the 

power response does not differentially code temporal information critically, which is also 

consistent with previous studies (Cogan & Poeppel, 2011; Luo & Poeppel, 2012; Ng et al., 
2013; Doelling et al., 2014; Kayser et al., 2015).

Raw Power shows no effect and does not bias ITPC estimation

We examined effects of the exponents on raw power (without baseline correction) from 1 to 

50 Hz by conducting a one-way rmANOVA with Exponent as the main factor. We did such 

tests on the ‘frozen’ stimuli and the ‘distinct’ stimuli, separately. We found no significant 

effect of Exponent for the ‘frozen’ stimuli from 1 to 50 Hz after adjusted FDR correction (p 
> 0.05). Similarly, we found no significant effect of Exponent for the ‘distinct’ stimuli from 

1 to 50 Hz after adjusted FDR correction (p > 0.05). This suggests that the power is 
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homogenous across different exponents and, therefore, estimation of ITPC for stimuli of 

different exponents should not be biased by the power.

Differentiated mutual information between phase and ACI on distinct scales

Next we used a mutual information approach to quantify at what timescale the acoustic 

information in the stimuli robustly entrained cortical oscillations in the delta (1 Hz) and theta 

(5 – 7 Hz) bands. In Figure 4A-F, we illustrate how ACI was generated by the auditory 

processing model. The waveforms of stimuli were filtered through the Gammatone filter 

bank of 64 bands (Fig. 4B) and cochleograms were generated for the ‘frozen’ stimuli (Fig. 

4C). We convolved each band of the cochleogram with temporal filters of various lengths 

(Fig. 4D) and created a convovled cochleogram for each filter length (Fig. 4E). Vector norm 

was applied on the convolved cochleogram, which resulted in ACI. An example of ACI 

computed using a filter length of 200 ms was shown in Figure 4F. The ACI of each ‘frozen’ 

stimulus was used to compute mutual information. From the mutual information results, we 

found that the delta band oscillation was unaffected by the temporal filter size, whereas in 

the theta band the mutual information showed an effect of the filter size starting from 200 

ms (Fig 4G).

A three-way Frequency band × Exponent × Filter size rmANOVA was conducted on 

differentiated mutual information. We found a significant main effect of Exponent 

(Greenhouse-Geisser corrected: F(4,42) = 5.22, p = 0.004, ηp
2 = .272). We also found 

significant interaction effects between Frequency band and Exponent (Greenhouse-Geisser 

corrected: F(3,42) = 8.42, p < 0.001, ηp
2 = .387), between Exponent and Filter size 

(F(27,378) = 1.58, p = 0.036, ηp
2 = .101), and between Frequency band and Exponent and 

Filter size (F(27,378) = 2.42, p < 0.001, ηp
2 = .147)

We then conducted a two-way Filter Size × Exponent rmANOVA in the delta band. We 

found a significant main effect of Exponent (Greenhouse-Geisser corrected: F(3,42) = 6.84, 

p = 0.007, ηp
2 = .328) but not of Filter size (Greenhouse-Geisser corrected: F(9,126) = .59, p 

= 0.802, ηp
2 = .041). The interaction was not significant (F(27,378) = 1.34, p = 0.123, ηp

2 

= .087).

In the theta band, we conducted a two-way Filter Size × Exponent rmANOVA and found 

significant main effects of Exponent (Greenhouse-Geisser corrected: F(3,42) = 10.14, p < .

001, ηp
2 = .420) and of Filter size (Greenhouse-Geisser corrected: F(9,126) = 7.19, p < .001, 

ηp
2 = .339). The interaction between Exponent and Filter size is also significant (F(27,378) 

= 5.10, p < .001, ηp
2 = .267). To test which filter size differentiates among stimulus types, 

we conducted a one-way rmANOVA on each filter size with Exponent as main factor. After 

Bonferroni correction, we found main effects of Exponent on the filter sizes: 200 ms 

(Greenhouse-Geisser corrected: F(3,42) = 7.69, p = .048, ηp
2 = .354), 400 ms (Greenhouse-

Geisser corrected: F(3,42) = 12.74, p = .006, ηp
2 = .476) and 500 ms (Greenhouse-Geisser 

corrected: F(3,42) = 9.87, p = .010, ηp
2 = .414). Then, we examined what stimulus type was 

affected by filter size by conducting a one-way rmANOVA with Filter size as a main factor. 

We found a main effect on Filter size for the stimuli with exponent 0.5 (Greenhouse-Geisser 

corrected: F(9,126) = 6.82, p = .008, ηp
2 = .291), exponent 1.0 (Greenhouse-Geisser 

corrected: F(9,126) = 5.76, p = .036, ηp
2 = .328) and exponent 1.5 (Greenhouse-Geisser 
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corrected: F(9,126) = 7.45, p < .001, ηp
2 = .347) but not for the stimuli with exponent 2 

(F(9,126) = 2.22, p = .100, ηp
2 = .137).

To summarize the results of the differentiated mutual information analysis, we found that, 

although the stimuli in our experiment have a 1/f modulation spectrum and show no 

dominant temporal modulation frequencies or regular temporal patterns, the phase patterns 

of the theta band cortical oscillations were captured by the ACI extracting temporal 

information larger than 200 ms. On the other hand, cortical oscillations in the delta band are 

not captured by ACI computed on the timescales less than 500 ms.

The finding that the delta band is unaffected by the filter size is probably because the delta 

band oscillations tune to acoustic changes on a long timescale (e.g. > 1 s). The acoustic 

information represented by ACI is on a timescale smaller than 500 ms, which does not 

contribute to the global change of the stimuli extracted by a large temporal window (e.g. >1 

s). Another explanation is that the delta band tunes to high-level information in the stimuli 

that our model fails to reveal.

That theta phase shows greater MI with ACI of timescales larger than 200 ms is consistent 

with the results of phase coherence in the theta band (Fig. 4). A reasonable hypothesis is that 

the auditory system uses a default temporal window of > 200 ms to chunk the continuous 

acoustic stream (VanRullen & Koch, 2003; Ghitza & Greenberg, 2009; Ghitza, 2012; Giraud 

& Poeppel, 2012; VanRullen, 2016). This temporal window size is reflected in the dominant 

theta oscillations found in both our results and in other studies (Ding & Simon, 2013; Luo et 
al., 2013; Andrillon et al., 2016). In stimuli without overt rhythmic structure, the auditory 

system actively parses the acoustic stream and extracts acoustic changes using a temporal 

window corresponding to roughly a cycle of a theta band oscillation. Because this chunking 

process has a limited time constant, i.e. 150 – 300 ms, only the acoustic changes on a 

timescale of larger than 200 ms are captured within acoustic dynamics across all timescales 

in our stimuli. Our auditory processing model using a temporal filter with different sizes 

simulated this hypothesized chunking process. The model used temporal windows to chunk 

acoustic streams and computed acoustic changes within each temporal window. The ACI on 

the timescale of ~ 200 ms, therefore, reflects the acoustic information extracted by this 

chunking process in the auditory system.

In summary, the results suggest that the auditory system uses a temporal windowing process 

to chunk acoustic information and extracts acoustic changes from irregular stimuli, and this 

temporal window is larger than 200 ms. The preference of the auditory system for stimuli 

with exponents 1 and 1.5, shown in our results in the theta band and in Garcia et al.(2006), is 

likely a result of this chunking process.

Discussion

We investigated neurophysiological responses to stimuli with 1/f modulation spectra and 

tested how listeners detect embedded tones. We found that cortical oscillations in the theta 

band track the irregular temporal structure and show a preference to 1/f stimuli with 

exponents 1 and 1.5, which roughly correspond to signals with the modulation spectrum of 
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speech. The delta band oscillations are entrained by stimuli with exponent 2, which has the 

slowest temporal modulation. The fact that we find robust phase coherence in theta band in 

the absence of regular dynamics suggests that theta oscillations are not a simple 

consequence of the acoustic input but rather may represent the temporal structure of internal 

neural processing. By computing mutual information between the model outputs and the 

phase series in the delta and theta bands, we found that phase coherence in the theta band 

can be best explained by acoustic changes captured by temporal windows at least as large as 

200 ms. Further supporting this finding, the local SNR computed using a temporal window 

of 200 ms predicts the tone detection rates and confirms the mechanism by which the 

auditory system uses a temporal window (~ 200 ms) to group acoustic information and 

extract salient acoustic changes.

Robust phase coherence in the theta band is not solely stimulus driven

Since the 1/f stimuli were not specifically modulated between 5 to 7 Hz to drive theta band 

oscillations (Fig. 1C), the robust theta oscillatory activity, therefore, must partly originate 

from an intrinsic auditory processing mechanism. In most of studies using rhythmic stimuli, 

the observed cortical entrainment in the theta band could be due to the fact that the regular 

temporal structure overlaps with the timescale of this architecturally intrinsic and probably 

innate grouping mechanism. Robust phase tracking in the theta band seems to be 

ubiquitously evoked by sounds. It has been shown, for example, that repeated noise induces 

phase coherence in the theta band, and the magnitude of phase coherence correlates with 

behavioral performance (Luo et al., 2013; Andrillon et al., 2016). In such studies, there is no 

regular temporal structure in sounds centered in the theta band that entrains the theta band 

oscillations.

One reason for theta band tracking of sounds of various temporal structures, regular and 

irregular, is possibly that the theta band oscillations play an active role in perceptual 

grouping of acoustic information, rather than being passive, stimulus driven neural activities 

(Ghitza & Greenberg, 2009; Schroeder et al., 2010; Ghitza, 2012; Riecke et al., 2015). Our 

auditory processing model simulates this chunking process across timescales, and the mutual 

information results between the model outputs and phase series in the theta band 

differentiate stimuli of different exponents on a timescale larger than 200 ms and echoes the 

results of dITPC. Therefore, the robust phase coherence can be explained by the chunking 

process simulated by our auditory processing model (Fig. 4A-F).

The active chunking process is probably a trade-off between integrating a long period of 

acoustic information for precise analysis and making timely perceptual decisions. Although 

acoustic streams are continuous, the auditory system cannot integrate acoustic information 

over an arbitrary long period because of limited information capacity of the auditory system 

and of requirements for humans to make fast perceptual decisions. This chunking process of 

~ 200 ms divides continuous acoustic streams into discrete perceptual units, so that further 

auditory analysis could be conducted timely within a ~ 200 ms temporal window for humans 

to make immediate perceptual decisions.
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Preferential tuning to exponents 1 and 1.5 due to chunking

Our results of dITPC in the theta band indicate a preference of the auditory system for 

stimuli with exponents 1 and 1.5, which replicate the response pattern found in Garcia et al. 

(2006) using single unit recording in ferret primate auditory cortex. Furthermore, the mutual 

information results (Fig. 4) suggest that this preference is likely caused by the chunking 

process with temporal windows larger than 200 ms in the auditory system. Although all of 

the 1/f stimuli have dynamics across all timescales, the chunking process mainly extracts 

dynamics on a timescale corresponding to the theta band. The stimuli with exponents less 

than 1 and larger than 1.5 are either modulated too rapidly or too slowly, so that the 

dynamics on the timescale of the theta band range has less ‘chunking potency’ than in the 

stimuli with exponents 1 and 1.5.

Tone detection results explained by local SNR confirms a chunking process of ~200 ms

We found that although the long-term SNR of tones is the same across all four types of 

stimuli, the detection rates differ because of local SNR modulated by the exponents. These 

results are illuminated by the informational masking literature, which suggests that the 

structure of background sounds (maskers) matters when listeners try to detect a target 

(Brungart, 2001; Kidd et al., 2007). The key finding here is that participant behavior is 

modulated by the structure of background maskers in the same 200 ms window. This 

suggests the auditory system is extracting 200 ms windows for temporal analysis. This 

finding supports our interpretation of the neural data, discussed above, that the auditory 

system groups acoustic information on a timescale of ~ 200 ms and further suggests that this 

chunking process is probably fundamental for further auditory analysis. That is to say, the 

separation of targets from background sounds is probably built on this chunking process.

Delta band oscillations are invariant to acoustic details on timescales less than 500 ms

We found that only the stimuli with exponent 2 evoked robust phase coherence in the delta 

band, which supplements the findings by Garcia et al. (2006). The mutual information 

results in the delta band do not vary with the filter sizes used in the auditory processing 

model. This surprising result further suggests that the delta band oscillations are probably 

not sensitive to low-level acoustic details, but probably to a high-level perceptual cues, such 

as linguistic structure in speech (Ding et al., 2015), and attention-related rhythmic 

processing (Lakatos et al., 2008; Schroeder et al., 2010).

Memory and attention as potential confounds

As the ‘frozen’ stimuli were repeatedly presented to the participants while each of the 

‘distinct’ stimuli was only presented once, one might surmise that the participants are able to 

memorize the ‘frozen’ stimuli. Previous studies have shown, though, that it is challenging, 

and perhaps even impossible, for humans to memorize acoustic local details of sounds 

textures of more than 200 ms long (McDermott et al., 2013; Teng et al., 2016), well short of 

the 3-second length of our stimuli. (Obviously, speech or music can be encoded and 

recalled.) As the ‘frozen’ and the ‘distinct’ stimuli were comparable in terms of long-term 

acoustic properties, such as spectral modulation and spectrum, the participants had to 

remember the acoustic details to be able to tell apart the ‘frozen’ stimuli from the ‘distinct’ 
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stimuli with corresponding exponents. It would be very challenging indeed for the 

participants to differentiate one ‘frozen’ stimulus out of 25 ‘distinct’ stimuli with similar 

long-term acoustic properties. If the participants could successfully identify each ‘frozen’ 

stimulus, we would not expect memory to be affected by the exponent of frequency 

modulation, as we have found here. Therefore, we conjecture that memory does not 

contribute significantly to our results.

With regard to attention, as we only presented the target tones in the ‘distinct’ stimuli, so it 

would be possible that the participants could choose to only attend to the distinct stimuli to 

detect the tone. If the participants could distinguish the ‘frozen’ and ‘distinct’ stimuli by 

memorizing the ‘frozen’ stimuli and figure out that tones are contained only in each of the 

distinct stimuli (we did not tell the participants this information), we would expect that the 

tone detection performance should be similar across all exponents, as the participants could 

simply choose the ‘distinct’ stimuli as the target. But we did find a difference of tone 

detection across different exponents and this difference, importantly, can be explained by our 

acoustic analysis on local SNRs (Fig. 2).

Therefore, although it is true that memory and attention are always relevant considerations, 

the effects caused by memory and attention are unlikely to form the explanatory basis of our 

main results.

Conclusion: active chunking on a timescale of ~ 200 ms in the auditory 

system

Our results demonstrate an active chunking scheme in the auditory system (Poeppel, 2003; 

Ghitza & Greenberg, 2009; Panzeri et al., 2010; Ghitza, 2012; Giraud & Poeppel, 2012; 

VanRullen, 2016): on the timescale of ~ 200 ms, the auditory system actively groups 

acoustic information to parse a continuous acoustic stream into segments. The robust phase 

coherence in the theta band is not solely driven by external stimuli but also reflects active 

chunking. This chunking scheme is prevalent in auditory processing of sounds of various 

dynamics and may serve as a fundamental step for further perceptual analysis.
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MEG magnetoencephalography

dB decibel

SPL sound pressure level

Teng et al. Page 17

Eur J Neurosci. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MPS modulation power spectra

RMS root mean square

SNR Signal to noise ratio

ERB equivalent rectangular bandwidth

ITPC Inter-trial phase coherence

dITPC differentiated ITPC

ACI acoustic change index

MI mutual information
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Figure 1. Stimulus generation and modulation power spectrum
A, Schematic plot of stimulus generation. Left panel: schematic plot of modulation spectra 

used to generate modulation envelopes. The color code represents the spectra of different 

exponents. Black: 0.5; green: 1.0; blue: 1.5; red 2.0. Middle panel: modulation envelopes 

generated using the four different exponents. (Color code as in the modulation spectra.) 

Right panel: spectrograms of the four ‘frozen’ stimuli (see Methods) used in the experiment. 

Sound files of the stimuli can be accessed here: http://edmond.mpdl.mpg.de/imeji/collection/

kZalRMtxa19mlRyG. B, Modulation power spectra of the four frozen stimuli. The dashed 

boxes show increased power density at a spectral modulation of around 1.7 cycles per 1000 
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Hz in the stimuli. C, The averaged temporal modulation spectrum. The averaged temporal 

modulation was computed by averaging along the spectral modulation dimension of the 

modulation power spectrum (in B). From left to right, the averaged temporal modulation 

spectrum of each stimulus becomes steeper as the exponent increases. Note that there are no 

prominent peaks in the averaged temporal modulation spectra that indicate regular 

modulations centered at a narrow frequency band.
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Figure 2. 
A, Root mean square (RMS) of MEG waveform responses to tones. Left panel: RMS of 

evoked fields to tones from 200 ms before tone onset to 250 ms after tone onset. (Color code 

as in Figure 1) The dashed box indicates the time range from 120 ms to 175 ms that show 

significant effects of the Exponent (p < 0.05, one-way rmANOVA). Right panel: RMS 

averaged from 120 ms to 175 ms. The behavioral and the RMS results show the same 

upward trend along exponent values. B, Behavioral results of tone detection. C, Correlations 

between tone detection performance and local SNR. ERB indicates bandwidth used to 

compute local SNR. ERB refers to one equivalent rectangular bandwidth (133 Hz) of the 

narrowband centered on 1000 Hz. Y axis indicates values of correlation coefficients. X axis 

shows different temporal window sizes. The dashed lines indicate significant thresholds (p < 

0.01, one-sided) and the square highlights significant correlation results. Local SNRs 

computed using the temporal window ranging between 140 to 250 ms and the bandwidths 

larger than 1 ERB can explain the differences of tone detection rate across the different 

stimuli. D, local SNR plotted again behavioral data for the highest correlation of each 
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bandwidth. From left to right, the bandwidth is 1, 1.5 and 2 ERB. Temporal window 

indicates the temporal window used to compute the high correlation of each bandwidth. X 

axis indicates local SNR. The color of error bars codes for different exponents. This result 

suggests that the auditory system uses a temporal window of ~ 200 ms to chunk the acoustic 

stream for separation of targets from background sounds. Lines represent mean, error bars 

represent +/− SEM.

Teng et al. Page 25

Eur J Neurosci. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. RMS of responses to stimulus onset and differentiated inter-trial phase coherence 
(dITPC)
A, RMS of response to the ‘frozen’ and ‘distinct’ stimuli. Left panel: RMS of responses to 

the ‘frozen’ stimuli. Right panel: RMS of responses to the ‘distinct’ stimuli (color code as in 

Figure 1). The dashed box of the left panel indicates the time range from 90 ms to 115 ms 

that shows significant effects of the Exponent for the ‘frozen’ stimuli (p < 0.05, one-way 

rmANOVA). The dashed boxes of the right panel indicate the time ranges from 95 ms to 105 

ms and from 115 ms to 130 ms that show significant effects of the Exponent for the 

‘distinct’ stimuli. B, dITPC on auditory channels. Left panel: dITPC from 1 Hz to 15 Hz 

(color code as in Figure 1.) We found significant main effects of Exponent in two frequency 

bands: delta (1 Hz) and theta (5 – 7 Hz). Right panels: averaged dITPC within frequency 

bands. Asterisks inside bars indicate that dITPC is significantly above zero. The theta band 

activity tracks all stimuli, even if there is no regular temporal structure present; delta band 

activity is more narrowly responsive to stimuli with exponent 2. C, Topographies of dITPC 

in the delta and theta bands. Typical auditory response topographies can be seen in both 
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bands. This underscores that the robust phase coherence results originate from auditory 

processing regions. Error bars represent +/− SEM.
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Figure 4. Illustration of the auditory processing model and differentiated mutual information 
results
A, The waveform of a stimulus of exponent 1.5. B, A schematic plot of the Gammatone filter 

bank of 64 bands used in the model. C, The cochleogram of the stimulus. The left y-axis 

represents the number of the cochlear channels and the right y-axis represents the center 

frequency of each channel. D, Frequency responses of temporal filters. The frequency 

responses of all temporal filters were plotted. Beside the plot, the filter shape on temporal 

dimension is showed. We highlighted the frequency response of the temporal filter of 200 

ms, which is used here for further illustrations. E, Convolution of the temporal filter with 

each band in the cochleogram. After convolving with the temporal filter, large values appear 

at time points where the modulation changes abruptly (depending on the temporal filter 

size). F, Acoustic change index (ACI) resulted from taking the vector norm of (E). G, 
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Differentiated mutual information in the delta and theta bands across different filter sizes. X-

axis: filter size of the temporal filter used in the auditory processing model. Y-axis: bits of 

differentiated mutual information. The color code is as in Figure 1. In the delta band, the 

differentiated mutual information does not vary with the filter size. Differentiated mutual 

information in the theta band varied with filter size (Asterisks indicate main effect of 

Exponent). The mutual information results demonstrate that the auditory processing model 

with temporal windows of > 200 ms is consistent with neural auditory processing extracting 

temporal regularities from irregular sounds. Lines and bars represent mean while error bars 

represent +/− SEM.
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