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Role of the unfolded protein response in determining
the fate of tumor cells and the promise
of multi-targeted therapies
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Abstract Although there have been advances in our under-
standing of carcinogenesis and development of new treat-
ments, cancer remains a common cause of death. Many regu-
latory pathways are incompletely understood in cancer devel-
opment and progression, with a prime example being those
related to the endoplasmic reticulum (ER). The pathological
sequelae that arise from disruption of ER homeostasis are not
well defined. The ER is an organelle that is responsible for
secretory protein biosynthesis and the quality control of pro-
tein folding. The ER triggers an unfolded protein response
(UPR) when misfolded proteins accumulate, and while the
UPR acts to restore protein folding and ER homeostasis, this
response can work as a switch to determine the death or sur-
vival of cells. The treatment of cancer with agents that target
the UPR has shown promising outcomes. The UPR has wide
crosstalk with other signaling pathways.Multi-targeted cancer
therapies which target the intersections within signaling net-
works have shown synergistic tumoricidal effects. In the pres-
ent review, the basic cellular and signaling pathways of the ER
and UPR are introduced; then the crosstalk between the ER
and other signaling pathways is summarized; and ultimately,

the evidence that the UPR is a potential target for cancer ther-
apy is discussed. Regulation of the UPR downstream signal-
ing is a common therapeutic target for different tumor types.
Tumoricidal effects achieved from modulating the UPR
downstream signaling could be enhanced by phosphodiester-
ase 5 (PDE5) inhibitors. Largely untapped by Western medi-
cine for cancer therapies are Chinese herbal medicines. This
review explores and discusses the value of some Chinese
herbal extracts as PDE5 inhibitors.
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MAPK Mitogen-activated protein kinase
MEF Mouse embryonic fibroblasts
MHC Major histocompatibility complex
mTOR Mammalian target of rapamycin
NFκB Nuclear factor κB
OSCC Oral squamous cell carcinoma
OS-9 Osteosarcoma amplified 9
PDE Phosphodiesterase
PDK Phosphoinositide dependent kinase
PERK Double-stranded RNA-activated protein kinase/

PKR-like ER kinase
PIP3 Phosphatidylinositol-3,4,5-triphosphate
PKB Protein kinase B
ROS Reactive oxygen species
S6 K S6 kinase
TCHM Traditional Chinese herbal medicine
TFG-β Transforming growth factor-β
t-PA tissue-type plasminogen activator
TRAF Tumor necrosis factor receptor associated factor
TRPC Transient receptor potential cation channel
TNFR Tumor necrosis factor receptor
UPR Unfolded protein response
VEGF Vascular endothelial growth factor
XBP X-box binding protein
4E–BP 4E–binding protein

Introduction

Tumorigenesis occurs as a consequence of dysregulation of
multiple signaling pathways. Some examples include mitogen
activated protein kinase (MAPK), Akt and Smad4-mediated
transforming growth factor-β (TGF-β) signaling (Yang and
Yang 2010; Testa and Tsichlis 2005; Dhillon et al. 2007).
Tolerance against death signals and the ability to survive un-
der unfavorable environmental conditions and cellular stress
are conferred on tumor cells by targets of the relevant signal-
ing pathways, such that tumor cells grow in an uncontrolled
manner and are often resistant to cancer therapies that kill
dividing non-malignant cells (Klein 2000). Routine cancer
therapy is generally based on arresting cancer cell growth at
a specific phase in the cell cycle and enhancing cancer cell
death, but it is also accompanied by primary chemoresistance
and the secondary outgrowth of highly resistant clones (Otto
and Sicinski 2017). Identification of a universal therapeutic
target in the treatment of cancer could produce a snowball
effect on activating relevant signaling pathways that can pro-
mote death, and inhibit survival, of cancer cells.

Recently, research into tumoricidal mechanisms of treat-
ments based on endoplasmic reticulum (ER) stress has
attracted attention. ER-regulated protein synthesis and folding
help maintain homeostasis of the cellular microenvironment
(Rutkowski and Hegde 2010). The protein folding process is

prone to errors and misfolded proteins are continuously iden-
tified, unfolded, and removed from the ER for degradation. If
misfolding exceeds clearance, the accumulatedmisfolded pro-
teins trigger the unfolded protein response (UPR) to inhibit
protein synthesis and stop the entrance of nascent peptides
into the ER, while boosting ER folding mediators. Transient
UPR is pro-survival; whereas, a chronic UPR triggers a series
of apoptotic pathways directly or indirectly via interacting
with other signaling pathways, for example, the
phosphoinositol-3 kinase/Akt/mammalian target of
rapamycin (PI3K/Akt/mTOR) pathway or the Ras/Raf/
MEK/extracellular signal-regulated kinase (Ras/Raf/MEK/
ERK) pathway (Verfaillie et al. 2012). Hypoxia is a feature
of most tumors, because the oxygen supply cannot meet the
requirement of the high proliferation rate. Therefore, cancer
cells are constantly experiencing activated ER stress and acti-
vating the UPR to restore homeostasis. In this regard, the
activation of the UPR is exploited by cancer cells to help them
survive (Giampietri et al. 2015). Additionally, the UPR facil-
itates tumorigenesis by hampering the antigen-presenting
function of dendritic cells, which blunts the immune elimina-
tion of cancer cells (Grootjans et al. 2016). However, activa-
tion of the UPR also facilitates cell cycle suppression and/or
cell death (Brewer et al. 1999).

There is accumulating evidence that indicates that interfer-
ing with ER stress pathways may exert beneficial anticancer
effects (Hazari et al. 2016). These effects are generally based
on the activity of inhibitors of chaperone proteins which plays
a central role in protein quality control (Sidera and Patsavoudi
2014), or the activation of pro-apoptotic pathways and inhibi-
tion of pro-survival signals that are relevant to the downstream
UPR cascades (Shimodaira et al. 2014; Yang et al. 2016; Zhao
et al. 2016). Multi-target therapy which targets several crucial
signals in this ER stress-regulated network has shown syner-
gistic effects compared with the use of single-specific targeted
therapies (Booth et al. 2015b). Drugs that might have syner-
gistic effects with therapies that alter ER stress are
phosphodiesterase-5 (PDE5) inhibitors. PDE5 is an enzyme
that degrades cyclic guanosine monophosphate (cGMP)
(Shen et al. 2016). The drug combination of sildenafil, a
well-known PDE5 inhibitor, and OSU-03012, a chaperone
inhibitor, exerted a synergstic effect in killing glioma cell
lines, concurrent with activation of the UPR cascades (Booth
et al. 2015a). Although the inhibition of PDE5 has shown
great potential in enhancing the tumoricidal effects of chaper-
one protein inhibitors, the mechanism of the interaction be-
tween cGMP signaling and the UPR remains largely
unknown.

The ER had been discovered for more than half a century,
but the yin-yang principle of ER action in determining the fate
of tumor cells has still to be fully understood. The yin-yang
principle describes the ability of the ER to promote various
survival pathways that allow cells to adapt to ER stress by
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activating the UPR, versus the action of the UPR to destroy
the cell via apoptosis if it fails to adapt to ER stress. The aim of
this review is to outline the UPR-centered signaling network
and its role in determining cell fate and the potential synergis-
tic tumoricidal functions of multi-drug therapies which in-
clude chaperone protein regulators and PDE5 inhibitors.

A brief introduction of the structure and function
of the ER

The microstructure of the largest but the last discovered cell
organelle, ER, was described in 1945 by Porter and colleagues
(Porter et al. 1945) using electron microscopy of chick fibro-
blasts. The morphology of its tubular network was originally
described as Bvesicle-like^ bodies dispersed alongside the
Blace-like^ chains which extended in the cytosol. With ad-
vanced techniques, such as multicolour live cell imaging, de-
tails concerning the fine structure of the ER have come to
light. This elaborate internal membrane system has a series
of specialized functions, such as (1) secretory protein synthe-
sis, modification, quality control and transportation; (2) lipid
synthesis and distribution; (3) sterol synthesis; (4) Ca2+ stor-
age and regulation; and (5) cell interior compartmentalization
and interconnection (Westrate et al. 2015). These various
functions are dependent on the delicate, dynamic, and transi-
tional structure of the ER. The first part of this review will
briefly introduce the basic form and functions of the ER. The
mechanisms behind the formation of this dynamic network
have been reviewed previously (Park and Blackstone 2010).

The network of the ER is a continuous lipid double-layered
system comprising a nuclear envelope, peripheral ER, and
cortical ER (Westrate et al. 2015). The nuclear envelope con-
stitutes the inner and outer nuclear membranes. The peripheral
ER comprises two sub-domains which are functionally and
morphologically different: peripheral ER sheets (or cisternae)
and peripheral ER tubules. The primary difference in structure
is that ER sheets are flat and studded with ribosomes while ER
tubules are highly curved and largely lack ribosomes. Hence,
ER sheets and ER tubules are termed rough ER and smooth
ER, respectively.

ER sheets and ER tubules are cell type-specific sub-organ-
elles. For example, different cell types bearing different func-
tions have different sheet or tubule ratios or ribosome densi-
ties. ER sheets are abundant in cells which exhibit a high
capacity to secrete proteins, such as insulin-secreting pancre-
atic β cells, ER tubules are enriched in muscle cells, hepato-
cytes, and adrenal cortical cells which are responsible for Ca2+

storage, detoxification, and steroid hormone production,
respectively (Patrizia and Afshin 2012). Having partly
flat/rough and partly high curvature/smooth surfaces, the cor-
tical ER is tethered to the plasma membrane working as a
mediator of the Ca2+ concentration between the ER lumen

and the extracellular environment, which regulates muscle
contraction (Westrate et al. 2015). In the kidney, ultrastructural
studies have demonstrated variation of the spatial organization
of ER among different nephron segments. For example, in
proximal tubular cells, the ER surrounds mitochondria,
forming a structure like fingers in a glove. In this segment,
the ER is rich in canaliculi and fenestrated saccules. In con-
trast, distal straight and convoluted tubular cells are only
abundant in canaliculi with occasional non-fenestrated sac-
cules. The variation of the abundance of the ER structure is
likely related to the heterogeneity in function of different
nephron segments. For example, in the thin limb cells that
play a nonsignificant role in electrolyte transport, the ER
structure is rare (Bergeron et al. 1987).

Interconnection between the ER and other organelles

As a hub for protein and lipid synthesis, translocation and
secretion, the ER disperses throughout the cell and keeps an
active crosstalk with other organelles. Growing polypeptides
synthesized by ribosomes are imported to the rough ER lumen
via the binding between the signal-recognition particle-ribo-
some complex and the receptor in the ERmembrane (Gilmore
1991). In this way, the polypeptide chains are transferred into
the ER lumen for further processing (Simon 1993). The pri-
mary quality control happens during this process when the
incorrectly folded proteins are distinguished from the correct-
ly folded ones to avoid entering the secretory pathways (Lars
and Ari 2003). The correctly folded proteins are subsequently
routed to the Golgi apparatus by vesicular transportation for
further glycosylation and secretion (Kelley and Georgopoulos
1992; Lee et al. 2004). ER resident proteins are secreted along
with other secreted proteins, but there also exist retention path-
ways to recall them back to the ER via COPI-coated transport
vesicles (Saraste and Kuismanen 1992; Graham et al. 1993).
Specifically, the KDEL receptor, a transmembrane protein of
the Golgi, binds to the lysine-aspartate-glutamate-leucine se-
quence at the C-terminal of soluble ER protein. This is a
condition for COPI-coated transport vesicles to carry soluble
ER-resident protein back to the ER. However, the sequence on
the ER membrane proteins is recognized directly by the COPI
coats (Alberts et al. 2002). With the enzymes contained in the
ER lumen, the ER also synthesizes phospholipids, cholesterol,
and ceramide. Lipids can be shuttled to the Golgi apparatus
via both vesicular and non-vesicular mechanisms (Meer 1993;
Cockcroft 2001; Hanada et al. 2003). The ATP-dependent
direct membrane contact is a prerequisite for the transport of
phospholipids from the ER to the mitochondria. More specif-
ically, various components are involved to support the contact
between the ER and the mitochondria, such as mitochondria-
associated membrane (MAM), ER-mitochondria encountered
structures (ERMES), and acetylated microtubules. The
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transport for cholesterol, however, is cAMP dependent, during
which process the cholesterol-binding protein Bsteroidogenic
acute regulatory protein^ plays a vital role in modulating the
membrane structure of the mitochondria to facilitate the im-
port of cholesterol into the mitochondria (Flis and Daum
2013). The mitochondria act as a buffer to restrict the accu-
mulation of Ca2+ in the cytosol when Ca2+ leaks from the ER.
The voltage-dependent anion-selective channel in the outer
membranes of the mitochondria allows the diffusion of
Ca2+. Further uptake of Ca2+ into the matrix of mitochondria
requires specific transporters in the inner membranes of the
mitochondria (Kaufman and Malhotra 2014).

ER quality control mechanisms

The protein folding process is inherently error-prone and de-
pendent on complexity of individual proteins (Drummond and
Wilke 2009). Environmental stresses, such as ultraviolet light
exposure, depletion of Ca2+, osmotic stress, oxidative stress,
and hypoxia or deprivation of nutrients in pathological condi-
tions such as malignancy, increase the accumulation of im-
properly folded polypeptides (Walter and David 2011). If they
are not removed from the ER via the process known as ER-
associated degradation (ERAD), the partially folded or
misfolded polypeptides are susceptible to aggregation in dis-
ordered structures (Fink 1998). The excessive accumulation
of the misfolded proteins is a common characteristic of con-
formational disorders, such as amyloid diseases, spongiform
encephalopathies, emphysema, cirrhosis, and thrombosis
(Carrell and Lomas 1997).

Providentially, the ER has an orchestrated quality-control
system (also known as proteostasis) to facilitate the processes
of protein folding and misfolded protein degradation, in which
ATP-dependent chaperones, also known as heat shock pro-
teins (Hsps), play a crucial role (Hartl and Hayer-Hartl 2002;
Saibil 2013). For example, glucose-regulated protein 94
(GRP94, gp96, Hsp90B1), a chaperone of the Hsp90 family,
facilitates the effective folding of many functional proteins,
such as immunoglobulins, insulin-like growth factors
(IGFs), toll-like receptors, and integrins (Dersh et al. 2014).
GRP78 (a 70 kDa protein which belongs to the Hsp79 family)
binds to the hydrophobic surface of the non-native proteins
and cooperates with Hsp110. It is capable of interfering with
protein aggregation (Mattoo et al. 2013), assisting the
unfolding, and refolding of misfolded proteins (Bukau and
Horwich 1998; Zavilgelsky et al. 2002). GRP78 also keeps
the stability of unfolded proteins until they are competent for
the correct folding process under normal conditions (Sharma
et al. 2010). Similarly, the glycan-dependent chaperones,
calnexin and calreticulin, form a de-glycosylation and glyco-
sylation cycle inside the ER lumen to hold the incorrectly

folded proteins in the ER lumen and divert them into ERAD
(Lars and Ari 2003).

Despite the support offered for primary quality control by
all of the above factors, many newly synthesized proteins end
up misfolded. The unwanted misfolded proteins are recog-
nized and then retro-translocated to the cytosol for ultimate
degradation by the ubiquitin-proteasome pathway, as a sec-
ondary quality control (Ruggiano et al. 2014). Misfolded pro-
teins are flagged by glycosylation with a specific oligosaccha-
ride structure (Man7GlcNAc2 with α 1, 6-linked mannosyl
residual) (Clerc et al. 2009). The mannose-6-phosphate recep-
tor homology domain of osteosarcoma amplified 9 (OS-9), an
ER-resident lectin, recognizes α 1, 6-linked terminal mannose
(Clerc et al. 2009), which targets the misfolded glycoprotein
for degradation (Hirsch et al. 2009; Satoh et al. 2010). OS-9
interacts with the 3-hydroxyl-3-methylglutaryl-coenzymeA
reductase degradation (HRD) ligase through the Hrd3p sub-
unit for ubiquitination (Gauss et al. 2006). However, how the
aberrant proteins are recruited to HRD ligase remains enig-
matic. Finally, ubiquitinated proteins are recognized and de-
graded by the 26S proteasome (Voges et al. 1999).

If the ER-associated degradation capacity is insufficient,
the ER will be congested with immature proteins in a process
known as ER stress, initiating a series of signaling pathways
collectively known as the UPR (Hendershot 2002). The UPR
works on alleviating ER stress by fine-tuning the balance be-
tween (1) protein synthesis and degradation, (2) protein ag-
gregation and disaggregation, and (3) protein influx and retro-
translocation. However, if the re-establishment of homeostasis
cannot be achieved, the UPR can cause cell death primarily by
initiating apoptosis, which protects the organism from being
harmed by toxic accumulation of misfolded proteins.

Signaling cascades elicited by the UPR

The coordinated functions regulated by the UPR are achieved
by three ER stress proximal transducers: activating transcrip-
tion factor-6 (ATF6), double-stranded RNA-activated protein
kinase/PKR-like ER kinase (PERK), and inositol-requiring
enzyme 1 (IRE-1). They constitute a complicated and dynam-
ic signaling network which enhances the resistance of cells to
ER stress. The adaptive signaling elicited by the UPR is based
on a series of conformational adaptations and phosphorylation
processes (Kaufman 1999; Mori 2000; Patil andWalter 2001).

All three of the stress transducers have binding sites for
GRP78. In unstressed cells, the stress transducers are main-
tained in an inactivated state by GRP78 so as to block their
activity. Under ER stress, GRP78 dissociates from these ER-
residential proteins to initiate downstream cascades (Bertolotti
et al. 2000).

Under the scope of the UPR, ATF6 is the only transducer
that departs the ER via translocation in the membrane of the
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Golgi (Shen et al. 2002). ATF6 signaling functions to enhance
protein folding and degradation capacity. Upon translocation
from the ER to the Golgi apparatus, ATF6 undergoes proteo-
lytic cleavage which releases a cytosolic fragment, pATF6(N)
(Sasaki and Yoshida 2015). pATF6(N) then moves into the
nucleus to activate the transcription of genes encoding most
ER chaperones, such as GRP78, GRP94 and calreticulin, and
some ERAD components, such as HRD (Adachi et al. 2008).
However, knockout of the ATF6 gene did not influence the
expression of proteins, which are responsible for protein trans-
location (Adachi et al. 2008).

PERK signaling decides the cell fate after exposure to ER
stress. On ER stress, PERK phosphorylates eIF2α (eukaryotic
translation initiation factor 2α) and consequently deactivates
eIF2B. This results in blocking guanosine triphosphate
(GTP)-dependent transportation of the initiator Met-tRNAi

Met

to the rough ER, which consequently downregulates global
translation. Activated eIF2 also inhibits the influx of nascent
polypeptides into the ER (Teske et al. 2011). The immediate
result of this translation inhibition is a reduction in the rates of
global protein synthesis, which saves energy consumption
when oxygen and ATP levels are low. Although PERK signal-
ing reduces the synthesis of most proteins, it preferentially in-
creases the biosynthesis of some proteins that can help cells
survive in stressed conditions, for example, inhibitor of
Bruton’s tyrosine kinase (IBTKα), growth arrest and DNA-
damage-inducible protein (GADD34), and Gcn4p.
Alternatively, PERK signaling may increase the biosynthesis
of some proteins that induce cell death (e.g., activating tran-
scription factor 4 [ATF4]) if the stress is irreversible. IBTKα
can protect cells from caspase3/7-dependent cell death (Baird
et al. 2014). Activated ATF4 induces the expression of C/EBP
homologous protein (CHOP), also known as growth arrest and
DNA-damage-inducible protein 153 (GADD153), which can
induce the apoptotic pathway (Li et al. 2014a). In contrast,
activated ATF4 and CHOP also conjointly target genes, such
as GADD34, that relieve translation attenuation for recovering
cells from stress (Choy et al. 2015). Similarly, Gcn4p enhances
biosynthesis of amino acids, which helps cells withstand
starvation (Hinnebusch and Natarajan 2002). In addition,
PERK inhibits the synthesis of cell cycle regulators, such as
cyclin D1, resulting in cell cycle arrest in the G1 phase (Brewer
et al. 1999). Consequently, if the UPR is transient, these adap-
tive responses promote cell survival. However, if the UPR is
prolonged, overconsumption of nutrition and energy during
protein synthesis causes oxidative stress which can further en-
hance protein misfolding by interfering with disulfide bond
formation during protein folding (Han et al. 2013). This effect
is enhanced by the pro-apoptotic influence of CHOP which,
together, passes the molecular thresholds for induction of
apoptosis.

Among all the three branches of the UPR, IRE1 signaling is
the only one that is conserved in lower eukaryotes. In the case

of IRE1, dissociation with GRP78 initiates the phosphoryla-
tion and dimerization of IRE1. This in turn results in removal
of a 26 nucleotide intron from X-box binding protein 1
(XBP1) mRNA, leading to the synthesis of the isoform
XBP1(S), which translocates into the nucleus to induce the
upregulation of its target genes, the protein products of which
facilitate every aspect of the secretory pathway ranging from
protein folding and entry of proteins into the ER to ERAD
(Walter and David 2011; Piperi et al. 2016). IRE1α is a branch
of the UPR that can covert pro-survival ER stress to pro-
apoptotic ER stress, depending on the activation of c-Jun ami-
no-terminal kinase (JNK) (Brozzi et al. 2016). The prolonged
activation of JNK is known to induce tissue and stimulus-
specific apoptosis through mitochondria-dependent caspase
activation (Dhanasekaran and Reddy 2008). The activation
and function of the IRE1α/JNK pathway will be discussed
in the next section. Unlike the broad expression of IRE1α,
IRE1β is exclusively expressed in intestinal and bronchial
epithelial cells (Nakamura et al. 2011). In contrast with the
high cleavage activity of IRE1α against XBP1 mRNA, the
RNase domain of IRE1β has higher cleavage potential against
28S ribosome RNA, which may cause apoptosis (Imagawa
et al. 2008). Regarding the cell protective role, IRE1β is re-
quired for the production of mucins (Muc5b and Muc5ac) in
the respiratory tract (Martino et al. 2013) and mucin-2 in the
goblet cells in the colon (Tsuru et al. 2013). Consistent with
the dual functions of the PERK branch of the UPR, the exis-
tence of IRE1 signaling further indicates that the UPR, which
had been thought to be pro-survival under ER stress, could
also induce cell death when ER stress is persistent and
harmful.

Crosstalk between ER stress and other signaling
pathways that can determine cell fate

ER stress modulates crosstalk with signaling pathways that are
pivotal in the control of cell fate, including PI3K/Akt/mTOR
signaling, Ras/Raf/MEK/ERK signaling, and themitochondria-
mediated intrinsic pathway of apoptosis (Fig. 1). As discussed
above, transient ER stress is beneficial; whereas, pathologically
chronic ER stress serves to execute apoptosis. It has been con-
sistently observed in primary cultured glial cells that the
PI3K/protein kinase B (PKB, also known as Akt) signals are
upregulated in exposure to short-term ER stress, but are subject
to downregulation in chronic ER stress, and may facilitate cell
death (Hosoi et al. 2007). PI3K/Akt/mTOR is an important
signaling pathway that upregulates transcription and translation,
thereby supporting cell cycling (Porta et al. 2014). The molec-
ular mechanism of the activation of the PI3K/Akt/mTOR sig-
naling has recently been reviewed elsewhere (Jason and Cui
2016). Briefly, sensing the environmental cues, the complex
phosphatidylinositol-3,4,5-triphosphate/phosphoinositide
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dependent kinase 1 (PIP3/PDK1) phosphorylates Akt at
Thr308, resulting in the activation of Akt (Dangelmaier et al.
2014). Activated Akt maintains the activity of the Rheb/GTP
complex, which is essential for activation of mammalian target
of rapamycin (mTOR) complex 1 (mTORC1) (Avruch et al.
2009). Upon activation, mTORC1 activates downstream sig-
nals which stimulate anabolic metabolism. For example, the
activation of the ribosomal protein S6 kinase (S6 K) and the
eukaryotic translation initiation factor 4E-binding protein 1
(4E-BP1) promote protein synthesis (Magnuson et al. 2012).
The activation of Akt is synergised by mTORC2 through phos-
phorylation of Akt on Ser473 (Yang et al. 2015). Recent evi-
dence suggests that it is mTORC2 instead of mTORC1 that
mediates adriamycin-induced apoptosis via mTORC2/Akt/nu-
clear factor κB (NFκB) signaling which activates transient re-
ceptor potential cation channel 6 (TRPC6) to increase intracel-
lular Ca2+ in podocytes (Zhang et al. 2016). ER stress-mediated
inhibition of the anabolic effects of the mTORC2-Akt pathway
has been described (Chen et al. 2011). They found that a pre-
viously unknown phosphorylation site, Ser1235, on the rictor
(rapamycin-insensitive companion of mTOR) component of
mTORC2 could be phosphorylated by glycogen synthase
kinase-3 β (GSK-3β), which is widely known as an Akt sub-
strate that regulates glucose metabolism (Woodgett 2003). This

occurred under hyperosmolality, tunicamycin, and
thapsigargin-induced ER stress conditions, thereby hindering
substrate Akt binding to mTORC2. Furthermore, using a mu-
tagenesis technique, they found the GSK-3β-mediated inhibi-
tion of mTORC2-Akt signaling was important in inhibiting the
cell proliferation and tumor growth in cultured mouse embry-
onic fibroblasts (MEFs) and nude mouse models which were
injected with allograft MEFs bearing mutated rictor with en-
hanced phosphorylation at Ser1235. In a recent study, the abil-
ity of tunicamycin-induced ER stress to activate GSK-3β was
completely abolished in IRE1α-deficient MEFs, but was nor-
mal in MEFs which were deficient in PERK, XBP1, or ATF6,
suggesting that the activation of GSK-3β was IRE1α depen-
dent (Kim et al. 2015).

The transmembrane ER stress sensor, IRE1, interacts with
MAPK signaling (via Ras/Raf/MEK/ERK) to determine the
cell fate in response to ER stress (Darling and Cook 2014). As
discussed above, in addition to activation by disassociation
from GRP78 complex, IRE1α can also be activated by the
pro-apoptotic BH123 protein Bak and BH3-only proteins
Bim and PUMA (Hetz et al. 2006; Klee et al. 2009). Upon
stimulation, IRE1α induces the tumor necrosis factor receptor
(TNFR)-associated factor2 (TRAF2)/apoptosis signal-
regulating kinase 1 (ASK1)/JNK cascade, which contributes

IRE1α

PUMABim Bax

ASK1

JNK

MEK

TNFR

TRAF2

mitochondria-mediated apoptotic cascades
inhibits anabolic metabolism,
cell growth and proliferation

mTORC2

Ser473

mTORC1

A
K
T

IRE1α

Tunicamycin

Fig. 1 Crosstalk between ER stress and other signaling pathways. Under
ER stress, IRE1α activated GSK-3β phosphorylates mTORC2 on
Ser1235, thereby hindering the binding between mTORC2 and the
Ser473 site on Akt. This decreases the total amount of activated Akt,
thus impairing the activation of mTORC1. Consequently, the
mTORC1-initiated downstream anabolic metabolism, including protein
synthesis, cell growth, and proliferation, is inhibited. The ER stress
sensor, IRE1α, can be activated by the pro-apoptotic proteins, Bak,
Bim, and PUMA. Upon stimulation, IRE1α induces the TRAF2/ASK1/

JNK cascade, which contributes to cell death.While playing a core role in
the IRE1α-initiated apoptotic signaling, ASK1 is also a member of the
Raf family, which activates MEK4/MEK7-JNK signaling. This suggests
that ASK1 is a coordinator in the interplay between the IRE1α-mediated
apoptotic signaling and Ras/Raf/MEK/ERK signaling.GSK-3β glycogen
synthase kinase-3, mTORC mTOR complex, TRAF2 tumor necrosis
factor receptor (TNFR)-associated factor 2, ASK1 apoptosis signal-
regulating kinase 1, JNK c-Jun amino-terminal kinase
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to cell death (Urano et al. 2000; Nishitoh et al. 2002).
Knocking down of IRE1α and TRAF2 consistently inhibited
cell death induced by Bim and PUMA in the presence of Bak,
revealing the pro-apoptotic function of the IRE1α (Klee et al.
2009). Beyond being activated by IRE1α, JNK is an impor-
tant downstream target of the multi-tier kinase module that
contains Ras, RAF, MEK, and ERK (Wagner and Nebreda
2009), suggesting that Ras/Raf/MEK/ERK signaling may
play a role in ER stress-induced cell death. In the interplay
between the Ras/Raf/MEK/ERK signaling and the IRE1α
signaling, ASK1 may function as a coordinator (Hayakawa
et al. 2012). While playing a core role in IRE1α-initiated
apoptotic signaling, ASK1 is also a member of the Raf family
which activates MEK4/MEK7-JNK and MEK3/MEK6-p38
pathways (Ichijo et al. 1997). ASK1-deficient mice exhibited
an increased resistance to ischemia-reperfusion (I/R)-induced
death of cardiomyocytes. This was accompanied by a smaller
increase in activating p38 and JNK compared with wild type
mice, indicating that ASK1 deficiency negates the crosstalk
between the IRE1α and MAPK signaling that normally pro-
motes cell death in this stimulus scenario (Watanabe et al.
2005).

The pro-apoptotic effect induced by CHOP is relevant to
the activation of the mitochondria-mediated intrinsic pathway
of apoptosis whereby cytochrome C leaves the mitochondrial
intermembrane space and then moves into the cytoplasm to
trigger apoptosis. Prior to initiation of the intrinsic apoptotic
pathway, the Bcl2 family pro-apoptotic proteins Bax or Bak
aggregate to form a channel to allow the transmembrane re-
lease of cytochrome C, the process of which can be inhibited
by the anti-apoptotic protein, Bcl2 (Cheng et al. 2001). Bcl2 is
downregulated during CHOP-induced apoptosis in vitro
(McCullough et al. 2001). The correlation between the Bcl2
protein family and CHOP-induced apoptosis has also been
shown in mouse models. For example, mice bearing CHOP-
deficient genes exhibited enhanced resistance to I/R-induced
tubular epithelial cell death, with downregulation of pro-
apoptotic Bax (Noh et al. 2015). This suggests that the
mitochondria-mediated intrinsic pathway has a synergistic ef-
fect with CHOP-induced apoptosis.

As discussed above, UPR downstream cascades can induce
cell apoptosis. Hence, targeting apoptotic ER-stress induced
pathways might be effective in eliminating unwanted cells,
such as tumor cells.

Evidence of UPR involvement in cancer

Although ER stress has been linked adversely to several dis-
eases, including neurodegenerative diseases (Hetz and
Bertrand 2014), heart diseases (Liu and Dudley 2016), diabe-
tes (Cnop et al. 2012), and renal disease (Taniguchi and
Yoshida 2015), manipulation of the ER stress can be

harnessed therapeutically (Inki et al. 2008). For example,
inactivating UPR cascades is an attractive target for antitumor
modalities. In this section, an overview of different mecha-
nisms that have been proposed to explain the molecular link
between cancer and the induction of the ER stress is provided.
The possible mechanisms of the adaptive behaviors of cancer
cells based on the activation of the UPRwill be described first.
Then, deregulation of the immunity in the microenviroment of
tumor, which is mediated by the ER stress, will be described.
Finally, the cancer-killing potential of the UPR by interfering
with the cell cycle will be discussed briefly (Fig. 2).

Due to uncontrolled proliferation, cancer cells often live in
a condition with insufficient oxygen and nutrition. Stably
expressed under conditions of hypoxia, hypoxia-inducible
factor-1 (HIF-1) promotes angiogenesis via upregulating the
expression of vascular endothelial growth factor (VEGF)
(Liao and Johnson 2007)). Additionaly, HIF-1 decreases
ATP consumption during glycolysis via stimulating the gene
expression of pyruvate dehydrogenase kinase, which inhibits
pyruvate dehydrogenase (Kim et al. 2006). Hence, cancer is
known to inherently maintain a highly efficient proliferation
rate when confronting hypoxia (Hanahan and Weinberg
2011). Apart from assisting the pro-survival signaling in tu-
morigenesis, the hypoxic stress also activates the IRE1 and
PERK arms of the UPR, which launches downstream cas-
cades to increase insensitivity of tumor cells toward pro-
apoptotic signaling (Koumenis 2006). The activation of ER
stress in response to oxygen-glucose deprivation has been
reported in previous studies. For example, in primary cultures
of mixed rat brain cortical cells which were deprived of oxy-
gen and glucose, the PERK-eIF2α and IRE1-XBP1 branches
of the UPR were stimulated (Badiola et al. 2011). In the con-
text of tumors, the upregulation of GRP78 was also related to
the glucose depletion (Shiu et al. 1977). It has now become
clear that the activation of ER stress is a common phenome-
non in tumorigenesis (Schewe et al. 2008; Hazari et al. 2016;
Bi et al. 2005). The altered expression of ER stress proteins
has been observed in various cancer types, including lung
cancer (Tsai et al. 2013), breast cancer (Kim et al. 2016), colon
cancer (Ryan et al. 2016), gastric cancer (Shen et al. 2015),
pancreatic cancer (Niu et al. 2015), liver cancer (Shuda et al.
2003; Al-Rawashdeh et al. 2010), prostate cancer (Storm et al.
2016; Liu et al. 2017), kidney cancer (Fu et al. 2010), skin
cancer (Shimizu et al. 2017), uterine cancer (Lin et al. 2013),
ovarian cancer (Cubillos-Ruiz et al. 2015), leukemia
(Buontempo et al. 2016), myeloma (Zhong et al. 2016), and
gliobastoma (Epple et al. 2013).

GRP78 is the common UPR component that has upregu-
lated expression in most of the tumor tissues which are men-
tioned above. GRP78 was initially identified as a protein that
was upregulated in Rous sarcoma virus-transformed chick
embryo fibroblasts (Shiu et al. 1977). The activation of
GRP78 correlates with the severity and prognosis of cancer.
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For example, the activation of a rarely known splicing variant
of GRP78, GRP78va, is associated with enhanced viability of
leukemic cells. GRP78va is dramatically upregulated under
ER stress. As a result of unleashing PERK signaling, which
would be inhibited by P58IPK, the upregulation of GRP78va
adapts leukemic cells to the ER stress, indicating the cancer-
supporting role of the PERK branch of the UPR (Ni et al.
2009). The cancer supporting role of PERK signaling has
been revalidated in other research. Meixia et al. found that
xenograft tumors grown from Ki-RasV12 and Ha-RasV12-
transformed MEFs with wild-type PERK- eIF2α-ATF4 were
six times larger in size than tumors with a compromised
PERK-eIF2α-ATF4 pathway, suggesting that inhibiting
PERK-eIF2α-ATF4 activity inhibits the growth of tumors
(Bi et al. 2005). The silencing of IRE1β, however, may con-
tribute to the carcinogenesis of colorectal cancer, which is
characterized by a dysregulated expression of mucins
(Krishn et al. 2016), because the integrity of IRE1β is crucial
for the normal characterization of mucin-2 in the colon.
Knock out of IRE1β increases the ER stress level in the goblet
cells of the colon mucosal layer. Increased ER stress, in this
case, is characterized by an upregulation of GRP78, an in-
creased ratio of spliced to unspliced XBP1 and the ER disten-
tion in goblet cells. Immunofluorescence microscopy indicat-
ed an overlap of the strong staining of the O-glycosylated
proteins and calreticulin, which is an ER resident protein,
indicating that the aberrant expression of IRE1β was respon-
sible for the overaccumulation of mucin-2 in the ER of goblet
cells. Failing to move the C-terminal peptide of mucin-2

during posttranslation may interefere with the mobility of mu-
cin-2, which could be the reason of the overaccumulation of
aberrant mucin-2 in the ER lumen (Tsuru et al. 2013).
Consistently, it has been found that there was downregulated
IRE1β expression in colorectal adenocarcinomas compared
with normal colon (Jiang et al. 2017). Clinical studies based
on archived tumor tissues demonstrate that the levels of ex-
pression of specific ER stress markers can work as predictors
of cancer (summarized in Table 1).

Blunted anti-cancer immunity is an underlying process of
cancer development. By means of utilizing ER stress, tumors
can successfully suppress or evade immune scavenging
(Hanahan and Weinberg 2011). Over the past years, signifi-
cant research efforts have elucidated the functions of the UPR
in immunity. In pilot research from Giovanna et al., the link
between the activation of the eIF2α/ATF4/GADD34 branch
of the UPR signaling and the intact innate anti-viral immunity
in response to Chikungunya virus infection was revealed
(Clavarino et al. 2012). In this research, the activation of
GADD34 upon sensing the double strand viral mRNAwas a
precondition for the translation of interleukin 6 (IL-6), inter-
feron β (IFN-β), and PKR. IL-6 and IFN-β are cytokines that
are crucial for the innate response to infection (Steinhagen
et al. 2013). PKR is an eIF2α kinase, which halts viral protein
synthesis by phosphorylating eIF2α (Dar et al. 2005; Dey
et al. 2005). However, in a cancer setting, the pro-
inflammatory molecules propel the processes of
tumorigenesis (Mumm and Oft 2008). For example, secretion
of IL-6 by renal tumor cells helps maintain the tumorigenic
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Fig. 2 Dual roles of UPR in cancer. Cancer cells often live under hypoxic
conditions which activate the IRE1 and PERK branches of the UPR to
support cancer growth. On the one hand, cancer cells exploit the
prosurvival UPR signaling to conquer the lethal effect of treatments. On
the other hand, upregulated XBP1 induces the accumulation of
triglyceride (TG) in dendritic cells, which decreases the expression of
the major histocompatibility complex-1 (MHC1), thereby hindering the

activation of CD8+ T cells. The immune sabotage of XBP1 contributes to
a blunted immune elimination of cancer cells. In contrast, the G1 phase
arrest of cancer cells is also related to the activation of the PERK branch
of the UPR, suggesting that UPR has dual roles in determining the fate of
cancer cells. TG triglyceride, CTL cytotoxic T lymphocyte,MCH1major
histocompatibility complex1, CDK cyclin dependent kinase
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inflammatory signaling pathway (Kamińska et al. 2015).
Along with the cytokines produced under the innate immune
response, the antigen-presenting dendritic cell is crucial for
activating T cells and subsequently elicits the adaptive im-
mune response to eliminate cancer cells (Ni and O’Neill
1997; Chaux 1995). Although in clinical oncology, cancer
immunotherapy mostly targets overcoming T cell inactivation
by checkpoint inhibitors, the dentritic cell-based anticancer
immunotherapy has also achieved attention. Large amounts
of dendritic cells with defective functions are produced in
the cancer microenvironment, thereby crippling the elimina-
tion of cancer cells (Yang and Carbone 2004). The hampered
BT cell-dependent anti-tumor immunity^ is partially ascribed
to the activation of another UPR branch: the IRE1α/XBP1
signaling (Cubillos-Ruiz et al. 2015). In physiological condi-
tions, tumor-irrelevant CD8+ dendritic cells constitutively ac-
tivate the IRE1-α/XBP1 axis without triggering the UPR cas-
cades, and so regulate the gene expression that maintains ER
homeostasis and the phenotype of dendritic cells.
Furthermore, intact IRE1-α/XBP1 signaling plays a signifi-
cant role in the cross-presentation by CD8+ dendritic cells
(Osorio et al. 2014). The overexpression of XBP1 has been
discovered in tumor-associated dendritic cells in aggressive
cancers. This overexpression has negative effects on the func-
tion of dendritic cells in the tumor microenvironment
(Cubillos-Ruiz et al. 2016). For example, Cubillos-Ruiz
et al. (Cubillos-Ruiz et al. 2015) found that the expression of
the spliced XBP1 was positively correlated with the volume
and weight of ovarian tumors in murine models, indicating the
existence of an impaired antigen presenting function of the
dendritic cells. They further found the lipid peroxidation prod-
uct 4-hydroxy-trans-2-nonenal in ovarian cancer-associated
dendritic cells stimulated the production of XBP1 and induc-
tion of ER stress. The dendritic cells which were devoid of
XBP1 demonstrated significant suppression of genes, such as
Agpat6, Fasn, Scd2, and Lpar1, which are involved in lipid
metabolism pathways, and genes such as ATF6, Sec61α1,
Pdia4, and Sec24, which are involved in the ER stress re-
sponse. Large intracellular lipid bodies were only found in
the XBP1-sufficient dendritic cells but not in the XBP1-
deficient cells. The accumulation of triglyceride in bone-
marrow-derived dendritic cells decreased the surface expres-
sion of the major histocompatibility complex-1 (MHC-1)
which was loaded with ovalbumin-derived peptide epitope,
thus hindering the activation of CD8+ T cells. The immune
sabotage of XBP1 is revalidated in XBP1 deficient mice
where the T cells exhibited enhanced capacity to hamper tu-
mor growth. Moreover, silencing IRE1α/XBP1 signaling
prolonged survival of mice bearing aggressive orthotopic
ovarian tumors. These results collectively indicate that the
XBP1-dependent turbulence of lipid metabolism in ovarian
cancer contributes to the dysfunction of dendritic cells, which
weakens the T-cell mediated anti-tumor responses.

The presence of cell cycle-mediated cancer resistance is a
great challenge for antitumor therapies (Shah and Schwartz
2001). In contrast to the supportive role of the UPR in tumor-
igenesis by blunting the immune elimination, the UPR facili-
tates the tumoricidal treatment by blocking cell cycling of
cancer cells. The upregulation of the G1/S phase regulator,
cyclin D1, in G1 phase is found in various malignant neo-
plasms (Bianchi et al. 1993; Arber et al. 1996; Youssef et al.
1997; Donnellan and Chetty 1998; Drobnjak et al. 2000;
Gautschi et al. 2007). As shown by Brewer et al., the
tunicamycin-mediated UPR inhibits the translation of cyclin
D1, thereby inhibiting cyclin D1 forming a complex with
cyclin-dependent kinase. Thus, the retinoblastoma protein is
not able to be phosphorylated, which results in the cell-cycle
arrest in G1 phase (Brewer et al. 1999). It is worth noting that
the G1 phase arrest mediated by the UPR may lead to resis-
tance to agents that target the succeeding phases of cell cycle,
indicating the importance of selecting the appropriate therapy
when the intact cell cycle is interfered with by the UPR.

Evidence of the tumoricidal effect of drugs based
on regulating ER stress

The importance of the UPR in tumorigenesis and malignancy
has inspired great interest in modulating the response of can-
cer cells toward the ER stress. Accumulating evidence indi-
cates that utilizing the pro-apoptotic pathways of the UPR has
tumouricidal effects in various cancer types (Table 2).
Amplifying the pro-apoptotic PERK/eIF2α/ATF4/CHOP sig-
naling led to substantial death in breast cancer cells
(Chakraborty et al. 2016). In this recently published research,
the MCF-7 breast cancer cell line subjected to mephebrindole
treatment exhibited a high apoptotic rate, accompanied by
increased reactive oxygen species (ROS) generation, Ca2+

disequilibrium, and amplified PERK/eIF2α/ATF4/CHOP sig-
naling. Moreover, the tumoricidal effect of mephebrindole is
partially inhibited by the MAPK inhibitor SB2035880. These
results were further validated in animal models, cumulatively
suggesting that mephebrindole can cause death of breast can-
cer cells via utilizing apoptotis induced by PERK and MAPK
signaling pathways.

The resistance toward chemotherapeutic agents is an obsta-
cle for efficient therapy for cancer. Now it is clear that over-
expression of GRP78 in multiple tumor types is positively
correlated to high resistance (Roller and Maddalo 2013).
Inhibiting the expression of GRP78 sensitizes cancer cells
toward chemotherapy. For example, conventional antineo-
plastic agents, such as temozolomide, 5-fluorouracil, and
CPT-11, coupled with inhibition of the expression of GRP78
launches the activation of CHOP signaling and caspase 7, thus
enhancing the chemosensitivity of malignant gliomas (Pyrko
et al. 2007). The NH2-terminal domain of GRP78 interacts
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with tissue-type plasminogen activator (t-PA) to support cell
proliferation (Gonzalez-Gronow et al. 2014). In agreement
with the tumorigenic role of GRP78, the presence of anti-
GRP78 autoantibodies in the serum of prostate cancer patients
predicts an adverse prognosis of cancer (Mintz et al. 2003).
This humoral response to GRP78 is ineffective in eliminating
cancer cells. In contrast, the generated anti-GRP78 autoanti-
body stimulated Akt phosphorylation and melanoma prolifer-
ation in the murine model (De Ridder et al. 2011). The
tumoricidal effects induced by blocking the cell surface
GRP78 are caused by a comprehensive alteration of the ER
stress-relevant signaling pathways, including inhibition of the
PI3/Akt pathway and the activation of the pro-apoptotic path-
ways mediated by mitochondria and MEK4/JNK signaling
pathway. These data are evidenced by inhibition of tumor
growth and proliferation of prostate cancer and melanoma
by treatment with GRP78 antibodies (Misra and Pizzo 2010;
de Ridder et al. 2012).

Currently, there are several research groups that are active
and prominent in the field of ER stress and cancer therapy.
Research by Dent’s group demonstrated a more than additive
anti-tumor effect of multi-target therapies when the UPR and
the cGMP signaling were targeted. For example, OSU-03012,
which is the inhibitor of the chaperone protein GRP94 and
GRP78, exhibits remarkable tumoricidal effects when com-
bined with sildenafil. OSU-03012 is a derivate of celecoxib
(Zhu et al. 2004). Although the anti-tumor potential of the
non-steroidal anti-inflammatory drugs has been extensively
studied (Cha and DuBois 2007), OSU-03012 lacks the cyclo-
oxygenase, indicating the existence of additional mechanisms
underlying the tumoricidal effect. Sildenafil is a well-known
selective PDE5 inhibitor which is widely applied in amelio-
rating erectile dysfunction and pulmonary arterial hyperten-
sion through nitric oxide-mediated vasodilation (Corbin
2004). Recent research has highlighted the anti-tumor poten-
tial of sildenafil when applied together with standard chemo-
therapeutic agents. The mechanism is relevant to the activa-
tion of apoptosis, autophagy, and the accumulated ROS in
cancer cells (Booth et al. 2014a, b; Roberts et al. 2014).
Research designed by Booth and his colleagues indicated
that treatment of glioma cells using sildenafil (0.5–2 μmol)
and OSU-03012 (0.5–2 μmol) produced synergistic tumor
toxicity (Booth et al. 2014a, b). Either knocking down the
IRE1/XBP1 branch of the UPR or activating the synthesis of
nitric oxide enhanced the lethal effects. Moreover, sildenafil
and OSU-03012 produced a synergistic effect in activating
the PERK/eIF2α signaling, as evidenced by increased phos-
phorylation levels of eIF2α. Additionally, inhibiting PI3K/
Akt signaling enhanced the drug toxicity. Further testing in
this research demonstrated that the enhancement of the tox-
icity depended on the activation of the IRE1/JNK-induced
apoptosis and the synthesis of nitric oxide. These observa-
tions collectively indicate that there is potential crosstalk

between the cGMP signaling and UPR, which regulates
the proliferation and growth of tumor cells. However, the
specific molecular mechanism underlying the synergistic
tumoricidal effects induced by OSU-03012 and sildenafil
remains largely unexplained. Although knocking down the
IRE1 branch of the UPR facilitated the drug-combinatory
toxicity after treatment for 24 h, it is not clear whether tran-
sient inhibition of the UPR will induce pro-survival signal-
ing which tumor cells could potentially exploit. Moreover, it
is not clear to what extent this multi-drug modality could be
applied to other tumors, such as kidney cancer, which are
also highly resistant to treatment. Further research based on
SiRNA-mediated knockdown of the UPR and the cGMP
components is required to explain the synergistic effect in
more types of cancer.

The synergised anti-tumor ability of co-treatment with
OSU-03012 and sildenafil could be further enhanced by
multi-kinase inhibitors. Booth et al. Booth et al. 2015a) dem-
onstrated that this drug combination therapy enhanced phos-
phorylation of PERK and eIF2α, resulting in reduced expres-
sion of GADD34. As mentioned previously, GADD34 helps
recover the translational rate when cells are undergoing ER
stress. The results here indicate that the multidrug therapy kills
cancer cells by suppressing their protein synthesis. Except for
activating the PERK branch of the UPR, the synergised
tumor-killing ability induced by multi-drug therapy is depen-
dent on the activation of the IRE1 signaling and the inhibition
on the expression of GRP94 and GRP78. Moreover, the lethal
effect is accompanied by the downregulation of the multidrug
resistance protein 1 (gene name is ABCB1) and ATP-binding
cassette sub-family G member 2 (gene name is ABCG2),
which pump drugs out of the cell (Hegedus et al. 2009). The
expression of ABCmulti-drug transporters decreased with the
downregulation of GRP78. Further research demonstrated that
adding specific kinase inhibitors, for example, mesenchymal-
epithelial translation inhibitor crizotinib and IGF1R inhibitor
OSI-906, to this, drug-combination therapy could produce
greater synergistic tumoricidal effects. Of note, the promising
effects were cell-type specific. For example, the application of
OSI-906 only enhanced the tumoricidal effects of sildenafil
and OSU-03012 in glioblastoma 6 and glioblastoma 14 cells,
but not in breast cancer BT474 cells. Of note, Booth et al.
found that multi-drug therapy was not harmful for normal
tissues in vivo, highlighting the potential of the clinical
application.

In fact, some first line anti-tumor agents also help regulate
chaperone proteins and the UPR signaling pathways, indicat-
ing that ER stress could be a universal therapeutic target for
cancer. For example, bortezomib, which was approved by US
Food and Drug Administration (FDA) for treating refractory
multiple myeloma in 2003, is a 26S proteasome inhibitor
(Grigoreva et al. 2015; Adams 2001). Consistent with most
findings in malignancy, GRP78 is also upregulated in
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myeloma (Zhuang et al. 2009). Treatment with bortezomib led
to the activation of the PERK branch of the UPR in myeloma
cells, as evidenced by the upregulation of ATF4 and
CHOP/GADD153, thereby resulting in the ER stress-induced
apoptosis (Obeng et al. 2006). Additionally, 26S plays a role in
relieving the protein overload. Inhibition of the 26S proteasome
with bortezomib may kill myeloma via worsening the already
crowded microenvironment in tumor cells (Johnson 2015).

Traditional Chinese herbal medicine shows
anticancer potential via regulating ER stress

Traditional Chinese herbal medicine (TCHM) applies natural
products extracted from herbs, animals, and minerals. TCHM
is a rich therapy resource and has attracted tremendous atten-
tion in recent years. There is increasing clinical acceptance
and marketing of monomers extracted from natural products
of TCHM, such as cantharidin, arsenic trioxide, artesunate,
and homoharringtonine, for their anti-neoplastic effects
(Efferth et al. 2007). Herbal medicine derivatives, such as
the PDE5 inhibitors icariin and icaritin, are potential anti-
tumor compounds (Zhu et al. 2011; Li et al. 2014b). Icariin
is the compound extracted from the genus Epimedium (also
known as BYin Yang Huo^ in Chinese). Derived from icariin,
icaritin exerts an 80-fold stronger PDE5 inhibitory ability than
icariin (Shen et al. 2016). The most recent research has linked
the anti-tumor effects of icariin to its regulatory role in ER
stress (Fan et al. 2016). In this study which investigated the
anti-tumor activity of icariin in human esophageal squamous
cell carcinoma, treatment with icariin resulted in the death of
cancer cells accompanied by upregulation of ER stress-related
proteins, including PERK, GRP78, ATF4, and eIF2α.
Consistent with Booth’s study (Booth et al. 2015a), the study
by Fan et al. also demonstrated that suppressing the PERK
branch of the UPR by silencing eIF2α blunted the tumor kill-
ing ability of icariin, as evidenced by a comprehensive down-
regulation of the proapoptotic signals, including caspase 9 and
PUMA, and an upregulation of the anti-apoptotic Bcl2 pro-
tein. Contrary to expected findings, the result of this study
demonstrated that the tumoricidal effect of icariin was related
to upregulation of GRP78: downregulation of GRP78 was the
mechanism underlying the synergistic effects of sildenafil and
OSU-03012. As mentioned previously, activation of ER stress
is dynamic, such that the drug exposure time or the time-point
of measurement may influence the apparent UPR protein
levels. However, the drug exposure time was 24 h prior to
protein testing with Western immunoblot; this pre-test expo-
sure time was same with Booth’s study. The disparity in re-
sults between these two teams may be related to the difference
in cancer types, because the upregulation of GRP78 was also
found to be a positive predictor for esophageal carcinoma
(Langer et al. 2008) (Table 1). The limitation of the study

was that it did not compare the baseline expression of
GRP78 in normal esophageal cells and esophageal carcinoma
cells. Discrepancies between the tumouricidal effect via up-
regulating the chaperone proteins, especially for GRP78,
make the ER stress regulatory roles of PDE5 inhibitors
uncertain.

Conclusion

In physiological conditions, ER stressmaintains a homeostatic
balance via the ER-specific UPR. Cancer exploits ER stress to
overcome its cellular elimination mechanism and achieves
uncontrolled proliferation. The ER stress response is now rec-
ognized as a common molecular pathway for the main patho-
genic mechanisms of cancer, and there is increasing evidence
that targeting ER stress pathways is promising in developing
novel therapies for cancer. Due to the dual functions of ER
stress in determining the fate of cancer cells and maintaining
physiological homeostasis, caution must be exercised when
interfering with ER stress-related signaling, because of the
possibility of off-target side effects. Moreover, the duration
of drug exposure should be taken into consideration due to
the dynamic and time-dependent proapoptotic effects of the
UPR. Finally, more cancer types that exhibit resistance to
therapies should be involved in the emerging research about
targeting ER stress in suppressing cancers.
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