Table 2.
Subject | CA | SP | SE | AUC |
---|---|---|---|---|
1 | 0.893 | 0.857 | 0.929 | 0.952 |
2 | 0.893 | 0.929 | 0.857 | 0.967 |
3 | 0.833 | 0.800 | 0.867 | 0.804 |
4 | 0.889 | 0.833 | 0.944 | 0.965 |
5 | 0.933 | 0.933 | 0.933 | 0.931 |
6 | 0.882 | 0.941 | 0.824 | 0.891 |
7 | 0.921 | 0.895 | 0.947 | 0.922 |
8 | 0.906 | 0.938 | 0.875 | 0.972 |
9 | 0.969 | 0.941 | 0.987 | 0.981 |
10 | 0.933 | 0.892 | 0.975 | 0.998 |
11 | 0.900 | 0.933 | 0.867 | 0.929 |
12 | 0.893 | 0.857 | 0.929 | 0.965 |
13 | 0.886 | 0.909 | 0.864 | 0.934 |
14 | 0.857 | 0.809 | 0.905 | 0.981 |
15 | 0.923 | 0.896 | 0.950 | 0.884 |
16 | 0.821 | 0.857 | 0.786 | 0.996 |
17 | 0.933 | 0.980 | 0.887 | 0.998 |
18 | 0.885 | 0.923 | 0.846 | 0.846 |
19 | 0.923 | 0.932 | 0.914 | 0.953 |
20 | 0.864 | 0.864 | 0.864 | 0.935 |
Mean | 0.897 | 0.896 | 0.898 | 0.940 |
Note: CA represents classification accuracy, SP represents specificity, SE represents sensitivity and AUC represents area under ROC curve.