
rstb.royalsocietypublishing.org
Research
Cite this article: Sheftel H, Szekely P, Mayo

A, Sella G, Alon U. 2018 Evolutionary trade-offs

and the structure of polymorphisms. Phil.

Trans. R. Soc. B 373: 20170105.

http://dx.doi.org/10.1098/rstb.2017.0105

Accepted: 30 December 2017

One contribution of 15 to a theme issue

‘Self-organization in cell biology’.

Subject Areas:
systems biology, theoretical biology

Keywords:
complex traits, quantitative genetic variation,

pareto task inference, multi-task evolution,

quantitative trait loci

Author for correspondence:
Uri Alon

e-mail: uri.alon@weizmann.ac.il
& 2018 The Author(s) Published by the Royal Society. All rights reserved.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.4003885.
Evolutionary trade-offs and the structure
of polymorphisms

Hila Sheftel1, Pablo Szekely1, Avi Mayo1, Guy Sella2 and Uri Alon1

1Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
2Department of Biological Sciences, Columbia University, New York, NY 10027, USA

UA, 0000-0001-6903-9956

Populations of organisms show genetic differences called polymorphisms.

Understanding the effects of polymorphisms is important for biology and

medicine. Here, we ask which polymorphisms occur at high frequency when

organisms evolve under trade-offs between multiple tasks. Multiple tasks

present a problem, because it is not possible to be optimal at all tasks

simultaneously and hence compromises are necessary. Recent work indicates

that trade-offs lead to a simple geometry of phenotypes in the space of traits:

phenotypes fall on the Pareto front, which is shaped as a polytope: a line, tri-

angle, tetrahedron etc. The vertices of these polytopes are the optimal

phenotypes for a single task. Up to now, work on this Pareto approach has

not considered its genetic underpinnings. Here, we address this by asking

how the polymorphism structure of a population is affected by evolution

under trade-offs. We simulate a multi-task selection scenario, in which the

population evolves to the Pareto front: the line segment between two arche-

types or the triangle between three archetypes. We find that polymorphisms

that become prevalent in the population have pleiotropic phenotypic effects

that align with the Pareto front. Similarly, epistatic effects between prevalent

polymorphisms are parallel to the front. Alignment with the front occurs also

for asexual mating. Alignment is reduced when drift or linkage is strong,

and is replaced by a more complex structure in which many perpendicular

allele effects cancel out. Aligned polymorphism structure allows mating to pro-

duce offspring that stand a good chance of being optimal multi-taskers in at

least one of the locales available to the species.

This article is part of the theme issue ‘Self-organization in cell biology’.
1. Introduction
Organisms show prevalent genetic differences called polymorphisms. Poly-

morphisms, together with environmental and epigenetic effects, cause much

of the variation in traits between individuals. Each polymorphism typically

affects multiple traits (pleiotropy), and each trait is usually affected by many

different polymorphisms [1,2].

Understanding the origin and distributions of polymorphisms is important

in evolutionary and quantitative genetics. Most theoretical approaches to the

evolution of polymorphisms employ the classic picture of the fitness landscape:

a genotype determines phenotype, and the phenotype determines fitness [3]

(figure 1a). Natural selection leads to phenotypes that maximize fitness, pro-

vided that there is sufficient time, genetic variation, and that populations and

selection pressures are large enough to overcome genetic drift [5]. In this

approach, the shape of the fitness landscape, in particular the slopes near the

maximum, influences the distribution of phenotypes and genotypes in the

population. For example, simulations show that a fitness ridge can lead to

mutation-selection balance in which traits vary along the ridge [6,7].

Here, we consider an extension of the fitness landscape picture for cases in

which fitness derives from an organism’s performance at multiple tasks. The

need to perform multiple tasks introduces an inherent trade-off, because in

most cases no single phenotype can be optimal at all tasks. For example, a bird
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Figure 1. Trade-off between tasks leads to phenotypes arranged along polygons in trait space (a) Standard approaches assume a fitness landscape in the space of
phenotypic traits. Selection tends to favour phenotypes near the maximum. (b) When the system needs to perform several tasks, each task has a performance function
in trait space, whose maximum is called the archetype. Each coloured hill represent a performance function Pi(T ) for task i, where T is the vector of traits, and fitness at
locale q is an increasing function of all performance functions FqðP1ðTÞ, . . . ,PmðTÞÞ (c) In an environment where task 1 is more important, fitness is maximized at a
phenotype close to archetype 1; In an environment where task 3 is more important, fitness is maximized at a phenotype closer to archetype 3. Fitness maxima in the two
environments are different. (d ) Fitness maxima in all possible environments in which fitness is an increasing function of performance in the three tasks lie in the full
triangle whose vertices are the three archetypes—known as the Pareto front—when the conditions of Shoval et al. [4] are fulfiled. (e) Possible polymorphism structures
that keep a phenotype on the front: either mutation effects are parallel to the front (left), or mutations whose components perpendicular to the front cancel out (right).
( f ) Schematic of the selection process described in the Results section, for the case of three tasks that define a triangle whose vertices are the three archetypes. Locales and
individuals best at the locales are sequentially removed into a survivor list, and remaining individuals are removed. Survivors make up the next generation. Here, we
consider 7 locales (N ¼ 7); phenotypes that maximize fitness in these locales are connected to the relevant locale with a black line.
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may eat both seeds and pollen. However, cracking seeds

requires a beak shaped like a plier whereas pollen requires a

pincer-like beak [8].

In such cases, the ‘genotype! phenotype! fitness’

scheme should be modified to include performance at differ-

ent tasks [9]: genotype! phenotype! performance at task

1,2, . . . ! fitness). The genotype determines phenotype,

which is defined by a set of traits T such as morphological par-

ameters (e.g. beak width and length), gene expression levels or

enzyme activities. The phenotype, in turn, determines the per-

formance at different tasks: The performance at task i is given
by the performance function Pi(T) (figure 1b). Fitness is an

increasing function of the performances, F(P1(T), P2(T). . .).

The fitness, F, in a given locale is given by a (potentially non-

linear) weighting of the performances in the different tasks

(figure 1c). Therefore, each locale has its own fitness function

that combines the performances in the tasks.

This picture of trade-offs between tasks has been shown to

result in a simple geometry of phenotypes in the space of traits

(trait space) [4]. Under quite general assumptions, the optimal

phenotypes in all possible environments fall within polytopes

in trait-space (polytopes are the generalization of polygons to
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any dimension, such as lines, triangles, tetrahedra, etc.). The

vertices of the polytopes are the phenotypes that are optimal

for a single task. These vertices are called archetypes, and the

polytopes they define are the Pareto fronts.

Each point on the Pareto front corresponds to a phenotype

that maximizes fitness in a locale that requires a specific degree

of specialization in each of the tasks (figure 1c). For example, a

trade-off between two tasks leads to phenotypes along a line

segment, with the two archetypes at either end; generalists lie

in the middle. A trade-off between three tasks leads to a full tri-

angle (figure 1d), four tasks lead to a tetrahedron and so on.

Such straight edged polytopes occur in coordinate systems in

which performance declines with a distance metric [10]. If

trait axes are nonlinearly transformed (e.g. trait! trait2), the

polygons have curved edges, but still preserve the distinct

vertices at the archetypes optimal for each task.

Evidence for such lines, triangles and tetrahedra was found

in morphological datasets [4,11,12]; animal life-history traits

[13]; locomotive behaviour [14,15] and gene expression data

[4,16–18]. The polytopes offer a way to deduce the tasks

from the data, by observing the special features of organisms

near each archetype. In the studies cited above, the arche-

types found by fitting the data to polytopes [16] revealed clues

about the tasks at play in each case. For example, primary

tasks for E. coli gene expression are growth and survival [4].

Because this theoretical approach allows inference of tasks

from a multi-trait dataset, it is called Pareto task inference

(ParTI).

Up to now, work on the ParTI approach has not considered

its genetic underpinnings. Here, we address this by asking how

the polymorphism structure of a population is affected by evol-

ution under trade-offs between multiple tasks. We simulate a

multi-task selection scenario, in which the population evolves

to the Pareto front: the line segment between the two archetypes

or the triangle between three archetypes. We find that the poly-

morphisms that become prevalent in the population have

phenotypic effects that align with the Pareto front. Epistatic

effects between prevalent polymorphisms are also parallel to

the front. This polymorphism structure allows rapid evolution

to new environments that require the same tasks at different

weightings. It also provides a mechanism that allows mating

to produce offspring that stand a good chance of being optimal

multi-taskers. Alignment to the front is reduced when genetic

drift is strong, and is replaced by a more complex structure in

which perpendicular effects of alleles collectively cancel out.
2. Material and methods
We assume that performance at each task decays with distance r to

the archetype [4,19]. Performance functions were Pi(T) ¼ Pi(r(T,

Ai)), where distance r from the archetype Ai is an inner-product

norm r(T, Ai) ¼ (T 2 Ai)
TQi(T 2 Ai) with a positive-definite

matrix Qi (Euclidean distance is obtained for Qi ¼ I). Unless

otherwise noted, all simulations used Qi ¼ I. We chose population

sizes N for which simulation duration for 10N generations was

feasible, namely up to N ¼ 2000.
3. Results
(a) A selection scheme for multi-task evolution
We consider a setting where fitness is determined by the

performance at L different tasks. Phenotypes are described as
vectors T in a trait space, where each axis corresponds to a

quantitative trait. The performance functions for the L tasks

are Pi(T) for i ¼ 1 . . . L. The maxima of these performance func-

tions are the archetypes, A1. . . AL, the phenotypes optimal at

each task, and performance at each task decays with distance

from the archetype [4,19] (Methods).

To address evolution under a trade-off between the tasks,

we developed a selection process as follows: we consider N dis-

crete locales, such as territories or nesting sites, each of which

can be occupied by a single individual (results apply also

when locales can be occupied by several individuals, electronic

supplementary material, §1). The locales differ in environ-

mental factors, and therefore the different tasks are more or

less important for overall fitness at each locale. This heterogen-

eity can result from geographic clines, patchy environments,

variation in other species, and so on. Hence, each locale

has its own fitness function (individual selection surface)

with locale-specific weights for the different performance func-

tions: Ffwig ¼ SiwiPi, where the weights wi are positive (similar

results are found for fitness functions that are non-linear in the

performances, electronic supplementary material, §2). In the

simulations shown below, we sample wi uniformly with

Swi ¼ 1. Other distributions for wi yield the same qualitative

results (electronic supplementary material, §3).

The weights wi correspond to the fitness contribution of

each task in the locale. With this mathematical description,

the phenotype that maximizes fitness in each locale can be

shown to fall within trait space in the polytope whose vertices

are the archetypes [4], namely the Pareto front: a line for two

tasks, a triangle for three tasks and so on.

Each round of the simulation begins with N diploid individ-

uals, each in a different locale. We randomly choose kN pairs

(k . 1) and mate each pair with recombination to generate

one offspring per pair (simulations where mating probability

depends on fitness yield the same qualitative result, electronic

supplementary material, §4). Offspring gain new mutations

with probability m.

The kN offspring compete for the locales as follows. We

choose a locale at random, select the individual with highest

fitness according to the fitness function for that locale. We put

that locale and individual aside in a ‘survivor list’, and repeat

the process with remaining individuals and locales until all

sites are filled. The remaining individuals are removed, and

the N survivors make up the next generation (figure 1f ).

Selecting individuals stochastically according to their fitness

yields the same quantitative results, electronic supplementary

material, §5). As the parameter k increases, the competition

for the sites intensifies and drift effects become smaller.

This selection scheme acts on individuals represented by a

genome composed of a set of mutant alleles. Each mutation

moves the phenotype in trait-space. Mutation effect is a ran-

domly oriented vector whose length is drawn from an

exponential distribution with mean q ¼ 1, which is 1% of the

distance in trait space between the archetypes. Mutation effects

are additive (non-additive epistasis is addressed below). The

number of new mutations introduced in an individual per gen-

eration is Poisson distributed with mean m. For recombination,

we assume an infinite site model [20,21] and free recombina-

tion [22] (for more details, see electronic supplementary

material, §6).

We also simulated variants of this model as follows:

(i) linkage, in which recombination was done by swapp-

ing chromosomes at a single recombination spot (ii) No
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Figure 2. Phenotypes converge to the Pareto front by means of polymorphisms whose effects align with the front. (a – d) Snapshot of the phenotypes at different
generations in a simulation, for the case of two tasks. The Pareto front is shown in red. Insets: The phenotypic effects of all polymorphisms present in at least 1% of
genomes increasingly align with the Pareto front. Each arrow represents the phenotypic effect of one polymorphism (magnified for illustration purposes). At gen-
eration zero, no mutation is present at greater than 1% of the genomes. Simulation parameters: N ¼ 1000, m ¼ 0.05, k ¼ 2, free recombination. Median angle u
of polymorphisms relative to the front was 178, 98, 0.48, for b – d, respectively. The ratio between perpendicular and parallel standard deviation of phenotypes is
mentioned in each panel a – d, along with the phenotypic RMS distance from the front, normalized by the distance between archetypes. Axes are traits 1 and 2. (e)
The ratio of the perpendicular and parallel standard deviation of phenotypes with respect to the front is 1 for the initial population at generation 0, decreases with
generations, and begins to plateau after approximately 100 000 generations. ( f ) Polymorphisms that are aligned with the front tend to increase in frequency (log-
linear scale) and with competition k. Simulation parameters are as above except k that varies as indicated. Error bars represent 95% confidence intervals from
bootstrapping. Alignment is defined as A ¼ kjakjl2=ðkjakjl2 þ kja?jl2Þ where kjakjl and kja?jl are the mean parallel and perpendicular component of
the mutation effect vectors in each bin of mutation frequency. A ¼ 1 and 0.5 occur when mutations are completely aligned or randomly oriented, respectively.
Note that data are for frequencies less than 1, at frequency ¼ 1 the mutation becomes fixed in the population. (g,h) Phenotypic standard deviation ratio s?=sjj
(g) and median angle u (h) to the front, as a function of population size N, for three different recombination schemes: free recombination, linkage and asexual
mating. In all simulations presented, mN ¼ 50, and competition parameter k ¼ 2. Error bars represent 95% confidence intervals from bootstrapping.
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mating: asexual populations with a single chromosome and

no recombination.

(b) Phenotypes in the population become spread along
the Pareto front

We begin with simulations with two tasks, which define a

Pareto front in the shape of a line segment between the two

archetypes. The initial condition is a cloud of phenotypes

that are off the Pareto front (figure 2a). For all parameters

simulated here (Nm ¼ 10–50, N ¼ 100–2000, k ¼ 1.1–5), we

find that within a few tens of generations the population

spreads along the Pareto front. The distribution around the

line becomes narrower as generations pass (figure 2b–e).

Regardless of parameters, phenotypic standard deviation

parallel to the front s|| is much larger than perpendicular

standard deviation s?. For example, for N ¼ 1000 and k ¼
2, we find after 100 N generations s? /s|| ¼ 0.012+0.0003.

Similar results are found also when varying the shapes of

the performance function contours (Qi = I ), and for linkage

and asexual mating, as described in figure 2g and electronic

supplementary material, §7.

(c) Prevalent polymorphisms have effects parallel to the
Pareto front

We next asked about the polymorphism structure of

the evolved population. In principle, there are two possible
structures that give rise to phenotypes along the front: either

mutation effects are parallel to the front, or there exists pairs

of mutations or higher-order combinations whose components

perpendicular to the front cancel out (figure 1e).

We measured alignment with the front using the angle u

of each allele effect with the front. We find that while

newly arising mutations are isotropic (median angle ¼ 458),
polymorphisms that persist in the population (greater than

1% of the population) are closely aligned with the Pareto

front (figure 2b–d insets). For example, the median angle

of these polymorphisms is 0.808+0.038 after 100 000

generations, for typical simulation parameters (N ¼ 1000,

k ¼ 2, m ¼ 0.05). The more aligned a polymorphism is with

the front, the more frequent it is in the population

(figure 2f, electronic supplementary material, S8 and S9).

We next asked how genetic drift affects the alignment. We

find that the smaller the population (the larger the drift), the

weaker the alignment (figure 2h, electronic supplementary

material, §8). Similarly, alignment is weaker when the com-

petition parameter k is small, again a situation with larger

drift (figure 2f ). Drift effects seem to become important at

population sizes smaller than a few hundreds.

We also asked about the effects of recombination on align-

ment. Alignment is reduced at a given population size when

free recombination is replaced with single-site recombination

(linkage) or in the case of asexual mating (no recombination)

(figure 2h). At small populations sizes alignment is poor

(greater than 208 at N ¼ 500, for both asexual mating and
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Figure 3. For three tasks, polymorphisms align with the plane of the triangular Pareto front (a – c) Phenotypes (blue dots) lie close to the Pareto (red triangle) front
after 100 000 generations. Panels show the data from three different views. Simulation parameters are N ¼ 1000, m ¼ 0.05, k ¼ 5, free-recombination.
(d – f ) Effects of polymorphisms present in at least 1% of the genomes (black arrows) align with the Pareto front (effects magnified by 10-fold for
visualization). Each arrow represents the phenotypic effect of one polymorphism. Panels show the data from three different views.
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linkage) but the phenotypes are still are close to the front

(s?/s||, 0.05), indicating that the polymorphisms have a

complex structure in which perpendicular effects cancel out.

Nevertheless, simulations with linkage or asexual mating still

showed good alignment (angle , 108) at large population

sizes.

We conclude that regardless of linkage or asexual mating,

at large enough population sizes common polymorphisms

align with the front in these simulations, whereas at small

population sizes alignment is weaker and instead

polymorphism structure is more complex with cancelling

perpendicular effects.

(d) Phenotypic effects of polymorphisms align with
moderately curved Pareto fronts

We also tested curved Pareto fronts which occur when the per-

formance functions have eccentric contours (Qi = I) that point

at an angle with respect to each other [10], as shown in elec-

tronic supplementary material, §10 and figure S13. When the

front curvature is mild, polymorphisms are still aligned with

the local front (for example, when k ¼ 2 and curvature is as

shown in electronic supplementary material figure S11C, the

median polymorphism angle is 6.18+0.18); this alignment is

reduced at high front curvatures and high competition (for

example, when k ¼ 5 and curvature is higher as shown in elec-

tronic supplementary material figure S12B, the median angle is

24.18+0.28) (electronic supplementary material figure S11–13

and §10).
(e) Polymorphism effects align with a triangular Pareto
front in the case of three tasks

We asked whether these conclusions apply also to higher num-

bers of tasks. We simulated evolution under three tasks, which

results in a Pareto front shaped as a triangle whose vertices are

the three archetypes. We used a three-dimensional trait space,

with the triangle oriented at angle with respect to all trait axes.

We find that, again, populations rapidly converge to the tri-

angle (figure 3a–c). Prevalent polymorphisms align with the

plane of the triangle (median angle approximately 28,
figure 3d–f ). This effect is seen also when mating probability

depends on fitness (electronic supplementary material, §11).
( f ) Epistatic effects between the two copies of the
same allele align with the Pareto front

We next consider the effects of trade-offs on epistasis. We

begin with the non-additive interaction between two alleles

of the same gene [23–25], which is related to the phenom-

enon of dominance. We modelled this epistasis by

assigning to each mutation i a randomly oriented vector di,

such that the heterozygote mutant effect is mi and the homo-

zygote is 2mi þ di. We find that as before, the main effects of

prevalent polymorphisms mi align with the front. Impor-

tantly, the epistatic effects di of common polymorphisms

also align with the front (electronic supplementary material,

§12). Those with epistatic effects off of the front are selected
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against. Thus epistasis tends to align with the front, provided

that drift is not too large.

(g) Epistasis in a molecular mechanism that generates
triangular fronts

In addition to epistasis between the alleles of the same gene,

we studied epistasis between different genes. In this case,

the effects of each polymorphism depend on the genetic

background. To study this, we focus on epistasis due to non-

linear interactions within a molecular mechanism inspired by

gene expression [4]. This molecular mechanism is of interest

because it occurs in bacteria, and naturally provides scope for

a triangular Pareto front.

In the model, genes are regulated by three regulators Xi

that compete over a limiting factor R. For example, in bac-

teria, three sigma factors compete over RNA polymerase

[26,27]) (figure 4a). The traits are the expression of different

genes. The genes are regulated by the three sigma factors
bound to RNA polymerase which bind to sites in the pro-

moter of the gene. The effect of regulator i on gene j
expression is vij. Thus, expression of gene j is

Tj ¼ RS3
i¼1vijðXi=SmXmÞ (electronic supplementary material,

§13). The competition between Xi for binding to R leads to

the nonlinear term Xi=SmXm which causes epistasis

between allelic variants.

We simulated evolution in this model (in bacteria such as

E. coli, the three tasks can be growth, survival and motility

regulated by the s-factors s70, sS and sA [26,27]). Each

mutation varies one of the biochemical parameters: Xi, vij

or R. Phenotypes evolve to the triangular front (figure 4b–d).

Importantly, we find that almost all of the prevalent

polymorphisms affect the levels of the regulators Xi; there

are almost no prevalent polymorphisms that affect the

levels of the other biochemical parameters, the promoter

strengths vij or RNA polymerase levels R (figure 4e), once

the mutations that set vij become fixed (at around 1000

generations, electronic supplementary material, §14).
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Thus, evolution first encodes the coordinates of the three

archetypes in the promoter sequences that set the weights vij.

The position on the triangle is then given by the relative

values of the regulators Xi. For example, phenotypes at the

vertices of the triangle have one regulator Xi high and the

rest very low.

The polymorphisms in Xi have phenotypic effects that

depend on the genetic background (figure 4f ) due to the epis-

tasis. For genetic backgrounds near the centre of the front,

polymorphisms in Xi move the phenotype in all directions

along the plane of the triangle; near the vertices, they move

the phenotype in a tapered way that fits into the corner of the

triangle, preventing phenotypes from leaving the triangle.

None of these polymorphisms has a sizable component that

moves off of the plane of the triangle (figure 4g). By contrast,

the mutations that are actively selected against and hence do

not reach high prevalence—those in the parameters vij (pro-

moter mutations) and R (RNA polymerase)—have effects

that move the phenotype off of the plane the triangle. For

example, increasing a weight vij moves expression of gene i
up, without affecting the other genes, a move which is off of

the plane of the triangle. Altering the level of the limiting sub-

strate R changes expression of all genes at once, a direction that

is also off of the plane of the triangle. Expression levels of R and

of genes will presumably be determined by the benefit and cost

of production and maintenance. Such cost is included in the

performance functions—increasing expression of genes carries

a cost that, at high enough expression levels, reduces perform-

ance [28,29]. This demonstrates how a regulatory mechanism

focuses the selection of mutations to certain components

(regulator activity) and not to others (promoters, RNA polymer-

ase). The common polymorphisms have epistatic interactions

that keep them within a sharp triangle of phenotypes [30].

The same idea can be generalized to any number of tasks by

using more regulators.
(h) Polymorphism structure under trade-offs allows
rapid selection along the Pareto front

The polymorphism structure found above has implications for

artificial selection towards desired traits. To explore this, we

exposed populations that have evolved for 100 K generations

to selection towards a given phenotypic target (electronic sup-

plementary material, §15). We compared selection to a

target aligned with the original front to selection to a target

that is not aligned with the front. Each generation, we selected

the fraction p of the population closest to the target.

We find that evolution to a target aligned with the orig-

inal front is much faster and results in phenotypes that

move farther from the original phenotypes than selection per-

pendicular to the original front (figure 5a,b and electronic

supplementary material, §15 and figure S17B). For exam-

ple, for typical 3-task simulation parameters (N ¼ 1000, k ¼ 5,

m ¼ 0.05), and artificial selection parameter p in the range

0.1–0.9, response to selection aligned with the original front

is 9-fold to 17-fold larger than the response to selection

perpendicular to it.

Evolution to a target off the front results in rapid motion to

the point on the front that is closest to the target (the projection

of the target on the plane of the triangle). This is followed

by much slower evolution off of the front that stops when

perpendicular genetic variation is depleted (figure 5a).
Simulations of selection in the case of two tasks (figure 5b)

are qualitatively similar to experiments on Bicyclus anynana
butterfly eyespot size [31], in which artificial selection parallel

to the observed suite of variation leads to stronger evolutionary

change than selection perpendicular to the suite of variation

(figure 5c).

Additional simulations show that prolonged selection

perpendicular to the original front can generate a population

that is spread along a hyperplane parallel to the original front

(plane for 3 tasks and a line for 2 tasks) (figure 5d and elec-

tronic supplementary material, §15 and figure S17d ).

A similar effect has been observed in experiments on radish

morphology (figure 5e) [32,34].

(i) The present predictions are supported by a range of
experimental data

To further test the present conclusions requires experiments

that perturb molecular pathways and measure the resulting

phenotypic changes, in relation to the natural suite of variation.

A set of studies that exemplify this approach considered the

pathways that shape the beak of Darwin’s finches [33,35,36].

The normalized beak dimensions of different Darwin’s

ground finch species fall approximately on a plane (first two

principle components account for 99.6% of the variation,

figure 5f), and within that plane on a triangle corresponding

to the tasks of eating large seeds, small seeds and pollen/

nectar [4,37]. Perturbations of the major beak morphogenic

pathways, BMP, calmodulin and premaxillary-bone modifi-

cation factors (TGFbIIr, b-catenin and Dkk3), have phenotypic

effects that are pleiotropic in a way that is approximatelyaligned

with this plane [33] (figure 5f). We hypothesize that polymorph-

isms that affect the expression of these factors are likely to be

prevalent and underlie the variation of the beak morphology

along the Pareto front.

One can extend this framework to consider different

species in a taxon that have comparable traits and share the

same tasks. In this case, a prediction of additive, aligned poly-

morphism structure is that populations within a species will

have variation that is aligned with the front defined by the

variation of different species [4,38]. A recent example on bird

toe-bone proportions showed that different bird species fall

on a triangle. The three tasks in this case are grasping, walking

and scratching/rapturing (figure 5g) [11]. Populations of

chicken and zebra finch individuals fall in a flattened cloud

aligned with the front defined by the other bird species, as

predicted (figure 5g).
4. Discussion
We find that polymorphisms that persist under multi-task

selection have phenotypic effects oriented along the Pareto

front rather than perpendicular to the front. Similarly, poly-

morphisms that persist have epistatic effects that tend to

keep phenotypes on the front.

We also tested the effects of genetic drift on the poly-

morphism structure. Small population sizes and low

competition, both situations with large drift, lead to weaker

alignment with the front.

Polymorphism structure is also affected by linkage, which

can cause alleles to be carried together. We therefore studied

the effect of linkage and asexual mating on the polymorphism
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Adapted from [11]. Toe image is modified from [11].
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structure. We find in simulations with linkage that polymorph-

isms still tend to align with the front. However, alignment at a

given population size is weaker than in the case of free
recombination. Alignment with the front even occurs in simu-

lations with asexual reproduction (no recombination). This is

relevant to micro-organisms, and perhaps to tumours, whose

https://commons.wikimedia.org/wiki/File:Wild_Radish_flower_(5360402586
https://commons.wikimedia.org/wiki/File:Wild_Radish_flower_(5360402586
https://commons.wikimedia.org/wiki/File:Sparrow_Beak.jpg
https://commons.wikimedia.org/wiki/File:Sparrow_Beak.jpg
https://commons.wikimedia.org/wiki/File:Sparrow_Beak.jpg
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gene expression has been suggested to show trade-offs

between tasks [16].

To demonstrate a mechanistic model of trade-offs and

gene–gene epistasis, we analysed a molecular mechanism

that can give rise to polytope-shaped fronts, based on bacterial

sigma-factor regulation. Here, k regulators compete over a lim-

iting factor (e.g. RNA polymerase). This competition naturally

gives rise to a polytope with k vertices in gene expression

space. Each vertex corresponds to the expression if there was

only one sigma factor present, allowing specialization in a cer-

tain task. This mechanism can also provide phenotypic

plasticity, the ability of an organism to change its phenotype

in response to changes in the environment. Plasticity occurs

in this mechanism when environmental signals affect the

levels of the regulators through upstream pathways—just as

sigma factor activities in E. coli are affected by stresses and

nutrients. The resulting plasticity moves the phenotypes

along the Pareto front and not off of it, reaching optimal sol-

utions in different environments.

The Pareto front in empirical examples from morphology

has straight edges when using traits that are traditionally

used by morphologists such as bone and tooth areas. However,

if these traits are nonlinearly transformed, e.g. from Ti to
p

Ti,

the fronts change from straight to curved. Thus, plotting the

data with traits of bone volume or length instead of area

would lead to curved fronts. Curved fronts are more difficult

for polymorphisms to align to than straight fronts. This raises

an interesting hypothesis: the effects of common mutant alleles

should be additive in the traits that provide straight fronts (e.g.

additive in effects on bone/tooth area rather than volume or

length). In this way, additive effects can best keep offspring

along the front. In the case of gene expression, in which straight

fronts have been observed in log-transformed data [16,17], this

prediction means that mutation effects should be additive in

log space (multiplicative effects). Indeed, mutation effects

often combine in a multiplicative fashion [39,40].

Other ways that phenotypes can evolve to be on a line have

been suggested. These mechanisms do not involve multiple

tasks, but instead involve migration [41] or consider a fitness

landscape with a pronounced ridge [6,7]. These studies do

not directly apply to the present case which employs selection

in multiple locales with different conditions. More generally,
rather than assuming the existence of a fitness ridge a priori,
the Pareto picture suggests a natural explanation for geo-

metries such as lines, triangles and higher-order polytopes in

trait space based on the positions of the archetypes that

emerge from evolutionary trade-off between the tasks.

The alignment of polymorphisms with the Pareto front has

several implications. First, the progeny of any two parents in

the population is likely to be on the Pareto front, as long as

the mutations are additive or at least have epistatic effects par-

allel to the front, such as the epistatic effects described here.

Without polymorphism alignment, mating would often

result in phenotypes off of the front, which would be at a dis-

advantage because there exists a potential phenotype on the

front which is better at all tasks.

A second feature of the alignment of polymorphisms with

the Pareto front is rapid response to selective pressures along

the front. Evolutionary response is accelerated towards new

selection pressures provided that they relate to the same

underlying tasks—and therefore align with the Pareto front.

Evidence for rapid response to selection pressures along the

main axis of phenotypic variation has been reviewed [42]

(figure 5c).

To further test the present conclusions requires data on

many phenotypic traits together with genomic information

for a large number of individuals. Such datasets are expected

to become more prevalent in the near future [43,44]. It will be

fascinating to explore to what extent the effects of common

polymorphisms align with the Pareto front of phenotypic traits.
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