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Ecological networks are composed of interacting communities that influence

ecosystem structure and function. Fungi are the driving force for ecosystem

processes such as decomposition and carbon sequestration in terrestrial habi-

tats, and are strongly influenced by interactions with invertebrates. Yet,

interactions in detritivore communities have rarely been considered from a net-

work perspective. In the present study, we analyse the interaction networks

between three functional guilds of fungi and insects sampled from dead

wood. Using DNA metabarcoding to identify fungi, we reveal a diversity of

interactions differing in specificity in the detritivore networks, involving

three guilds of fungi. Plant pathogenic fungi were relatively unspecialized in

their interactions with insects inhabiting dead wood, while interactions

between the insects and wood-decay fungi exhibited the highest degree of

specialization, which was similar to estimates for animal-mediated seed dis-

persal networks in previous studies. The low degree of specialization for

insect symbiont fungi was unexpected. In general, the pooled insect–fungus

networks were significantly more specialized, more modular and less nested

than randomized networks. Thus, the detritivore networks had an unusual

anti-nested structure. Future studies might corroborate whether this is a

common aspect of networks based on interactions with fungi, possibly

owing to their often intense competition for substrate.
1. Introduction
Interactions between species shape ecological communities and networks, and

drive evolution. Ecosystems therefore consist of complex networks that vary in

structure depending on the specificity and frequency of the interacting species.

Highly specific species interactions often result in very specialized networks

with low robustness to species loss [1], where extinction of one species also

leads to the loss of connected species from the network. As species are currently

going extinct at an alarmingly high rate [2], knowledge of ecological networks

and interactions is becoming increasingly important in order to understand and

hopefully prevent extinction cascades.

Several studies have underlined the importance of pollination and other

well-known interactions such as predation, herbivory and animal-mediated

seed dispersal for ecosystem structure and function (e.g. [3–5]). However, our

knowledge of biotic interactions is highly skewed towards macroscopic organ-

isms [6], and network studies have largely focused on well-known interactions

such as pollination [7,8]. There are few studies of interactions between bacteria,

fungi or invertebrates at the community level, despite their overwhelming
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abundance and species diversity [9–12]. Bacteria and fungi

are integral to terrestrial and freshwater ecosystems through

their roles as pathogens, symbionts and decomposers

[13–17]. Up to 90% of terrestrial plant production enters

the detrital food chain [18], where the microbiota of bacteria,

fungi and invertebrates determine rate of decomposition and

carbon sequestration [16,17].

Invertebrates can have a significant influence on ecosystem

processes through interactions with bacteria or fungi, as

demonstrated for rate of decomposition, nutrient cycling and

mycorrhizal symbiosis in laboratory experiments [19–21].

However, the role of invertebrates in the detritivore commu-

nity is rarely considered from a network perspective, in

contrast with the intensively studied functional roles of invert-

ebrates as pollinators or herbivores [7,8]. In the present study,

we show that network analysis of understudied species

groups such as insects and fungi can reveal hidden interactions

and elucidate the structure of detritivore communities.

Ecological networks are shaped by the frequency of inter-

actions between species, which in turn is partly determined

by abundance of the species and their interaction specializ-

ation. The tendency of species in a network to exhibit

specialized interactions can be summed up at the network

level as degree of specialization [22,23]. For instance, as pol-

linators are generally more specialized in their resource use

than seed-feeding animals, pollination networks in general

have a higher degree of specialization than networks based

on animal-mediated seed dispersal [22].

If specialist species mainly interact with a proper subset of

the interaction partners of generalist species, this results in a

nested network structure. Nested networks are generally

robust against random species loss [24], while networks with

a high degree of specialization are more vulnerable [25].

Networks can also be organized into compartments called

modules, in which species interact frequently within the mod-

ules and infrequently between modules. If within-module

interactions are dominant in number, the network is said to

have high modularity [26]. Modules might be the product of

spatial or temporal variability in interactions, for instance if

interaction frequency depends on overlap in phenology, or

they might consist of closely related species or species with

similar trait syndromes owing to convergent evolution

[27,28]. Thus, the structure of an interaction network can

reveal selective pressures shaping the interactions and the

robustness of networks to species loss.

In the present study, we analyse specialization, nestedness

and modularity of insect–fungus networks sampled from

dead wood in boreal forests. These networks are vital for the

functioning of forest ecosystems, as they are the driving force

for decomposition and nutrient cycling in these habitats [29–

31]. Understanding how these networks are structured is there-

fore integral to understanding the basis for ecosystem processes

in forests. We used DNA metabarcoding to identify fungi

extracted from individual insects, which enabled us to include

interactions involving microscopic fungal structures such as

spores, hyphae or yeast. We compiled quantitative (i.e.

weighted) networks for interactions between insects inhabiting

dead wood and three functional groups of fungi; insect sym-

biont fungi, wood-decay fungi and plant pathogenic fungi.

As we do not have replicates of each network, this study is

not a test of differences between these groups, but rather

an exploratory first step into largely unchartered territory for

network analysis in terms of both methodology [6] (i.e. the
combination of DNA metabarcoding and quantitative net-

works) and study organisms (i.e. detritivorous insects and

fungi). In line with the few comparable previous studies

[32,33], we demonstrate that such novel network analysis

might reveal network structures differing from those of more

well-known interactions, underlining the necessity of

expanding the scope of network studies.
2. Methods
This study is based on data from Jacobsen et al. [34], where a

more detailed description of insect sampling, DNA-analysis

and bioinformatics can be found.

We sampled beetles from recently cut logs of aspen (Populus
tremula L.) that had been placed at eight sites in two production

forests in south-eastern Norway; Losby forest holdings (Latitude

55.98, Longitude 10.68, 150–300 m above sea level (a.s.l.) and

Løvenskiold-Vækerø (LV) forest holdings (Latitude 54.49, Longi-

tude 21.24, 200–500 m.a.s.l.). Both forest landscapes lie within

the southern boreal vegetation zone [35] and consist mainly of

spruce (Picea abies (L.) H.Karst.), with pine (Pinus sylvestris L.),

birch (Betula pubescens Ehrh.) and aspen as subdominants.

Beetles were sampled individually with tweezers directly

from the logs or from sticky traps on the logs, on 11 occasions

during May to August in 2014 and 2015. The sticky traps were

exposed for one or two days prior to insect sampling. The twee-

zers were sterilized with ethanol and fire between handling of

each insect. The insects were killed by freezing at 2808C and

identified to species or genus in a sterile environment using ster-

ilized equipment. Insects that could not be confidently identified

at least to genus by the first author (R.M.J.) were not analysed

further (13 of 654 individuals). We selected 343 wood-inhabiting

beetle individuals, i.e. species or genera with larval development

either in dead wood or in fungal fruit bodies on dead wood

[36,37], for analysis of fungal DNA.

Fungal DNA was extracted from the beetles following a modi-

fied CTAB protocol [38] and amplified by polymerase chain

reaction (PCR) on an Eppendorf Thermal Cycler (VWR, Radnor,

USA) using primers internal transcribed spacer (ITS) 4 (ITS4)

[39] and fITS7 [40]. The PCR products were cleaned using

Wizardw SV Gel and PCR Clean-Up System (Promega, Madison,

USA) and pooled according to strength of the bands in gel electro-

phoresis. Pooled samples were cleaned with the ChargeSwitchw

kit (Invitrogen, California, USA), DNA-concentration was

measured with the Qubitw BR DNA kit (Invitrogen, California,

USA), and the sample quality was confirmed by NanodropTM

(Thermo Fisher Scientific, Madison, USA). The samples were sub-

mitted to GATC Biotech for adaptor-ligation and Illumina HiSeq

Rapid Run 300 bp paired-end sequencing. Quality control and

clustering of the resulting sequences was conducted with the

SCATA pipeline (https://scata.mykopat.slu.se/, accessed 5 July

2016). The sequences were subsampled to 10 000 per beetle

sample prior to clustering. Taxonomy was assigned to the repre-

sentative sequences of each operational taxonomic unit (OTU)

taking the top hit of a Basic Local Alignment Search Tool

(BLASTn [41]) search against the NCBI (National Centre for Bio-

technology Information) and UNITE [42] databases. OTUs with

e-values ,e-10 and bit-scores .100 were annotated to species

level if ITS homology was 100–98%, genus for 97.9–95%, family

or order for 94.9–80%, phylum for 79.9–70% and ‘fungus’ for

lower homology or e-values .e-10 and bit-scores ,100. Taxon-

omy was updated according to the taxonomic database Dyntaxa

(https://www.dyntaxa.se/, accessed 24 February 2017) and

MycoBank (http://www.mycobank.org/, export date 26 October

2017). For further statistical analysis only OTUs represented by

at least 20 reads were included, since we wanted to focus on

widespread fungi more likely to be important in interactions.

https://scata.mykopat.slu.se/
https://scata.mykopat.slu.se/
https://www.dyntaxa.se/
https://www.dyntaxa.se/
http://www.mycobank.org/
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(a) Classification of fungal functional groups
Fungal OTUs annotated to species or genus level were analysed

further, in networks including all OTUs (electronic supplemen-

tary material, table S1) and in networks including OTUs

classified into functional groups based on the FUNGuild data-

base [43] and various literature (see the electronic

supplementary material, tables S2–S4). Groups were non-over-

lapping. We analysed networks with the three most abundant

(in terms of number of sequences) functional groups:

(i) insect symbionts (electronic supplementary material,

table S5); this group included known insect symbionts

such as Ophiostoma spp. or Phialophoropsis spp., and

yeast species isolated from insect guts in previous studies

such as Candida spp. and Cryptococcus spp., that were

assumed to be endosymbionts. Fungal parasites or patho-

gens of insects were not included (only eight OTUs

matched these functional groups according to

FUNGuild);

(ii) wood-decayers (electronic supplementary material, table

S6); this group included fungi in the class Agaricomycetes

known to inhabit dead wood, in which the majority of

species produce large fruit bodies and large quantities

of spores that attract spore-feeding insects during sporula-

tion (e.g. [44,45]); and

(iii) plant pathogens (electronic supplementary material, table

S7); this group included pathogens of living plants. Plant

pathogenic fungi known to be insect symbionts such as

Ophiostoma spp. were excluded, since these functional

groups were meant to mainly reflect the relationship

between the insects and the fungi.

(b) Statistics
All analyses were conducted in R v. 3.3.2 [46].

The number of beetle individuals in which each fungal OTU

occurred was used as a basis for quantitative/weighted networks.

Excluding insect species represented by single individuals did not

change the results and these species were therefore included in

the network analysis. Network specialization was estimated

by the standardized two-dimensional Shannon entropy H2
0 [47]

using the package bipartite v. 2.07 [48]. This index defines the

degree of specialization in a network as the deviation from the

expected probability distribution of interactions, which assumes

that a species interacts with another species in proportion to its

total frequency of occurrence in the network (i.e. terminal row or

column sums). We estimated the species-level specialization by

the standardized Kullback–Leibler distance d0 [47]. The species-

level specialization index is defined as a species’ deviation of the

utilization of potential partners that is expected based on their

terminal row or column sums, i.e. link numbers in the fungus x

insect interaction matrix. Both H2
0 and d0 range from 0 for most

generalized to 1 for most specialized.

Modularity of the networks was estimated with the QuanBiMo

algorithm developed by Dormann & Strauss [26] and imple-

mented as function ‘computeModules’ in the bipartite package.

Modularity Q ranges from 0, meaning that there are no more

links between species in a module than expected by chance, to 1

which signifies maximum modularity for the network. As the

QuanBiMo algorithm is based on a stochastic process, we esti-

mated modularity 10 times for each network and reported the

mean value. To estimate nestedness of the network, we used the

weighted version of the nestedness metric based on overlap and

decreasing fill, abbreviated WNODF [49]. This metric ranges

from 0 for networks without nested structure, to 100 for perfectly

nested networks.

We tested the statistical significance of the metrics for each

network by simulating null models (n ¼ 1000). Null model P
followed Patefield’s algorithm [50] as implemented in the func-

tion ‘r2dtable’ in R, which randomizes network interactions

with the restriction of fixed marginal sums (i.e. the sum of inter-

actions for each species was kept constant). We also tested null

model V, which in addition to fixed marginal sums also keeps

connectance (i.e. proportion of realized links in the interaction

matrix) of the network constant as proposed by Vazquez et al.
[51] and implemented in function ‘quasiswap_count’ in the

vegan package v. 2.4–2. We performed two-sided tests of the

network metric value against the distribution of the null model

metric values. Finally, we repeated all network analyses for sub-

sets of the insect–fungus networks with species numbers

standardized to those of the smallest network.
3. Results
Fungal DNA was obtained from 187 wood-inhabiting beetle

individuals of 17 species or genera (electronic supplementary

material, table S8). The DNA metabarcoding analyses resulted

in 1069 fungal OTUs represented by more than 20 sequences

and distributed on a total of 1 714 063 sequences. Of these

OTUs, 449 were annotated to species or genus and analysed

further in networks with the insects, either including all

fungi or separated into functional groups; 35 species or

genera of fungi (356 279 sequences) were classified as insect

symbionts, 22 (48 196 sequences) were classified as wood-

decayers in the class Agaricomycetes and 61 (158 133

sequences) were classified as plant pathogens (figure 1).

All insect–fungus networks were significantly more

specialized, more modular and less nested than the null

model with randomized interactions (figure 2). The results

were relatively similar when compared with the null model

which also had constant connectance (electronic supplemen-

tary material, figure S1), and for the subsampled networks

with standardized species numbers (electronic supplementary

material, figure S2). The network with wood-decay fungi had

the highest degree of specialization and modularity (H2
0 ¼

0.21, Q ¼ 0.28; figure 2). Correspondingly, it also had the

lowest nestedness (WNODF¼ 16.14; figure 2). However,

when comparing standardized values of nestedness (real

value 2 mean value of randomization/s.e. of randomizations),

the network with plant pathogenic fungi had the lowest values

(25.68 standardized WNODF compared with 23.14 for wood-

decay fungi and 23.29 for insect symbiont fungi).

We re-calculated the network metrics with OTUs annotated

as Chondrostereum purpureum (Pers. : Fr.) Pouzar excluded from

the network of wood-decayers, since this species was visibly

fruiting on the logs during insect sampling and could have

occurred in all samples indiscriminately. Indeed, DNA from

C. purpureum was isolated from 43% of the insect samples,

including 12 of 17 taxa. Excluding C. purpureum from the

wood-decayer network resulted in even higher specialization

(H2
0 ¼ 0.29, null model P 95% confidence interval (CI) ¼

0.13–0.23), higher modularity (Q ¼ 0.40, null model P 95%

CI ¼ 0.28–0.36) and lower nestedness (WNODF¼ 9.38, null

model P 95% CI ¼ 12.00–23.23, albeit higher standardized

WNODF ¼ 22.9). Without C. purpureum, the network

between wood-inhabiting beetles and wood-decay fungi was

organized in six modules (figure 3).

We estimated specialization at the species level for all net-

works (electronic supplementary material, tables S9–S14),

but focus here on interactions with the more well-known

wood-decay fungi. In interactions with wood-decay fungi,
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the insect species Endomychus coccineus (Linnaeus, 1758) was

significantly (p-value ¼ 0.005) more specialized and Glischro-
chilus hortensis (Geoffroy, 1785) was nearly significantly (p-

value ¼ 0.053) more specialized than expected from the null

model (electronic supplementary material, table S11), with

index values (d0) of 0.25 and 0.18, respectively. Among the

wood-decay fungi, OTUs annotated as Trametes versicolor
(L. : Fr.) Pilát., Fomes fomentarius (L. : Fr.) Fr. and Sistotrema
brinkmannii (Bres.) J. Erikss. were significantly specialized
with index values of 0.45, 0.38 and 0.24 (p-values , 0.05),

respectively (electronic supplementary material, table S12).
4. Discussion
This study shows that species of two very diverse eukaryotic

kingdoms, insects and fungi, interact in structured networks.

The networks had an anti-nested structure (i.e. they were less
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nested than randomized networks), they were specialized,

though not to a high degree, and interacting species were

compartmentalized in modules. The lack of a nested network

structure might indicate a relatively low species redundancy,

which could mean that the insect–fungus networks are

vulnerable to species loss [7], although the relatively low

degree of specialization (H2
0 ¼ 0.21 or less) might increase

robustness [1] and species within modules might fulfil similar

interaction functions.

Although non-nested structures have been demonstrated

more often for quantitative, weighted networks than for

qualitative, binary networks, anti-nested structures do not

seem to be common for either network type [52]. However,

previous studies using molecular methods to identify mycor-

rhizal fungi interacting with plants have also documented

anti-nested networks [32,33,53]. Toju et al. [33] found that
this anti-nested structure seemed to be explained by reduced

fungal host range overlap, causing a checkerboard pattern of

interactions. They suggested that this pattern might be caused

by competitive exclusion by the fungi, preventing other

species of fungi from interacting with their plant host.

Although the insects in the present study are not presumed

to function as a substrate and thus a site of competition for

the fungi (possibly with the exception of the symbiont

fungi), their interactions with the fungi might reflect competi-

tive exclusion structuring fungal communities at shared

habitats such as dead wood, where competition for substrate

can be fierce [54]. Future studies might confirm whether

anti-nestedness is a common aspect of interaction networks

involving fungi.

Both degree of specialization (H2
0 ¼ 0.15) and modularity

(Q ¼ 0.15) were relatively low for the network between plant-

pathogenic fungi and insects. Although there are examples of

plant-pathogenic fungi being dispersed by insects in species-

specific interactions [55], the insects analysed in the present

study only included species inhabiting dead wood. Thus, it is

not unexpected that their interactions with pathogens of

living plants were relatively unspecific, perhaps only based

on shared forest habitats. Furthermore, plant pathogenic

fungi known to be symbionts of insects, such as Ophiostoma
spp., were classified as insect symbionts rather than plant

pathogens, as we considered this to be the aspect of their ecol-

ogy most likely to affect their interaction networks with insects.

The versatile ecology of fungi, where trophic mode might vary

depending on context, complicates classification into func-

tional groups [43]. Fungi have been documented to shift

between an endophytic and a plant pathogenic lifestyle, or

between a mycorrhizal and a saprotrophic lifestyle, to mention

a few of the examples summarized by Selosse et al. [56]. Thus,

the classification of fungi into functional groups in the present

study is likely to be highly simplified and relatively uncertain

for some taxa, especially the insect symbionts. Nevertheless,

this tentative classification allows us to explore differences in

the structure of networks involving different groups of fungi

and build hypotheses for further studies.
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The network with fungi annotated as insect symbionts had

a surprisingly low degree of specialization (H2
0 ¼ 0.11). This

group included fungi that might live in mutualistic or com-

mensalistic symbiosis with insects, as insect parasites and

pathogens were not included. Most of these species were classi-

fied as insect symbionts based on previous isolation from

beetle guts (references in electronic supplementary material,

table S2). In comparison, in a study by Shukla et al. [57]

bacterial endosymbionts had a relatively high degree of

specialization (H2
0 ¼ 0.35) even in an intraspecific network

with males, females and larvae of one dung beetle species.

Modularity was also relatively low (Q ¼ 0.15), considering

that intimate interactions tend to result in more modular net-

works [58]. Our results indicate that many of the fungal

species found in insect guts might be unspecific symbionts,

or simply contaminants from food or habitat that do not func-

tion as symbionts. Certainly, yeast fungi like Candida spp. and

Cryptococcus spp. can occur in several different environments

such as soil or dead wood [59–62], where insects are also abun-

dant. Some of the fungi isolated from beetle guts do seem to be

more closely associated with the habitat than with the beetle

species [63]. However, endosymbionts can be relatively unspe-

cific with regard to insect host species, especially if they are

transmitted horizontally [15]. Further in-depth studies, includ-

ing microscopy and experimentation, are required to clarify to

what extent fungi such as Candida mesenterica and the other

taxa tentatively classified as insect symbionts in the present

study spend part of their life living as symbionts on or in

insects, and whether this affects the insects.

The network between wood-inhabiting beetles and wood-

decay fungi had the highest degree of specialization in this

study (H2
0 ¼ 0.21). However, this is still much lower than

the specialization of pollinator–plant networks (H2
0 ¼ 0.60

[22]), ant–myrmecophyte networks (H2
0 ¼ 0.80 [22,64]) or

legume–rhizobium bacteria networks (H2
0 ¼ 0.85 [65]).

Instead, it was closer to that of networks based on more oppor-

tunistic interactions, such as ants harvesting honeydew from

true bugs (H2
0 ¼ 0.43 [23]) or nectar from plants (H2

0 ¼ 0.25

[22]), or animal-mediated seed dispersal (H2
0 ¼ 0.18–0.47

[22,66,67]). This indicates that the network between wood-

inhabiting beetles and wood-decay fungi was based upon

similarly opportunistic yet reciprocal interactions that would

result in a moderate degree of specialization. Spore feeding

and subsequent spore dispersal by the beetles could represent

such an interaction [34]. In line with this hypothesis, the nitidu-

lid beetle G. hortensis has frequently been registered on

sporulating fruit bodies of wood-decay fungi such as the poly-

pore F. fomentarius [44,45], although its habitat is fresh dead

wood [36]. In the present study, this beetle species was found

to be significantly more specialized on wood-decay fungi

than expected by chance, and F. fomentarius was isolated from

11 individuals of G. hortensis. This beetle species might

therefore function as a moderately specific propagule vector for

F. fomentarius, providing targeted dispersal to fresh dead wood

[34]. Although the network between wood-living beetles and

wood-decay fungi might be afood web without dispersal benefits

to the fungi, the beetles were sampled from dead wood that had

recently been cut and placed in these forests, without any other

visible fungal fruit bodies than those of C. purpureum.

If the network between wood-inhabiting beetles and

wood-decay fungi was based on spore feeding and dispersal,

its degree of specialization might be constrained by the same

factors that limit specialization of animal-mediated seed
dispersal networks [68]. Optimal dispersal of both spores

and seeds requires the propagule vector to move away from

the source and deliver the propagule not to a conspecific, but

to a suitable habitat. The propagule source has no means to

direct the vector, its only chance is to attract vectors that

share its habitat. Fungal odour has been shown to attract

several different species of beetles inhabiting dead wood

[69–71], and odour release increases during sporulation [72].

Fomes fomentarius and certain other polypore species also

aggregate spores on top of their fruit bodies, which are visited

by several wood-inhabiting insects [44]. Aggregation of spores

and increased odour emission during sporulation thus seem to

function as attractants to wood-inhabiting insects, in much the

same way as brightly coloured fruits attract seed dispersing

animals. As such, there is a basis for selection favouring a

certain degree of reciprocity and specialization between

wood-decay fungi and insects. However, spore dispersal effec-

tiveness would be low if the insects were highly specialized

spore-feeders that only moved between sporulating fruit

bodies, without dispersing the spores to unoccupied sub-

strates. For seed dispersal, it has been shown that generalist

frugivores can be very effective seed dispersers [73,74] and

that species in highly diverse frugivore assemblages fulfil

complementary roles [75,76]. These mechanisms promote

diversified interactions and generalized dispersal systems

[77], restraining the degree of specialization in seed disper-

sal networks [22,66,67] and possibly in the potential spore

dispersal network in the present study.

It should be noted that certain aspects of network structure

can be subject to strong spatial and temporal variability

[67,78,79]. Our networks were based on pooled datasets of bee-

tles sampled over two seasons in two different landscapes, but

the necessity of sampling beetles individually resulted in a

sample size that was too low to explore spatial and temporal

variability in network structure. However, the distribution of

sampled individuals was relatively even between landscapes,

and the majority of individuals were sampled during the

second year. Furthermore, network level measures tend to

exhibit a lower temporal and spatial variability than species

level measures [79]. In any case, our study is but an exploratory

first step into novel methodology and understudied inter-

actions, which can hopefully provide future research with

a foundation for important working hypotheses regarding

detritivore networks and the use of DNA metabarcoding for

discerning microscopic interactions.

In conclusion, our results demonstrate that there is a diver-

sity of hidden interactions in detritivore networks. These

interactions could have significant influence on fungal commu-

nities in dead wood [62,80], and thereby affect important

ecosystem functions such as carbon sequestration and

decomposition [31]. We encourage the use of molecular

methods to include microscopic organisms in future network

studies [6], as the unusual network structures demonstrated

in this and previous studies [32,33,53] underline the importance

of expanding the scope of network analysis to understudied

and functionally important organisms such as fungi.
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