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Antibiotic resistance (ABR) is recognized as a One Health challenge because

of the rapid emergence and dissemination of resistant bacteria and genes

among humans, animals and the environment on a global scale. However,

there is a paucity of research assessing ABR contemporaneously in humans,

animals and the environment in low-resource settings. This critical review

seeks to identify the extent of One Health research on ABR in low- and

middle-income countries (LMICs). Existing research has highlighted hotspots

for environmental contamination; food-animal production systems that are

likely to harbour reservoirs or promote transmission of ABR as well as high

and increasing human rates of colonization with ABR commensal bacteria

such as Escherichia coli. However, very few studies have integrated all three

components of the One Health spectrum to understand the dynamics of trans-

mission and the prevalence of community-acquired resistance in humans and

animals. Microbiological, epidemiological and social science research is

needed at community and population levels across the One Health spectrum

in order to fill the large gaps in knowledge of ABR in low-resource settings.
1. Introduction
The One Health approach aims to attain optimal health for people, animals and the

environment [1]. Antibiotic resistance (ABR) is recognized as a One Health chal-

lenge because of the rapid emergence and dissemination of resistant bacteria and

genes among humans, animals and the environment at a global scale [2]. Global

and National Action Plans (NAPs) to tackle antimicrobial resistance (AMR) have

been instigated and coordinated through the tripartite alliance of the World

Health Organization (WHO), the Food and Agricultural Organization (FAO)

and the World Organization for Animal Health (OIE). All countries are now

tasked with implementing NAPs on AMR through multisectoral working to

ensure comprehensive surveillance, monitoring and policy implementation

across human, animal and environmental domains [3]. However, research on

ABR adopting a truly One Health approach is relatively sparse in low- and

middle-income countries (LMICs). A recent WHO review concluded that high-

quality data relating to prevalence and abundance of resistant bacteria and genes

in humans, animals and food are missing, especially for community-acquired

infections in low-income countries [4]. These gaps in evidence will limit the ability

to assess progress towards meeting the goals of NAPs in many countries.

This critical review examines the extent of One Health research on ABR in low-

and middle-income settings. Specifically, the review seeks to identify research

that directly assesses ABR across one or more domain of the human, animal
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and environmental system. A further aim is to evaluate

evidence of shared resistance profiles in human and animal

hosts acquired by direct or indirect (via the environment)

transmission pathways.
alsocietypublishing.org
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2. The human health risk of antibiotic resistance
in low- and middle-income countries

Clinical human studies on hospitalized patients constitute the

majority of current knowledge of ABR in LMICs. A number

of syntheses have highlighted the most common resistant

organisms, susceptibility profiles and resistant mechanisms

in clinical settings by LMIC region or countries [5–8]. A

recent review found 90% of studies of neonatal bacterial

resistance in LMICs are hospital-based with insufficient

data from community settings to draw conclusions [9].

While valuable for monitoring and promoting stewardship

in healthcare settings, these studies shed little light on

the determinants and risk factors for ABR in the wider

population.

The health threat of ABR is of particular concern in

LMICs because of the greater likelihood of community-

acquired resistant infections, the high infectious disease

load in the general population, poor coverage of safe water

and sanitation; poor access to health services and weak regu-

lation and enforcement of antibiotic use in food production

and healthcare [10–12]. Further health risks stem from

some of the transmissible ABR mechanisms that have

emerged from low-resource settings with subsequent global

dissemination. Examples include extended-spectrum beta

lactamases (ESBLs) conferring resistance to third generation

cephalosporins (3GC); carbapenem resistance conferred by

enzymes such as New Delhi metallo-beta-lactamases

(NDM-1) [13], and colistin resistance via the gene mcr-1
[14]. These resistance mechanisms are carried on mobile gen-

etic elements hosted by different bacterial species in humans,

animals, food and the environment providing multiple routes

of transmission.
3. Bacteria of relevance to One Health
approaches in low- and middle-income
countries

The highest priority bacteria for ABR prevention, categorized

as critical by the WHO, include Acinetobacter baumanii,
Pseudomonas aeruginosa and Enterobacteriaceae [4]. Of the

Enterobacteriaceae, Escherichia coli has the greatest likelihood

for animal–human transmission and is a major organism of

community-associated ABR, carrying resistance to carbape-

nems and 3GC. Pathogenic strains of E. coli are the leading

cause of human urinary tract infection, bacteraemia and

gastroenteritis. As a commensal bacterium, E. coli colonizes

the gut of humans and animals, as well as being ubiquitous

in soil, plants, vegetables and water [15]. For these reasons,

E. coli is commonly chosen as a sentinel organism for

One Health studies of ABR [16]. Other bacteria relevant to

food-borne disease transmission are Salmonella spp. and

Campylobacter spp. with potential for resistance to 3GC and

fluoroquinolone. These are ranked by the WHO as high

priority rather than critical [4].
4. Scope of review
The databases MEDLINE, Scopus, ScienceDirect and Clinical

Trials were searched using the MeSH term ‘drug resistant

bacteria’ with alternative terms ‘antibiotic’, ‘antimicrobial resist-

ance’ or ‘AMR’; and ‘LMIC’ or alternative terms (developing

countries/global health/developing nations/low-income

countries/middle-income countries). Searches were filtered

for journal articles or reviews published in the English language

from 2007 to 2017. Studies conducted on inpatient samples were

excluded, as were studies reporting therapeutic regimes, vac-

cines or diagnostics. Studies focusing on resistant bacteria of

relevance to the One Health paradigm were identified. Hand

searches were carried out for referenced citations and new

articles. Of all retrieved studies, those that directly assessed anti-

biotic-resistant bacteria or genes in community-based studies of

humans, food-producing animals or the environment were

included for general review. Of these, the final table of papers

(electronic supplementary material, table S1) included those

that examined ABR in one or more domain of the environment,

humans and food-producing animals.
5. The human reservoir of antibiotic resistance
in low- and middle-income countries

The dissemination of Enterobacteriaceae (bacteria colonizing

human guts, with or without disease) carrying ESBL genes is

increasing in humans and animals globally [17]. From 2000

to 2008, reported colonization rates with ESBL-producing

E. coli (ESBL-EC) were generally less than 10%. After 2008,

however, rates increased rapidly to as high as 60% in some

LMICs [18] with India and China harbouring some of the lar-

gest reservoirs of ESBL genes [19]. A recent systematic review

and meta-analysis estimated the prevalence of gut colonization

with ESBL-EC in healthy humans at 14% globally [20] with

rates of 22% in Southeast Asia and Africa [20].
6. Risk factors for human colonization with
resistant bacteria

The increase in colonization with resistant ESBL-EC has been

dramatic, but factors associated with the acquisition of resistant

bacteria in humans are not well established. Some of the highest

reported rates of colonization are from China, where 62.8% of

E. coli isolates were ESBL-producing from outpatients in town

hospitals across three regions of Shandong province [21].

These rates were considered to reflect contact with food-

producing animals in rural areas [21]. In other areas of rural

China, rates of infection with ESBL-EC from hospitals ranged

from 57% in North China to 30.2% in East China [22]. For

some resistance genes, extremely high prevalence rates have

been reported. In India, 91% of faecal samples from human com-

munities carried quinolone-resistance genes, compared with

24% in human samples from Sweden [23]. Most of these studies

are characterized by cross-sectional designs with unspecified

sampling strategies, hence representativeness is hard to assess.

Studies of children in LMICs, while few, have shown 5.6%

colonization with ESBL-producing enteric bacteria among

under 5-year-olds in Nicaragua [24] and 3% in children

under 5 years in Madagascar [25]. Multidrug-resistant E. coli
were isolated from 55% of healthy middle-class children aged
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10–24 months (n ¼ 15) in Bangladesh, some of which were

ESBL-producing [26].

Occupational risk of resistance carriage has rarely been

assessed. Korean fishery workers, who were exposed to anti-

biotics used in aquaculture, had a significantly higher

proportion of E. coli isolates with resistance to cephalothin,

tetracycline and trimethoprim–sulfamethoxazole compared

with a ‘control’ group of restaurant workers. Rates of coloniza-

tion with multidrug-resistant E. coli, however, were similar [27].

There was no assessment of antibiotic exposure or consumption

and no control for potentially confounding effects.

Socio-demographic risk factors for ABR colonization or infec-

tion are likely but poorly researched. In Madagascar, higher

socio-economic status, assessed by occupation, was associated

with lower colonization rates with ESBL-producing Enterobacter-

iaceae in a community-based survey of adults [28]. Managers and

employers had a significantly lower riskof ESBL-EC carriage than

manual and non-manual occupation groups (4% versus 26.5%

and 30%, respectively) [28]. These differences may be mediated

by housing quality, differential occupational exposures or

access to water, sanitation and hygiene facilities.

The transmission of human colonization with resistant

organisms from LMICs to other regions is illustrated by studies

of travellers. International travellers were four times more

likely to be colonized by ESBL-EC than non-travellers in a sys-

tematic review [20]. Similarly, a prospective study of Dutch

back-packers reported that 34% of travellers carried ESBL-EC

after their return, with highest acquisition rates among those

who had travelled to southern Asia [29]. The median duration

of colonization was 30 days, suggesting that colonization is

transient, but onward transmission to household members

was detected, demonstrating human–human transmis-

sion [29]. The human carriers with more resistant forms

(e.g. carbapenem resistance) also had greater persistence [29].
7. The role of food-producing animals in One
Health approaches to antimicrobial resistance
transmission in low- and middle-income
countries

Food-producing animals, fish and seafood in LMICs provide

large reservoirs for ABR because of the high use of antibiotics

for prophylaxis, growth promotion and metaphylaxis. The

BRIC economies are estimated to have the highest consumption

of antimicrobials for livestock in LMICs, projected to increase

by 99% in Brazil, Russia, India, China and South Africa from

2010 to 2030 [30]. The intensification of farming in LMICs cor-

responds with the increasing consumption of animal protein,

particularly meat, fish, poultry and eggs [31]. Urbanization,

population growth and rising incomes contribute further to

this demand for animal-based foods [32].

Poultry production is considered a high risk for ABR

emergence in low-income settings, particularly in smaller-

scale unregulated operations. Commercial poultry farming

is highly profitable and ideally suited to settings where

land is scarce [33]. Poultry commonly receives higher quan-

tities of antibiotics than other animal livestock [34,35], and

resistance is more likely to develop in conditions of animal

overcrowding and poor sanitation.

In Vietnam, a high prevalence of MDR E. coli (81.3%), but

low prevalence of ESBL-EC (3.2%) was reported in a survey of
208 household and small-scale chicken farms in the Mekong

Delta [36]. Antibiotic use was significantly associated with

MDR resistance in poultry samples, with antimicrobials being

a common addition to commercial feeds in Vietnam. The pres-

ence of an integrated fish pond on farms was associated

with ESBL-EC in poultry, attributed to the chickens acquiring

resistance from water contaminated with human sewage [36].

The type of poultry farming (broiler versus layer), and the

size and scale of farming (contracted versus independent) is

associated with rates of ABR colonization. Broiler production

relies on rapid growth of chicks to increase profit. To this

end, antibiotics are applied as additives to feed or water to pro-

mote growth. Among 16 poultry farms (broiler and layer) in

India, 100% reported using antimicrobials for routine prophy-

laxis and 67% reported using antibiotics as growth promotors

[37]. The prevalence of resistance to multiple antimicrobials

was higher in farms (both broiler and layer) that used antimi-

crobials for growth promotion, suggesting an association

between usage and resistance [37]. In urban Ghana (Kumasi

and Accra), 56% of poultry farmers reported routine antibiotic

use from 75 poultry farms with a range of flock size [38]. In a

survey of 20 poultry farmers in Ecuador, 80% reported using

antibiotic supplements but no differences were observed in

ABR among birds with and without supplementation [39].

In India, broiler poultry was more likely than layers to carry

ESBL-EC (87% versus 42%, respectively) [37] correspondingly

with higher reported antibiotic use in broiler farms. In Ecuador,

significantly higher rates of resistant E. coli were reported

among commercially produced birds (layers and broilers)

compared with ‘backyard’ (household) poultry. Resistance to

tetracycline was detected in 78% of production birds compared

with 34% of household birds; resistance to sulfisoxazole and

trimethoprim–sulfamethoxazole were 69% and 63%, respect-

ively, in production birds compared with 20% and 17% in

household birds (p , 0.001) [39]. High and uncontrolled

usage of antimicrobials (most commonly sulfonamides, tetra-

cyclines and fluoroquinolones) was noted in 98 small-scale

chicken farms in Yaoundé, Cameroon. Almost half of farms

did not observe a withdrawal period before the poultry went

to market [40].

Qualitative research among poultry workers and those

involved in the food chain can shed important light on the

potential drivers of antibiotic use [41]. In-depth interviews

with commercial food-animal farms, retailers and veterinar-

ians in Cambodia identified four main drivers: the belief that

antibiotics were necessary for animal raising; limited knowl-

edge; unrestricted antibiotic access and weak monitoring and

control systems [41]. There were also reports of switching

from an animal-use antibiotic to a human-use antibiotic if

treatment was perceived to be ineffective [41].

In domestic settings and subsistence farming, there is less

evidence of inappropriate antibiotic use in livestock. Anti-

biotics are used primarily for treatment rather than as growth

promotors or prophylaxis and evidence suggests the preva-

lence of ABR in these farming systems is low. Free-range pigs

in Tibet raised without antibiotic administration had low

levels of antibiotic-resistant E. coli relative to more intensive

farm systems [42]. Backyard poultry in India was found to

have no cases of ESBL-EC in 360 sampled birds [43]. In a

contemporaneous comparison of poultry, the prevalence of

ESBL-EC in poultry meat was 46% from broiler production

compared with 15% in free-range production [44]. In a rural

survey of households owning cattle or poultry in Bangladesh



rspb.royalsocietypublishing.org
Proc.R.Soc.B

285:20180332

4
53.4% (of 521) reported using at least one animal treatment in

the previous six months. However, ‘medicine’ (likely including

antibiotics) and feed additives were generally only used in

cases of diarrhoea or fever in livestock [45].

Antibiotic use in aquaculture is important as a potential

driver of ABR in aquatic systems in LMICs [46]. Of 94 fish

and shrimp freshwater farms surveyed in Vietnam, 72.3%

used at least one antibiotic [47]. Higher antibiotic use was

associated with farms that had a higher density of fish or

shrimp and higher total annual production. The same study

assessed fish products in local markets, but with no direct

supply connection to farms. Of retail shrimp and fish samples

from local markets, 26.9% (28/104) were positive for fluoroqui-

nolone and tetracycline antibiotic residues, indicating a lack of

adequate withdrawal times on farms. Quinolone and ESBL

resistance genes have been identified in retail fish farmed

across Guangdong province in southern China [48]. Resistance

rates were particularly high to the antimicrobial agents

commonly used in fish cultivation: tetracyclines, florfenicol

and co-trimoxazole, strongly indicating links between

antimicrobial use in fish farming and resistance [48].
8. Evidence of animal to human transmission
of antibiotic resistance

Studies linking animal and human profiles of resistance have

been based predominantly on indirect associations. In China,

the ESBL-producing enzyme CTX-M-55 is increasing both in

colonized healthy humans and community-acquired E. coli
infections [22]. Prior to this, the enzyme was predominantly pre-

sent in organisms from food-producing animals (globally since

2002 and in China since 2005) [49,50], suggesting possible trans-

mission from animals to humans [49]. Whole genome

sequencing (WGS) of resistant bacterial isolates allows more

direct associations to be made between animal and human iso-

lates. WGS analysis from broiler poultry in India confirmed

two globally emergent human pathogenic lineages of E. coli
identified among the poultry E. coli isolates [44], indicating

that commercial poultry meat is a potential carrier of human

E. coli pathotypes [44].

Abdissa et al. [51] examined the prevalence of E. coli
O157 : H7 in beef cattle at slaughter: beef carcasses at retail

shops and humans with diarrhoea attending health centres

in Ethiopia. E. coli O157 : H7 was found at a low prevalence

in slaughtered cattle (2%) but there were no positive samples

for E. coli O157 : H7 from human diarrhoea cases. The find-

ings were limited by small sample size (n ¼ 70) and no

direct or putative pathways of transmission [51].

Movement of food and animals has also led to the global

dissemination of ABR. The plasmid-mediated resistance

mechanism to the antibiotic colistin, mcr-1, was first ident-

ified in China among intensively farmed pigs [52]. Since

this discovery in 2015, mcr-1 has been detected in Entero-

bacteriaceae strains from five continents: in humans, food,

farm and wild animals, and aquatic environments [53].
9. Antibiotic resistance dissemination from
food-producing animals to the environment

ABR dissemination from food-producing animals to the

surrounding environment takes place through either the
excretion of antimicrobials through urine or faeces into surface

waters and soils, or the application of animal manure as fertili-

zer to soil or ponds. Untreated animal waste is used for a variety

of purposes in subsistence economies. Poultry waste is com-

monly used for feeding of fish and shellfish in aquaculture

[54]. Intestines from poultry are also used as feed for aquacul-

ture, leading to higher levels of resistance in Enterococcus spp.

isolates in fish intestines [55].

In China, duck faecal and surface water samples were ana-

lysed from a large breeding farm where 1-day old ducklings

were routinely injected with cetiofur [50]. The prevalence of

cetiofur-resistant E. coli isolates and ESBL gene types in pond

water samples were similar to those of duck faecal samples.

Faecal contamination therefore had a measurable effect on

the environmental prevalence of ABR bacteria and genes [50].

Other studies in China observed that soil treated with pig

manure was positive for ESBL-EC, with blaCTX-M being the

predominant ESBL gene, whereas no resistant isolates were

detected in control soil samples [56]. Three isolates from

soil had above 90% genetic similarity with strains from pig

farm samples, pointing strongly to transmission of AMR

organisms from pig manure to the environment [56].
10. Animal studies including assessment of
farm workers

Very few studies have examined the resistance profiles of bac-

teria and genes in food-producing animals and directly-

exposed humans in LMICs (electronic supplementary material,

table S1). Donkor et al. [57] assessed MDR E. coli in cattle and

their farmers in Ghana. Animal and human E. coli isolates

showed high levels of MDR ABR (70.6% and 97.7%, respect-

ively), although animal-derived isolates had high resistance

to five antimicrobials (cefuroxime, co-trimoxazole, tetracycline,

ampicillin and amikacin) and human-derived isolates had

higher resistance to chloramphenicol and gentamycin. Thus,

while resistance was high in both animals and humans, the

susceptibility profiles were different.

A study of ABR in faeces and milk from healthy dairy cows

and their associated dairy farmers from 23 farms in Ethiopia

showed 10% of samples from cows and 13% of the human

faecal samples were positive for Salmonella spp. 58% (14/24)

of all Salmonella spp. isolates were resistant to three or more

antibiotics [58]. There were no data on non-dairy workers,

however, to assess whether dairy farmers had higher preva-

lence through direct exposure to cows. Such studies ideally

require molecular methods to examine the phylogenetic associ-

ations between human and animal isolates which may then

provide evidence of common lineages [59].
11. Anthropogenic influences on the
environmental resistome in low- and
middle-income countries

Environmental contamination with antibiotic residues and

resistant organisms/genes due to human activity has been

demonstrated from pharmaceutical plants, hospital effluents

and untreated wastewater [7], and may be a leading driver of

ABR in low-resource settings [60]. In central India, hospital

effluent contained E. coli resistant to extended-spectrum



rspb.royalsocietypublishing.org
Proc.R.Soc.B

285:20180332

5
cephalosporinand fluoroquinolone antibiotics [61,62]. In Hyder-

abad, 95% of water samples taken near drug manufacturing

facilities were positive for ESBL and carbapenemase-producing

Enterobacteriaceae [63]. The latter study found fluconazol con-

centrations 20 times in excess of the recommended therapeutic

dose [63]. In Bangladesh, 71% of wastewater samples next to hos-

pitals (51/72) were positive for NDM-1-producing bacteria

compared to 12% of wastewater samples in community areas

in the same city of Dhaka [64]. In Nicaragua, ESBL-EC were

detected in hospital sewage samples with all isolates encoding

for the blaCTX-M gene [65]. Higher concentrations of ABR genes

were detected downstream from pharmaceutical industries in

western Havana [66].

Human and animal exposures to ABR in the environment

occur through drinking water supplies that have not been dis-

infected. In Dhaka city, 36% of 223 E. coli isolates from water

supply samples were multidrug resistant [67]; 26% of well-

water samples in Nicaragua were positive for ESBL-EC [65].

Healthcare waste and solid waste management are further pol-

lutants and potential drivers of ABR in low-income settings

[68–70]. Refuse sites are attractive for human scavenging and

recycling of medical waste products, adding further exposure

risk [69]. These wastes often contain heavy metals and other

pollutants that co-select for ABR causing further release of

resistant genes [54].

Anthropogenic influences on the resistome have been

inferred from ‘natural’ experiments as shown by the increased

antibiotic resistance gene (ARG) contamination of rural river

waters in India during the seasonal pilgrimage of urban resi-

dents to a religious site on the river [71]. Links have been

demonstrated between human antibiotic use and environ-

mental contamination. Diwan et al. [72] compared the

quantities of the seven most commonly prescribed antibiotics

in a hospital in India with the antibiotic concentrations and sus-

ceptibilities of E. coli in hospital-associated water. A significant

correlation was observed with ciprofloxacin being the most

common antibiotic prescribed and having the highest concen-

tration in water [72]. However, the effect of these antibiotics

on E. coli isolates in water was not clear. Rutgersson et al. [23]

assessed the prevalence of fluoroquinolone antibiotics and qui-

nolone-resistant genes (qnr) in river water, sediment, well water

and irrigation farmland near a pharmaceutical manufacturing

plant in India as well as the faecal concentration of qnr genes

in healthy humans. Around 42% of well water; 7% of soil

samples and 100% of Indian river sediment samples were posi-

tive for qnr genes. In sediment there was an association between

fluoroquinolone and qnr gene concentrations, but no associ-

ations were present in well water or soil. The study failed to

demonstrate direct linkage between environmental exposure

to quinolone-resistance genes and the presence of qnr genes in

humans, largely because the prevalence of the gene was so

high in humans (91%) and human to human transmission

was highly probable [23].
12. One Health studies across all three domains
of humans, animals and the environment

Few studies in low-resource settings have examined the pres-

ence of resistant bacteria and genes in all three domains of

humans, animals and the environment (see electronic sup-

plementary material, table S1). Dhaka et al. [73] assessed

ABR in diarrhoeagenic E. coli (DEC) in animals with diarrhoea
(n ¼ 106), food products (n ¼ 68), environmental samples

(n ¼ 59) and infants with diarrhoea (n ¼ 103) in India. Of the

four DEC pathogens, enteroaggregative E. coli (EAEC) was

the most common with a prevalence of 16.5% in infants,

17.9% in young animals, 16.2% in foods and 3.4% from environ-

mental sources. Around 86% of isolates were resistant to three

or more classes of antibiotics [73]. However, the study sampled

hospitalized infants, and animal samples were collected from

private farms and veterinary clinics. The only statistically

significant similarities in ABR profiles of EAEC isolates were

for ciprofloxacin (human versus environmental, and animal

versus environmental). This was explained by the widespread

use of fluoroquinolones for diarrhoea treatment which then

leads to both human and animal ciprofloxacin-resistant EAEC

isolates that contaminate the environment through faecal

waste [73].

Goat carcasses, faeces, equipment and environmental

samples were examined in a large abattoir in a pastoralist

region of Ethiopia [74]. Antibiotic-resistant E. coli O157 was iso-

lated from caecal contents, carcass swabs and water. Although

the prevalence was low (2.5%; 3.2% and 7.1%), all isolates were

resistant to two or more antimicrobials. The study identified

E. coli resistant to drugs that are not used in goats and

suggested that human infections may be the original source

of resistance that is transferred to livestock in this ecosystem.

A comprehensive One Health study of ABR was carried out

in a rural community in El Salvador and a peri-urban town in

Lima, Peru, using high throughput and shot-gut metagenomics

[75]. Samples were collected from humans, domesticated ani-

mals and the environment (soil, water, sewage or latrines).

Human-associated and environmental resistomes were related

along an ecological gradient corresponding with input from

human faeces [75]. The study also identified key resistance

genes that cross habitat boundaries and determined their associ-

ation with mobile genetic elements. This is one of the most

comprehensive studies across different ecological zones that

encompasses the human, animal and environmental resistome.
13. Human – animal – environment interactions
and socio-ecological behaviours

Aside from assessing ABR prevalence, there is an increasing

need to understand behaviours, customs and practices that

drive the evolution and transmission of resistance in low-

resource settings. In rural areas, households commonly share

living and sleeping areas with livestock [76] providing oppor-

tunities for transmission of resistant bacteria and genes

through faecal shedding or contact with animal faeces. In

rural Bangladesh, half of households reported that poultry

slept in the bedroom [45]. Behaviours relating to the slaughter

and processing of food-animals is a route of human exposure to

resistant enteric bacteria. Family members often gather during

the slaughter of poultry to say prayers. Handwashing with

soap after slaughtering poultry was reported for only 14% of

observations in domestic settings [33]. After butchering,

animal waste is often discarded on open land then scavenged

by dogs, wild birds and domestic poultry [33].

Biosecurity measures are often poor or absent in small-scale

animal-food processing facilities. In Ethiopia, observations

within an abattoir reported the absence of soap, running

water and disinfectant during slaughter; the same buckets of

water were used for cleaning knives, washing hands, washing
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carcasses and washing the floor [74]. In Dhaka city, like many

other urban areas in LMICs, poultry are slaughtered, processed

and sold on site without regulation of the preparation, selling

or disposal of solid waste [77]. Liquid waste from markets,

including blood, faeces and wastewater is disposed into

municipal drains through direct wash out [77]. Other potential

sources of ABR transmission are shared surface waters used by

humans for bathing, fishing or washing of clothes and house-

hold items. Animals use the same water for bathing and

drinking while also grazing and defecating nearby [78].

Other behavioural risks may stem from food preparation and

consumption. Raw or undercooked meat is one of the most

common means of transmission of E. coli O157 to humans, but

some communities, such as pastoralist groups in Ethiopia,

have strong preferences for raw meat consumption [74].

Information about antibiotic use in agriculture is increasing,

but there are likely to be many more undocumented practices

around antibiotic use. Anthropological studies among Somali

pastoralist tribes in Ethiopia observed that antibiotics are

occasionally added to fresh unpasteurized milk before selling

in unsterilized plastic containers [79]. This reflects the opportu-

nistic use of inexpensive and readily available antimicrobials as

well as an adaptation to modern food processing and storage in

order to prolong the shelf life of milk produce.
14. One Health surveillance programmes
Large-scale programmes for surveillance of food-producing

animals and non-hospitalized humans will provide much-

needed data on the scale of ABR outside healthcare settings.

While the global antimicrobial surveillance system initiative

(GLASS) is focusing on human clinical surveillance, the

WHO Advisory Group on Integrated Surveillance of AMR

is supporting and promoting One Health programmes [16].

A framework for national/regional surveillance has been

proposed to improve consistency and coverage of ABR

reporting in LMICs [80]. Systems for monitoring and surveil-

lance are also a high priority in NAPs among countries with

the required infrastructure.

Integrated food surveillance systems are being developed

for food production systems and food safety [16]. Colombia

has successfully piloted an integrated surveillance system to

monitor trends in ABR on poultry farms, abattoirs and retail

markets [81]. In Mexico, surveillance of food-borne pathogens

including Salmonella spp. and Campylobacter spp. is linked with

human surveillance data for the same pathogens [82].

Other national surveys are underway to contribute to

understanding the drivers of AMR. INDEPTH is a network

currently comprising 37 Health and Demographic Surveil-

lance System Sites in 20 LMICs [80]. This network aims to

determine the true prevalence of ABR, to relate hospital-

reported prevalence of ABR with community prevalence, to

ascertain antibiotic use in low-resource communities, includ-

ing perceptions and health-seeking behaviours and to assess

the burden of disease attributable to ABR in LMICs [80].
15. Mitigating strategies based on evidence from
One Health studies

The paucity of One Health intervention studies in LMICs

makes it difficult to identify successful mitigation strategies.
However, multisectoral interventions at national scales will

increase with the implementation of NAPs. Strategies for

containment of ABR in animal health are likely to focus on

reducing antimicrobial use. The ViParc study plans to target

small-scale poultry farms and provide farmers with a locally

adapted veterinary support service to help them reduce their

reliance on antimicrobials [83]. Other studies have advocated

for the withdrawal of non-therapeutic use of agricultural anti-

microbials in countries such as India and Vietnam where

antibiotic use in animal feeds is high [37,84]. Many countries

have existing policies to restrict the addition of antibiotics to

livestock feed but policy enforcement remains a challenge. Bio-

security in farming systems and improved waste management,

along with water, sanitation and hygiene in human and animal

systems, are important strategies for the prevention of ABR

transmission [85–87].
16. Discussion
Data are sparse on the distribution and concentrations of

ABR bacteria and ABR genes in humans, animals and the

environment at a meaningful spatial and temporal scale in

low-resource settings. The scarcity of integrated epidemiolo-

gical data prevents a true assessment of the prevalence of

ABR and transmission pathways, let alone assessment of

transmission risk. Where detailed studies have been con-

ducted, the evidence points to shared microbiomes and

resistomes in humans, animals and the environment follow-

ing gradients of exposure or contamination [75]. Future

studies require sufficient statistical power and representative

samples from interconnected livestock and humans, rather

than convenience sampling of populations with no direct

associations. Similarly, environmental assessments require

an ecosystem-wide approach to mapping genes and bacteria

[88]. As well as microbiological and epidemiological research,

studies need to document ‘informal food economies, chan-

ging household-level and community-level food preparation

and storage techniques, and the structural impediments

many people face accessing safe and regulated foods.’ [79].

Molecular approaches such as WGS of bacteria and meta-

genomic analysis of whole DNA, coupled with analytical

tools in bioinformatics, will increasingly replace conventional

culture-dependent systems. Application of metagenomics

allows the assessment of clonal diversity and similarity

among human and animal bacterial isolates, providing

greater insight into the shared resistance genes—but will

not necessarily identify the source. While this technology is

being rapidly adopted in many countries, some will lag

behind because of a lack of technical skills, expertise and

laboratory facilities [16]. Even with increasing affordability

of WGS the costs are likely to be prohibitive for many

programmes in low-resource settings.

The studies included in this critical appraisal do not rep-

resent a systematic review and, as such, may not be

comprehensive. With the vast range of disciplines involved

in research relating to ABR, it is challenging to collate studies

from all fields. A wider adoption of One Health approaches

in future will bring together disparate disciplines and data

sources and provide much greater insights.

A One Health paradigm is particularly relevant in LMICs

because of the risk of community-acquired ABR infections;

the high prevalence of infectious diseases [89]; the high
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rates of colonization with resistant commensal bacteria [20];

the close interactions between humans, animals and the out-

door environment and the high levels of environmental

contamination with antibiotic residues; heavy metals and

other co-selecting compounds [63].

The term ‘eco-epidemiological’ has been used to describe

the complexity of the overlapping ecologies of ABR in

humans, animals and the environment [39]. Quantitative

microbiological and epidemiological studies are needed to

understand risk, dose–response effects and strategies for

intervention. In-depth qualitative studies are required to elu-

cidate the drivers of antibiotic use, waste management and

economic pressures, as well as the facilitators and barriers

to change. In LMICs, where income generation is critical,

economic drivers may be particularly powerful. This needs

to be considered when developing mitigation strategies or

interventions. Finally, systems-based modelling is needed to

understand the key pathways of ABR transmission. As pro-

posed by Wernli et al. [90], ABR research needs to focus on
outcomes (epidemiology), processes (drivers and practices)

as well as structures (regulations and current control pol-

icies). Single discipline studies will fail to identify the most

effective methods to contain ABR. Multidisciplinary and hol-

istic studies employing One Health approaches are required

in low-resource settings.
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