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Masashi Takahashi

Received: 7 April 2011 / Accepted: 7 July 2011 / Published online: 13 August 2011

� Japan Society for Reproductive Medicine 2011

Abstract In most mammalian species including cattle,

heat stress has deleterious effects on nutritional, physio-

logical and reproductive functions. Exposure of animals to

a hot environment causes an increase in body temperature

in mammals, including domestic animals. High ambient

temperature also causes a decrease in the length and

intensity of estrus by disturbing ovarian function as well as

decreasing pregnancy rate after artificial insemination.

Therefore, it is important to understand the effects of heat

stress on reproductive function in order to improve the

production of domestic animals. Heat stress decreases

appetite, weight gain, and milk yield in dairy cattle. It also

adversely affects the reproductive performance of both

sexes. In males, it reduces spermatogenic activity, while in

females it adversely impacts oogenesis, oocyte maturation,

fertilization development and implantation rate. Detection

and evaluation of the deteriorating effects of heat stress on

reproductive organs and cells can help to design measures

to prevent them and improve reproductive functions. In this

review, we discuss the impacts of heat stress on repro-

ductive functions.
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Introduction

There are many different climatic zones around the world

which are highly affected by latitude, altitude, water area,

oceans, winds or evaporative conditions. Mammals,

including humans and livestock animals, are living in such

variable environmental conditions. Most mammals have

body temperatures of 35–39�C [1]. These temperatures are

maintained above environmental temperatures through the

generation of metabolic heat. Body temperatures are nor-

mally maintained in a narrow range by heat production and

loss, although disease, poor nutrition and extreme envi-

ronmental temperatures can upset the balance.

Heat stress caused by high ambient temperature in

summer can result in increased body temperatures and can

decrease growth, milk production and fertility in livestock.

Many studies have examined the effects of ambient tem-

perature and humidity on the physiology of livestock.

Berman et al. [2] suggested that the upper limit of ambient

temperatures at which high milk-yielding dairy cows may

maintain a stable body temperature (38.5�C) is 25–26�C,

and that at environmental temperatures above 25�C, prac-

tices should be instituted to minimize the rise in body

temperature. High environmental temperature increases the

body temperature in lactating cows to near 40�C [3];

however, this drastic elevation of body temperature is not

observed in heifers even under high environmental tem-

perature [3]. This may be because of the extra heat pro-

duced in association with milk production and less heat

loss as a result of the smaller difference of temperature

between body and environment. Milk production signifi-

cantly decreases with increasing body temperature [4, 5].

In addition, heat stress decreases food intake and body

weight in pigs [6, 7]. As well as productivity, heat stress

widely affects the reproductive functions in mammals with

a reduction of pregnancy rate in cattle [8] and pigs [9]. The

objective of this review is to describe the effect of heat

stress on reproductive functions in male and female

mammals including livestock animals.
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Heat stress on male reproduction

In males, the testis is suspended in a scrotum outside the

body in order to keep the temperature lower than core body

temperature, which is required for normal spermatogenesis.

The testis temperature is between 2 and 8�C below core

body temperature in mice [10], humans [11] and bulls [12].

In bulls, bovine testicular temperature must not exceed

33–34.5�C for normal spermatogenesis [13, 14]. Hyper-

thermia has a detrimental effect on testicular functions such

as inhibiting spermatogenesis in mice [15], rats [16], pigs

[17, 18], sheep [19], cows [20] and horses [21]. For

effective production of livestock animals, high fertility of

semen is necessary for obtaining fertility after artificial

insemination or natural mating; however, high summer

temperatures have been shown to decrease semen quality in

bulls, rams [19, 22–24] and boars [18, 25]. Heat stress to

testis with acute scrotal heating decreases not only semen

quality, but also decreases embryo quality after fertilization

with normal female mice [15, 26–28] as well as fetal

growth [26]. Heat stress has several adverse effects on

reproductive tissues in mice and cows, including germ cell

loss, poor morphology, low sperm quality, and abnormal

DNA and chromatin structure [29–31]. Heat stress to the

testis increased the number of apoptotic germ cells in mice

[27, 32] and rats [16, 33] and disturbed gene expression in

mice [10, 30, 34, 35]. Some evidence showed that X and Y

spermatozoa are differentially affected by heat stress. The

sex ratio of embryos shifted towards female when female

mice were crossed with male mice treated with heat stress

on the day of mating [30].

Heat stress also affects the endocrine and biochemical

condition of male animals. Summer heat increased the

level of thiobarbituric acid reactive substances (TBARs)

which is an oxidative marker, and decreased glutathione

peroxidase (GPx) level which is an antioxidant enzyme in

bovine seminal plasma [36, 37]. Similar changes were

observed in rams [38, 39]. Heat stress also has endocrine

effects, reducing the plasma luteinizing hormone (LH)

level in bulls [40, 41] and increasing the plasma testos-

terone level in boars [18].

Effects of heat stress on female reproduction

Estrus and endocrine status

Heat stress reduces the duration and intensity of estrus in

dairy cows [42–44], increases anestrus and silent ovulation

[43], and reduces the number of mounts in hot weather than

in cold weather [45]. These changes make it difficult to

detect estrus, so that artificial inseminations are less suc-

cessful and the number of pregnancies is reduced. Heat

stress also affects reproductive functions in beef cows.

Pedometer measurements showed a decrease in the number

of steps, which reflects the intensity of estrous behavior, at

the day of estrus with an increase in ambient temperature in

summer (Fig. 1). In another case, a clear increase in the

number of steps was observed in an individual cow when

ambient temperature decreased (Fig. 1).

Heat stress affects many reproductive functions includ-

ing endocrine activities in females. High temperature

disturbs hormone secretion such as decreasing LH, follicle-

stimulating hormone (FSH) in cows [46, 47], progesterone

in cows [48, 49], and estradiol (E2) in goats [50]. Heat

stress also reduces the level of progesterone and causes a

loss of LH surge in sheep [51]. Heat stress also changes the

luteal phase and ovulation in humans [52], and reduces the

levels of estradiol and follicular estradiol concentration,

aromatase activity and level of LH receptor associated with

delayed ovulation [50] in goats. Heat stress also lowers the

levels of gonadotropin receptors and aromatase activity of

granulosa cells and the follicular fluid concentrations of

estradiol collected from rat follicle [53]. An in vitro study

revealed a decrease of follicular steroidogenesis, andro-

stenedione and estradiol of follicle wall exposed to heat

stress [54]. On the other hand, less effects on insulin-like

growth factor binding protein, E2 and progesterone levels

in dominant follicles have also been reported after heat

stress exposure to dairy cows despite the elevation of rectal

temperature [55]. These different responses need to be

considered with regard to exposure time, estrous cycle,

nutritional status [56], and other environmental conditions

such as wind and humidity. Ovarian function in lactating

cows is different from that in dry cows and heifers, because

lactating cows generate more heat as a result of milk pro-

duction [3].

Effect of heat stress on follicular development

and oocyte quality

Heat stress negatively affects ovaries by inhibiting follic-

ular growth and oocyte quality. Heat stress reduces inhibin

levels by hastening the decrease in size of the first-wave

dominant follicle and the emergence of the second domi-

nant follicle [57, 58]. Intrafollicular condition is important

for oocyte growth and quality. High ambient temperatures

significantly decrease the number of oocytes and devel-

opmental competence following in vitro fertilization in

dairy cows but have less effect on beef cows [59].

Exposing dairy cows to heat stress decreased estradiol

production and viability of granulosa cells and also

decreased androstenedione production by thecal cells [60].

Some metabolic markers such as blood level of glucose and

non-esterified fatty acid (NEFA) affect the condition of the

follicles under heat stress conditions. It is reported that the
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Fig. 1 Disturbance of estrus

behavior of cows in summer

season (June–September, 2010).

Upper Temperature and

humidity at Kumamoto Japan in

summer. Lower Number of

daily steps of individual cow.

Red bars show the number of

daily steps on the day in which

the cows showed standing estrus

(arrows)

control
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(40.5°C for 14h)
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Fig. 2 Heat stress-induced apoptosis in bovine matured cumulus–oocyte complexes (COCs). After COCs were collected from follicles, they

were matured for 20 h in maturation medium. COCs were exposed to 40.5�C for the latter 14 h followed by fixation and TUNEL staining
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glucose level of bovine follicular fluid is about 85% of the

plasma glucose level in the cool season and that the fol-

licular glucose level significantly decreases in summer with

a similar decrease in blood glucose level [61]. In contrast,

heat stress did not affect the level of NEFA in spite of a

significant increase in plasma level [61]. Taken together,

these results indicate that the condition of follicles is

affected by body blood nutrition or biochemical compo-

nents which vary in the summer season. However, oxygen

is probably not a factor because its concentration in the

follicular fluid does not vary in heat and non-heat stressed

conditions [62].

Although rectal temperatures are often considered rep-

resentative of core body (and hence tissue) temperatures,

ovarian temperatures are kept 1–1.5�C cooler than rectal

temperatures in several species, including cattle, pigs,

rabbits and humans [63–66]. Maternal heat stress did not

affect the blood oxygen pressure in the ovarian vein of

swine [67]. On the contrary, ovarian, cervical and oviductal

blood flows decreased by 20–30% by heat-stressed rabbit

while vulval blood flow rose by 40%, irrespective of

pregnancy and/or lactation status [68]. These studies indi-

cate that it is necessary to study the effect of body tem-

perature and local blood flow associated with local

temperature and distribution of nutrition to follicles for

oocyte growth. However, it is unclear how follicular tem-

perature is affected in heat-stressed ovaries. Further studies

are needed to determine how heat stress affects local

reproductive organs to clarify the follicular and oocyte

growth.

Effects of heat stress on oocyte growth, fertilization

and early embryonic development

Many in vitro and in vivo studies have examined the effects

of heat stress on maturation and developmental compe-

tence of oocytes. Exposing females to heat stress after

fertilization caused decreases in the quality and quantity of

embryos in cows after superovulation [69, 70] and mice

[71–75], and caused decreases in fetal growth in pigs [67],

mice [74] and beef cows [76]. In vitro studies also revealed

the effect of heat stress on oocyte maturation. Exposing GV

stage oocytes to high temperature inhibits the rate of MII

stage oocytes in mice [77, 78] and cows [79–82]. Although,

experimental heat stress coincident with ovulation and

oocyte maturation may or may not have an effect on the

capacity of oocytes to be fertilized, the resultant embryos

are more likely to develop slowly or abnormally. Exposure

of oocytes to heat stress during in vitro maturation caused

nuclear and cytoskeletal alterations in mice [77], pigs [83]

and cows [79, 84]. Heat stress also induces cumulus–

oocyte complexes (COCs) to undergo apoptosis. Figure 2

shows the increase in the number of TUNEL-positive cells

in cumulus cells surrounding bovine oocytes when COCs

were exposed to heat stress during in vitro maturation.

Heat stress also induced apoptosis in bovine oocytes

[82, 85, 86] and an increase in phosphatidylserine, an

indicator of apoptosis in porcine oocytes [87]. On the

other hand, short exposures to heat stress seem to have

less effect on oocyte maturation in vitro [88–90]. Careful

analysis is necessary to clarify the opposite results of

heat stress on oocyte maturation in in vitro or in vivo

conditions. Heat stress at the time of fertilization also

decreased subsequent embryo development, which sug-

gests that heat stress has detrimental effects on both on

oocytes and sperm [81]. In males, heat stress reduces the

number of sperm with intact acrosomes at the time of

ejaculation [18].

In addition to oocyte maturation, development of pre-

implantation embryos after fertilization is also affected by

the surrounding environment. Exposing preimplantation

embryos to heat stress decreased their development in mice

[91] and cows [92, 93] and decreased the total cell number

of blastocysts [93].

Developing embryos during the short period (4–8 days)

between fertilization and implantation undergo dynamic

growth, cell proliferation, cell differentiation, and many

changes in gene expression. Therefore, if the maternal

body is exposed to heat stress during this period, it is

likely that the preimplantation development is severely

affected directly by heat stress itself or indirectly by the

deleterious change of reproductive tracts. The stage at

which embryos become susceptible to heat stress has

been studied. In vivo maternal heat stress inhibited

embryo development at an early stage in mice [71, 75]

and cows [70]. In vitro studies have clearly shown that

the sensitivity of bovine embryos to heat stress is stage-

specific [93–95] as well as in in vivo studies [70]. In

cows, in vivo and in vitro experiments showed that

embryo development is significantly inhibited by heat

stress approximately 48–72 h after fertilization, which

corresponds to the 8–16 cell stage [93]. After this stage,

heat stress exposure has less effect on the rate of devel-

opment and cell proliferation [93]. In mouse and cow

embryos, the stage that is most sensitive to heat stress is

approximately the time of zygotic genome activation

(ZGA), which occurs at the 2-cell stage in mice [96] and

at the 4- to 8-cell stage in cows [97, 98]. Both during and

after ZGA, heat stress can also change the chromatin

structure of embryonic cells [99], which might disturb

gene expression. In addition to inducing apoptosis in

maturing oocytes, heat stress also induces apoptosis in

embryonic cells in cows [86, 100, 101], pigs [102, 103]

and rabbits [104].
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Knowledge of when an embryo is most sensitive to heat

stress can be used to select the best time for embryo

transfer by preventing the early embryonic loss after arti-

ficial insemination in cows [105, 106].

Effects of heat stress on post-hatching development

and placentation

Maternal heat exposure after fertilization decreases the

pregnancy rate and causes embryonic death before

implantation [70, 71]. Such conditions might disturb the

intrauterine environment both for embryos and uterine

tissue. We recently found that the viability of uterine epi-

thelial cells recovered from uterine flushing at the time of

embryo collection in beef cows decreased in summer

(Fig. 3). At this time, embryo quality also tended to

decline.

A high level of prostaglandin F2a (PGF2a) inhibited

implantation, altered embryo development and induced

luteal regression [107]. Maternal recognition of pregnancy

is an initial step for embryo implantation and placentation.

The corpus luteum secretes progesterone, which has roles

in follicular growth and the establishment and maintenance

of pregnancy. Luteal function is inhibited by summer heat,

causing decreases in progesterone levels in luteinized

granulosa cells, theca cells and plasma [108] in both dairy

cows [48] and beef cows [49]. One of the many factors

controlling luteal function is PGF2a which is mainly

secreted by the uterus. On the other hand, elevated uterine

luminal concentrations of PGF2a have been negatively

associated with embryo quality and pregnancy rates [109]

and have been shown to have a toxic effect on in vitro

development of embryos in rabbits [110], rats [111] and

cows [112, 113]. Administration of PGF2a to pregnant

mice on day 4 reduced the decidual reaction around the

implantation chamber [114]. Secretion of PGF2a is affec-

ted by heat stress in endometrial tissues of pregnant and

non-pregnant bovine uterus [115]. Also, maternal heat

stress increases placental PGF2a and PGFM levels [116].

Heat stress also has detrimental effects on placentation

and fetal growth. Maternal heat stress decreases growth

retardation [117] and size of placenta in rats [118], and

placental weight [119, 120] and placentome size [121] in

sheep, but has less effect on humans [122]. Maternal heat

stress in cow reduces the levels of placental hormones,

which disturbs placental function and slows fetal devel-

opment [123]. Maternal heat stress and nutritional status

during gestation also have strong effects on fetal devel-

opment [124]. Heating the scrota for extended periods also

results in decreased fetal weight [125] which indicates that

the impact of heat stress on paternal gamates at the earlier

stage highly affects fetal growth.

Oxidative stress in heat stressed reproductive functions

Heat stress not only affects animals by reducing the

reproductive functions but it also has physiological and

nutritional effects followed by retardation and reduced

milk production in cattle. In summer, an increase of body

temperature significantly decreased milk production [4, 5].

Increase of body temperature by heat stress also caused

decrease of food intake and body weight in pigs [6, 7]. As

well as reducing productivity, heat stress widely affects the

reproductive functions in mammals with a reduction of

pregnancy rate in cattle.

Oxidative stress is one of the many parameters used to

indicate the physiological status in cells and tissues of an

animals’ body. Heat stress affects the oxidative stress-

related physiological status in females as well as males.

Heat stress caused increases in oxidative markers, such as

the levels of TBARS, superoxide dismutase (SOD) and

catalase in plasma and erythrocytes in humans [126],

cows [127], goats [128] and mice [129], and in the liver in

rats [130]. Maternal heat stress changes the redox status in

the oviduct in mice [75, 129]. Several antioxidant

enzymes that are expressed in the oviduct vary during the

estrous cycle in cows [131]. We also found seasonal

differences in the redox status of oviductal fluid collected

from dairy and beef cows (Fig. 4). Together, these studies

referring to [75, 129, 131] and Fig. 4 indicate that

decreased redox status and/or increased oxidative stress

lead to deterioration of intraoviductal conditions with

adverse effects on ovulated oocytes, ejaculated sperm and

fertilized embryos.

Early embryonic development is also affected by heat

stress-induced oxidative stress. Heat stress increased
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intracellular reactive oxygen species (ROS) in embryos of

mice [71] and cows [93]. Interestingly, at the time when

bovine embryo development is critically inhibited by heat

stress (days 0–2), ROS generation in heat-stressed embryos

significantly increases [93]. After day 2, heat stress has less

effect on embryo development as well as less effect on

ROS generation or accumulation. Administration of anti-

oxidative polyphenol [74], vitamin E [132] or melatonin

[133] to heat-stressed female mice improved the develop-

ment of mouse embryos. b-Carotene had a similar effect on

the pregnancy rate of heat-stressed dairy cows [134, 135].

In vitro administration of antioxidants such as anthocyanin

[136], astaxanthin [137] or 2-mercaptoethanol [138]

improved embryo development of heat-stressed bovine

embryos associated with intracellular ROS and glutathione

(GSH) synthesis [138]. Furthermore, in vivo heat stress

also caused a decrease in GSH of oocytes and embryos, and

elevated ROS levels associated with DNA damage in mice

[71].

These findings provide both direct and indirect evidence

of a close relationship between heat and oxidative stress in

embryo development. GSH maintains the intracellular

redox status of embryos and is associated with their

development and quality in many species including mice

[139], rats [140], rabbits [141], pigs [142] and cows [143,

144]. GSH can improve the thermotolerance of mice [145],

which suggests that redox status is an important determi-

nant of thermotolerance. Therefore, using antioxidants to

control the intracellular or extracellular redox status both in

vivo and in vitro may be a way to reduce heat stress-related

oxidative stress.

Impact of heat stress on human live food production

and reproduction in future

Global temperatures have risen about 0.7�C since the

beginning of the industrial revolution in the 18th century,

causing climate change all over the world by possible

greenhouse gasses. Recent weather reports show that the

incidences of summer heat waves, heavy rains or drought

have been increasing with rising temperature. It is likely

that global warming will have severe impacts on the

physiology and reproduction of mammals of both sexes.

The impact of elevated temperatures on reproductive

functions in males and females is summarized in Fig. 5.

Mammals including livestock animals have adapted to

variable environments all over the world which typically

include high ambient temperatures. In these environments,

mammals have acquired genetic variation and improved

mechanisms for controlling body temperature and manag-

ing heat stress. On the other hand, genetic selection of

livestock by humans has made them more susceptible to

heat stress. This is especially the case with dairy cows

which generate large amounts of metabolic heat for milk

production. In dairy cows selected for high milk produc-

tion, the conception rate decreases dramatically in summer

than in winter [146]. However, the effects of heat stress on

milk production and body temperature vary among breeds

[147], and are less in beef cows than in dairy cows. This

decline of reproductive performance is thought to be due to

an imbalance of heat production and loss [148]. Such breed

differences in heat stress are attributed not only to bio-

logical body but also to cellular response of immune cells

[149], embryos [150–152] as well as a combination of

semen [124, 153, 154]. Therefore, further studies of genes

involved in cellular and physiological responses to heat

stress are needed to control and improve mammalian

reproduction.
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