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Abstract

Adaptive immune responses require the generation of a diverse repertoire of
immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite
number of antigens. V(D)J recombination creates the primary Ig repertoire,
which subsequently is modified by somatic hypermutation (SHM) and class
switch recombination (CSR). SHM promotes Ig affinity maturation whereas
CSR alters the effector function of the Ig. Both SHM and CSR require
activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in
the Ig locus that are transformed into untemplated mutations in variable coding
segments during SHM or DNA double-strand breaks (DSBs) in switch regions
during CSR. Within the Ig locus, DNA repair pathways are diverted from their
canonical role in maintaining genomic integrity to permit AID-directed mutation
and deletion of gene coding segments. Recently identified proteins, genes, and
regulatory networks have provided new insights into the temporally and
spatially coordinated molecular interactions that control the formation and
repair of DSBs within the Ig locus. Unravelling the genetic program that allows
B cells to selectively alter the Ig coding regions while protecting non-Ig genes
from DNA damage advances our understanding of the molecular processes
that maintain genomic integrity as well as humoral immunity.
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Introduction

Mammalian adaptive immune responses require B cells to pro-
duce immunoglobulins (Igs), commonly known as antibodies,
that can recognize a seemingly infinite number of antigens on
foreign pathogens. Composed of two heavy (IgH) and two light
(IgL) chains that are linked by disulfide bonds, each Ig contains
an antigen-binding domain formed from the amino-terminal
variable regions of IgH and IgL. The carboxyl-terminal con-
stant (C) region of the IgH chain determines the Ig effector func-
tion. Three distinct genomic alterations in the /gH and IgL loci
enable B cells to generate the diverse repertoire of Igs: V(D)J
recombination, class switch recombination (CSR), and somatic
hypermutation (SHM). During V(D)J recombination, devel-
oping B cells in the fetal liver and the adult bone marrow
assemble the variable coding regions of IgH from variable
(V), diversity (D), and joining (J) coding segments. Igl. cod-
ing regions are assembled from V and J coding segments in
either the Igk or IgA locus. RAGI/RAG2 endonucleases are
required for V(D)J recombination, which forms the primary Ig
repertoire and promotes the development of mature IgM/IgD-
expressing B cells'”. Mature B cells with membrane-bound
IgM or IgD (B-cell receptor [BCR]) (or both) will migrate to
secondary lymphoid organs, such as the spleen, lymph nodes,
and Peyer’s patches, where binding of the IgM or IgD to its
cognate antigen in the presence of helper T cells will promote
CSR and SHM.

CSR reorganizes the IgH gene locus to delete the default Cu/Cd
constant coding exons for an alternative set of downstream con-
stant coding exons (Cy, Ce, or Ca)’. The B cell thus will switch
from expressing IgM or IgD to IgG, IgE, or IgA. Each Ig iso-
type regulates different effector functions that are necessary
for an effective adaptive immune response’. At the molecular
level, CSR is a deletional-recombination reaction that occurs
at repetitive DNA regions called switch (S) regions, which
precede each constant coding exon except C3. The intronic
region preceding CJ is a non-canonical, S-like sequence known
as G, The expression of C, and consequently IgD, is prima-
rily independent of CSR and results from alternative splicing of
a primary transcript that includes Cp and C3; however, recent
work has shown that CSR to IgD is a rare event confined to
mucosa-associated lymphoid tissues and depends on p53
binding protein 1 (53BP1) and myeloid differentiation primary
response gene 88 (MyD88)°.

To initiate CSR, DNA double-strand breaks (DSBs) are gener-
ated in an upstream donor S region (for example, Spu) and a down-
stream acceptor S region (for example, Sou) (Figure 1). The DSBs
are ligated by proteins of the classical-non-homologous end-
joining (C-NHEJ) and alternative-NHEJ (A-EJ) pathways, and
the sequence between the recombining S regions is excised as
an extrachromosomal, circular DNA, which is lost during cell
division and DNA replication. Unlike CSR, SHM introduces
untemplated point mutations, and occasional deletions and
insertions, into the recombined V, D, and J coding exons of
IgH and IgL genes at a very high rate (10°-107 base pairs
per generation)*. These mutations, which occur primarily in
complementarity-determining regions, allow the generation of
Igs with an increased affinity toward their cognate antigen.

F1000Research 2018, 7(F1000 Faculty Rev):458 Last updated: 13 APR 2018

Both CSR and SHM require activation-induced cytidine deami-
nase (AID), a 24-kDa protein expressed primarily in activated B
cells’®. AID, a single-stranded DNA (ssDNA) cytidine deami-
nase, initiates CSR and SHM by converting deoxycytidine
(dC) to deoxyuridine (dU) in recombining S regions during
CSR or recombined V(D)J coding exons during SHM. The
AlID-generated dU:dG mismatch activates DNA repair pathways,
including the base excision repair (BER) and mismatch
repair (MMR) pathways, which induce DSBs to drive CSR
(Figure 1) or error-prone repair to promote SHM".

This review describes the general mechanisms of CSR and
highlights recent data on the localization of AID to S regions
and the DNA repair pathways that resolve AID-generated
dU:dG lesions. For an overview of SHM, readers are referred
to other reviews™.

AID targeting to switch regions

Although S regions and Ig variable coding segments are physi-
ological targets of AID during CSR and SHM, respectively,
AID can generate DSBs and mutations in non-Ig genes, such
as Myc and Bcl6'"-". Despite the markedly lower rate of
DSB formation and mutation at these non-Ig genes'*!, the
resulting DNA translocations or mutations in these off-
target genes contribute to the development of mature B cell
lymphomas'>~"7. Thus, mechanisms target AID specifically to the
Ig loci to promote CSR and SHM while restricting AID access
to the remainder of the B cell genome to limit off-target DSBs
and mutations to maintain genome integrity.

Role of germline transcription in generating AID substrates
Ig heavy chain constant (C,) exons are organized as independ-
ent transcriptional units composed of a cytokine-inducible
promoter upstream of a non-coding “I-exon”, the intronic S
region, and the corresponding C, exons'. T cell-dependent
(for example, cytokines and CD40L) or T cell-independent
(for example, lipopolysaccharide) stimuli (or both) activate
transcription of recombining S regions (Figure 1), which
is absolutely required for CSR. The primary germline tran-
script is spliced into a mature, polyadenylated transcript with
no known protein product and is frequently referred to as a
“sterile” germline transcript’”. Genetic deletion of specific
I-exons abolishes germline transcription and CSR to the
corresponding  isotype’™*'. Germline transcription initiating
from the I-exons and proceeding through the S regions to the
C,, exons creates the ssDNA substrates for AID within the tran-
scribed S regions. Each S region varies in length (1-10 kb)
and consists of tandem repetitive units that contain a G-rich
non-template strand. Deleting the repetitive units within the
S regions or replacing the S regions with small core S-region
sequences significantly impairs CSR and demonstrates an
essential role for these sequences during CSR*. Recent data
suggest that the repetitive, G-rich non-template strand forms
G-quadruplex (G4) structures that facilitate cooperative AID
oligomerization at S regions®. In addition, the tandem repeats
of 5-AGCT-3" within the core S regions recruit AID and its
kinase, protein kinase A (PKA), to the S regions via the 14-3-3
adaptor proteins, which specifically recognize the 5-AGCT-3’
repeats (Xu et al., 2010°7; reviewed in Xu et al., 2012%).
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Figure 1. Mature B lymphocytes undergo class switch recombination (CSR) to alter the expression of the immunoglobulin heavy
chain constant region (C,). The figure depicts CSR between Sp and Sa in the immunoglobulin heavy chain (/gH) locus. Activation-induced
cytidine deaminase (AID) converts cytidines into uridines in S-region DNA. The dU:dG mismatch is converted into DNA double-strand breaks
by either the base excision repair (BER) or the mismatch repair (MMR) pathway. In the BER pathway, uracil DNA glycosylase (UNG) removes
the uracil base from the DNA to generate an abasic site, which is recognized and cleaved by the apurinic/apyrimidinic endonuclease 1
(APE1). During MMR, the dU:dG mismatch is recognized by mutS homologue 2 and mutS homologue 6 (MSH2 and MSHB), which recruit the
complex of exonuclease 1 (EXO1), mutL homologue 1 (MLH1), and post-mitotic segregation 2 (PMS2) to excise a short patch of DNA that
includes the dU:dG mismatch. The DNA breaks are ligated by classical or alternative non-homologous end-joining pathways to generate a
recombined /gh locus and an excision circle. Rev1 and 14-3-3 are scaffolding proteins, which are necessary for the assembly of the protein
complexes participating in CSR.

Page 4 of 14



Germline transcription of S regions creates R-loops, wherein
the newly transcribed RNA hybridizes to the template DNA to
form a stable RNA:DNA hybrid that exposes the non-template
DNA as ssDNA, which is the substrate for AID***-*. Inver-
sion of the mouse Syl sequence, which converts the G-rich
non-template strand to a G-rich template strand, impairs R-loop
formation and CSR without affecting germline transcription®.
These data demonstrate the inherent ability of G-rich S regions
to form R-loops that likely contain G4 structures, which

26,33

facilitate AID recruitment”®*.

Although R-loop formation at non-Ig loci may redirect AID
activity to other regions of the B cell genome™, AID is signifi-
cantly enriched at the Igh locus, suggesting that factors beyond
R-loop formation also restrict AID to the Igh locus during
CSR'**. AID interacts with RNA polymerase II and its asso-
ciated proteins, such as Spt5%, PAF1*, and the FACT histone
chaperone complex®. In addition, RNA polymerase II, which
has stalled at the repetitive G/C-rich S regions, can recruit
the RNA exosome to degrade the nascent RNA transcript and
facilitate AID deamination of the non-template and template
DNA strands®**.

Role for germline transcripts in targeting AID to S regions
Germline transcription is necessary but not sufficient for
CSR. In mice that lack the Iyl exon splice donor site, CSR to
IgGl was abolished despite active S-region transcription’'~*,
suggesting that either the RNA processing machinery (for
example, spliceosome) or the processed transcripts are required
for CSR. CTNNBLI1, a component of the spliceosome, inter-
acts with AID and is required for CSR and SHM*. Knockdown
of the splicing regulator PTBP2 reduces AID at S regions and
impairs CSR**. These data demonstrate that the spliceosome
plays an essential role in localizing AID to S regions.

So RNA expression from a plasmid in trans enhanced CSR to
IgA in the B-cell line Bcl,B,", suggesting that spliced, intronic
S-region RNA derived from germline transcripts have a func-
tional role during CSR. More recently, these S-region RNAs
were shown to recruit AID to S-region DNA sequences™*.
Intronic switch RNAs were known to be spliced from primary
transcripts to form lariats that undergo hydrolytic degrada-
tion, which is catalyzed by the debranching enzyme DBRI1".
Knockdown of DBRI1 in CHI2F3 cells reduces CSR; how-
ever, expression of switch RNAs in trans bypasses the lariat
debranching step in DBR1 knockdown cells to rescue both CSR
and AID recruitment to S regions in a sequence-specific
manner™. In addition, AID bound directly and selectively to
sense S-region transcripts, which were shown to form highly
stable four-stranded G4 structures™’. A putative G4 RNA bind-
ing motif in AID was identified and mutations in this domain
abrogated AID interactions with G4 switch RNA and conse-
quently the localization of AID to S regions and wild-type levels
of CSR**. Interestingly, a mutation in the RNA binding motif
of AID (G133V) has been identified in patients with Hyper-IgM
Syndrome who show severe CSR defects’'. From these studies,
a new regulatory model for AID localization to S regions was
proposed whereby the non-coding, intronic S-region RNA,
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which is produced following germline transcription and splicing,
binds to AID to target AID to sites of DNA recombina-
tion (S regions) and promote AID-mediated DNA deamina-
tion and CSR in a sequence-specific manner. This model
connects the data demonstrating the role of germline
transcription and splicing in CSR with the binding of AID
to S-region RNA and DNA and identifies a critical function
for S-region RNA in CSR beyond germline transcription and
splicing (Figure 2).

Epigenetic regulation of AID localization to S regions
Epigenetic modifications of the Igh locus during CSR have
been proposed to control the recruitment of AID to S regions
(comprehensively reviewed in 52). Changes in histones H4
and H3 methylation patterns have been associated with altered
levels of CSR, although the functional significance of these
modifications during CSR remains unclear. Conditional dele-
tion of two methyltransferases (Suv4-20hl and Suv4-20h2),
which are responsible for histone H4 lysine 20 di- and
tri-methylation (H4K20me2 and H4K20me3), in B cells leads
to a 50% reduction in CSR*. AID interacts with SUV4-20H1
and SUV4-20H2 in 293F cells and localizes these meth-
yltransferases to S regions to promote SUV4-20-mediated
histone trimethylation in B cells undergoing CSR*, suggesting
cooperative targeting of methyltransferases and AID to recom-
bining S regions. H3K9me3 tethers AID to Su through its
interaction with KRAB domain-associated protein 1 (KAPI)
and heterochromatin protein 1 (HP1)*, and combinatorial phos-
pho-Ser10 and acetyl-Lys9 modification of H3 (H3K9acS10ph)
mediates AID recruitment to S regions by stabilizing S-region
DNA binding of 14-3-3, which in turn interacts with AID".
Enrichment of H3K9me3, histone H3 lysine 9 acetylation
(H3K9ac), and histone H3 lysine 4 trimethylation (H3K4me3)
at recombining, transcribed S regions’’ and a reduction
in CSR in B cells deficient in Pax interaction with transcrip-
tion-activation domain protein-1 (PTIP), which is responsible
for H3K4 methylation, suggest additional epigenetic mecha-
nisms of regulating AID localization to S regions’’. However,
the functional relevance of H4K20 and H3K9 methylation in the
recruitment of AID to S regions during CSR remains unclear,
as some data demonstrate that H3K9 tri-methylation and
H4K20 methylation (mono-, di-, and tri-methylation) are reduced
at recombining S regions™*’. Additional work is required to deci-
pher the epigenetic code at S regions, which will further eluci-
date the role of post-translational modification of histones in the
localization and stabilization of AID at S regions during CSR.

Multiple DNA repair pathways in CSR

Although AID localization to and deamination of S-region
DNA is required for CSR, additional factors downstream of
germline transcription and AID recruitment are necessary for
wild-type levels of CSR**°2. The conversion of deaminated
DNA into DSBs requires many proteins from DNA repair
pathways that have evolved to respond to general DNA dam-
age. The mechanism by which these factors convert deami-
nated DNA into recombinogenic DNA repair (that is, CSR)
rather than canonical DNA repair (that is, restoration of the
dC:dG base pair at the site of deamination) remains unknown.

Page 5 of 14



IgH locus (DNA)

Primary germline
transcript (RNA)

Mature germline
transcript

B
- - 1T -

F1000Research 2018, 7(F1000 Faculty Rev):458 Last updated: 13 APR 2018

Complimentary
S-region targeting

CH exons

Transcription

Splicing

Intronic switch
transcript (lariat)

DBR1 Debranching

_

Guide RNAs

G-quadruplex
secondary structure

Figure 2. Proposed model for RNA-dependent targeting of AID during class switch recombination. Upon B-cell activation, germline
transcription is initiated from a cytokine-inducible promoter (P) and primary germline transcripts are generated from the I-S-C,, sequences,
which encode the |-exon, switch (S) region, and constant coding exons (C,). These transcripts are spliced to form a mature non-coding,
germline transcript and an intronic S lariat. The latter is further processed by the debranching enzyme DBR1 to form a linear S-region
transcript. Linear S transcripts fold into G-quadruplex RNA, which is bound by AID. The complex of S-RNA and AID is guided to transcribed
S-region DNA as a result of the complimentary between the S-RNA and the transcribed S region. AID, activation-induced cytidine daminase;

DBR1, debranching RNA lariats 1.
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Below, we discuss our current knowledge of the DNA repair
pathways that are required for CSR and highlight the role
that AID phosphorylation plays in the generation of DSBs during
CSR.

Converting deaminated DNA into DSBs by BER and MMR
CSR requires BER and MMR pathways to generate DNA breaks
in recombining S regions. Defects in either BER or MMR
alone significantly impair CSR, whereas combined BER and
MMR deficiency (for example, UNG”-MSH27") completely
blocks CSR in vitro and in vivo’*. In the BER pathway
for CSR, AID-generated dU in S-region DNA is removed by
uracil DNA glycosylase (UNG) to generate an abasic site, which
is cleaved by the apurinic/apyrimidinic endonuclease (APE1) to
create a single-strand break (SSB) in the DNA”*~¢ (Figure 1).
Adjacent SSBs on complementary DNA strands constitute a
DSB, which is an obligate intermediate in CSR. Human and
mouse B cells with inactivating mutations in UNG exhibit
impaired DSB formation at S regions and a severe block in
CSR*". Impaired recruitment of UNG to recombining S regions
in Revl-deficient B cells reduces CSR in vitro and in vivo.
Likewise, mice heterozygous for an APEl null mutation and
CHI2F3 cells with a homozygous deletion of APEl have
significantly diminished CSR"'-"".

The AID-generated dU:dG mismatch can also be processed into
SSBs through MMR®. In this pathway, an MSH2-MSH6 het-
erodimer recognizes the dU:dG mismatch and recruits a com-
plex of MLH1/PMS2/EXO1 to repair the mismatch (Figure 1).
PMS2 (PMS1 homolog 2) generates a SSB distal to the mis-
match and subsequently exonuclease 1 (EXOI1) converts
the DNA breaks into ssDNA gaps by excising the segment
of the DNA containing the dU in a 5’-to-3” direction’. EXO1 exci-
sion of dU-containing sequences on opposite DNA strands thus
would generate DSBs that are required for CSR'®’. Consist-
ent with this proposed role for PMS2 and EXO1 in converting
deaminated S regions into DSBs, humans or mice with inactivat-
ing mutations in PMS2 or EXO1 have significant impairments
in CSR because of defects in DSB formation in S regions’’.
PMS2- and EXOl-mediated excision of dU:dG mismatched
DNA creates a DSB with a 5" overhang that can be resolved
into a blunt (or nearly blunt) DSB by DNA polymerases
(m and 06), which subsequently is used by proteins of the
C-NHEJ and A-EJ pathways to complete CSR™""7%.

Positive feedback loop to amplify DNA breaks through AID
phosphorylation

Despite the overwhelming genetic and biochemical data dem-
onstrating the role of BER and MMR in CSR, the mechanism
by which BER and MMR are subverted (or coopted) to promote
recombinogenic repair of S regions rather than canonical
repair remains uncharacterized. Hypothetically, AID may generate
a high density of dU:dG mismatches within the S regions that can-
not be repaired by canonical BER and MMR pathways. To maintain
genomic integrity, BER and MMR are shunted toward recombi-
nogenic repair and thus CSR. AID phosphorylation regulates
the balance of canonical and recombinogenic repair that is
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mediated by BER and MMR downstream of AID-dependent

62

deamination of S regions®.

Phosphorylation of AID at Ser38 (pS38-AID) is critical for
CSR as mice harboring a homozygous S38A knock-in mutation
(AIDS387/538%) have a significant reduction in CSR”%, S38 lies within
a consensus cAMP-dependent PKA phosphorylation site®*.
A hypomorphic PKA-RIo. knock-in mutant (R/aB) substantially
impairs CSR and blocks phosphorylation of AID at S regions®,
indicating that PKA is required for AID phosphorylation at S38.
Multiple isoforms of protein kinase C (PKC) can phosphorylate
AID at S38 in vitro*’; however, the regulation of PKC-mediated
AID phosphorylation in vivo remains unknown. Although the
mutant AID (S38A) protein retains wild-type levels of deaminase
activity in vitro and binding to S-region DNA in vivo,
AIDS345384 B cells cannot efficiently generate DSBs at recombining
S regions”. These data in conjunction with biochemical data
demonstrating the indirect interaction of pS38-AID with APE1
strongly suggest that pS38-AID is required for DSB formation®.
Endogenous wild-type AID in UNG”MSH27~ B cells
or catalytically inactive AID cannot be phosphorylated at S38
and consequently cannot bind to APEIl; however, treating
these cells with ionizing irradiation to induce DSBs restores
both AID phosphorylation and APE1 binding, suggesting that
the conversion of AID-dependent S-region DNA deamination
into single-strand breaks by BER (APEl) or MMR (PMS2/
EXO1) is required for AID phosphorylation. Thus, AID
phosphorylation at S38 is required for, and dependent on, DNA
breaks®. These findings suggest the existence of a positive feed-
back loop wherein a low density of DNA breaks leads to AID
phosphorylation, APE1 binding, and additional DNA breaks,
which in turn activate more AID phosphorylation (Figure 3).
Consistent with this model, ATM, a serine/threonine protein
kinase that activates DNA repair pathways in response to
DSBs, is required for wild-type levels of AID phosphoryla-
tion and APEI interaction®’. This model uncovers a previously
undescribed role for ATM as a molecular rheostat that couples
targeted DNA double-strand break formation with non-canonical,
recombinogenic DNA repair to promote Ig gene diversification
(Figure 3).

Resolution of DSBs

CSR requires joining DSBs in donor and acceptor S regions
that may be separated by over 100 kb; however, some DSBs
within an S region may be joined to another DSB within the
same S region, resulting in an internal deletion rather than
productive CSR***%_ In addition, DSBs in S regions can be
ligated to a DSB on another chromosome to generate a chromo-
somal translocation*. The molecular mechanisms that promote
the end joining of DSBs in distal S regions rather than canoni-
cal DNA repair, internal deletions, or chromosomal translo-
cations remain largely unknown. During CSR, the Igh locus
is re-organized into transcriptionally active loops, wherein
I-promoters and regulatory enhancers (Ep and Eo) are posi-
tioned close to one another to promote transcription, accessi-
bility, and synapsis of recombining S regions*. Productive
CSR is observed in B cells that have S regions replaced by
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Figure 3. A hypothetical positive feedback loop generates a high density of DNA double-strand breaks to promote wild-type CSR.
AlD-mediated deamination of S regions generates DNA breaks that induce PKA-dependent AID phosphorylation at serine-38 (pS38-AlD) and
subsequent binding of APE1 and RPA to pS38-AlD. Recruitment of APE1 to S regions generates additional DNA breaks, inducing additional
AID phosphorylation through an unidentified ATM-dependent mechanism of activating PKA. AID, activation-induced cytidine daminase;
APE1, apurinic/apyrimidinic endonuclease 1; ATM, ataxia telangiectasia mutated; CSR, class switch recombination; PKA, protein kinase A;

RPA, replication protein A.

I-Scel restriction sites®”, suggesting that the general cellular
DNA damage repair pathways, which function in the synap-
sis and long-range end-joining of S-region DSBs, are required
for the resolution of DSBs in S regions and productive CSR¥.
Following the introduction of DSBs in the S regions,
ATM and its substrate 53BP1 are thought to promote
S-S region synapsis and recombinogenic repair®“*”'. In the
absence of ATM, DSBs at IgH and chromosomal transloca-
tions involving IgH are increased and CSR is decreased” .
Recently, 53BP1 was shown to facilitate S-S synapsis, as Ea
interactions with Eu and the y1 promoter are reduced in 53BP1~~
B cells that are stimulated with LPS or LPS+IL.4%.

ATM-dependent and -independent DNA damage
responses during CSR

ATM plays a role not only in the stabilization of S-region DSBs
through the proposed synapsis and joining of S regions but
also in the generation of DSBs through the phosphorylation of
AID and the subsequent interaction of AID with APE1%"
Activation of ATM kinase activity requires binding of the
Mrel1/RAD50/Nbsl (MRN) complex to DSBs, which induces
ATM-dependent phosphorylation of proteins mediating cell
cycle checkpoints (for example, p53) and DNA repair, such

as H2AX, MDCI1, Nbsl, and 53BP1°***. The DNA damage
response initiated by ATM promotes the assembly of macro-
molecular foci flanking DSBs and provides docking sites for
DNA repair proteins to bind and stabilize DNA ends to promote
recombinogenic repair during CSR. Null mutations in ATM
substrates impair CSR and increase chromosomal abnor-
malities and translocations””. 53BP1 deficiency leads to the
most robust defect in CSR”’. Mutation or deletion of 53BP1
results in a 90% defect in CSR with a significant propor-
tion of chromosomal aberrations involving the Igh locus’”
as well as a high frequency of Sp internal deletions in cells
stimulated for CSR”. 53BP1 promotes the synapsis and long-
range joining of S regions® and protects DNA ends from end
resection to direct DNA repair toward NHEJ'*'"'. Consistent
with these roles for 53BP1, ATM-mediated phosphorylation of
53BP1 recruits Rap-1 interacting factor (Rifl) to sites of DNA
damage to protect DNA ends from resection and to promote
DNA repair'”. Accordingly, Rifl-deficient B cells are sig-
nificantly impaired in CSR'** (Figure 4). Additionally, 53BP1
can be recruited to S-region DSBs through ATM-independent
pathways. 53BP1 interacts with H4K20me2 at sites of DNA
damage. Depletion of the histone methyltransferase MMSET
in the CH12F3 B cell line decreases both H4K20me?2 levels and

Page 8 of 14



AID/MMR/BER

v

IgH

CU@_U

—1

BB oo >

AID

\

ATM-dependent
DSB response

MMSET H4-
K20 e2
SSBP
BRIT

53BP1/Rif1

mediated protection

A-EJ ~/ \ C-NHEJ

repair pathway

MDC1 RNF8

Positive
Feedback loop

RNF168

F1000Research 2018, 7(F1000 Faculty Rev):458 Last updated: 13 APR 2018

Collateral
damage

Non-IgH

NHEJ-mediated

DSB repair HR repair

XRCC2 )

Genomic
instability

repair pathway

(7]
Parp1, Mrei1, CtIP N = :%
= i §Artem|sal g —
zZ 3 D X
OX XLF © g
DNA 'yRcc4
LiglV
Class
Switch
Recombination

Figure 4. Resolution of DSBs generated by MMR or BER following AID-dependent deamination of S regions is accomplished by
multiple pathways. ATM directly or indirectly phosphorylates proteins (for example, H2AX, MDC1, 53BP1, and AID) and stabilizes protein
complexes that aid in the formation and resolution of DSBs during class switch recombination. A-EJ, alternative end-joining; AID, activation-
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53BP1 accumulation at S regions, thereby impairing CSR'**!*
Furthermore, the recruitment of 53BP1 to DSBs has been
shown to require the RNF8- and RNF168-dependent histone
ubiquitination pathway. RNF8~~ and RNFI1687~ B cells have
decreased 53BP1 at S regions and a concomitant reduction in
CSR!%-1%_ Because CSR is more dramatically reduced in
53BP1-deficient B cells as compared to ATM-, H2AX-, MDC1-,
or RNF8-deficient B cells, 53BP1 also has a function during
CSR that is independent of the ATM/YH2AX/MDCI1/RNF8

0,91,96,97,105-110

DNA damage response’ Data showing reduced
Eo interactions with Ep and the yl promoter in LPS- or
LPS+IL4-stimulated 53BPI7~ B cells demonstrate a role
for 53BP1 in S-S synapsis during CSR®.

More recently, BRCT-repeat inhibitor of hTert expres-
sion (BRIT1) has been implicated as a novel effector of the
DNA repair phase of CSR''". BRIT1 is a ubiquitously expressed
protein that is rapidly recruited to DSBs after ionizing radiation
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through its C-terminal BRCT repeat domain, which is neces-
sary for its interaction with phosphorylated H2AX (YH2AX)''>.
As predicted, successful CSR requires BRIT1 interaction with
YH2AX at recombining S regions'''. In addition, the BRITI-
YH2AX pathway is further modulated by the interaction of
YH2AX with MDCI in CSR. Although BRIT1 or MDCI1 defi-
ciency alone leads to a moderate reduction in CSR, loss of both
BRIT1 and MDCI1 together markedly impairs CSR''. Thus,
BRIT1 likely serves as a scaffold to recruit factors that resolve
DSBs at S regions downstream of ATM (Figure 4).

End-joining

Homologous recombination (HR) and NHEJ are the two major
pathways for DSB repair in mammalian cells'”. HR is restricted
to the S/G, phase of the cell cycle and requires large stretches
of homology, whereas NHEJ is active throughout the cell cycle
and requires little or no homology. Since CSR-associated
DSBs are observed primarily during the G, phase of the cell
cycle and do not have extended stretches of homology, NHEJ
is generally considered the major pathway in the joining
of DSBs during CSR*!'“, Consistent with this, muta-
tions in the canonical NHEJ components Ku70/Ku80 het-
erodimer (Ku), XRCC4, and DNA ligase IV (Lig4) severely
compromise CSR, while mutations in non-canonical NHEJ
proteins such as DNA-dependent protein kinase catalytic
subunit (DNA-PKcs), Artemis, and XRCC4-like factor (XLF or
Cernunnos) increase chromosomal translocations even though
CSR is not severely impaired”.

B cells lacking core NHEJ components are capable of resid-
ual CSR, mediated by microhomology-biased A-EJ pathway
(Figure 4). Although A-EJ is a poorly defined DNA repair
mechanism guided by microhomology between two DSBs, fac-
tors from other DNA repair pathways, including XRCCl1, Ligase
III, Mrell, Parpl, and CtIP, have been shown to be necessary
for A-EJ during CSR''*'"7. More recently, Rad52, an HR repair
factor, was shown to facilitate microhomology-mediated
A-EJ that favors intra—S region recombination and competes
with Ku to mediate inter—S region DSB recombination'".
Whether A-EJ is physiologically necessary in order to complete
a productive class switch reaction is extensively discussed in 95.

While C-NHEJ and A-EJ are the primary end-joining path-

ways ligating DSBs within IgH during CSR, HR has been
proposed to repair AlD-induced off-target DSBs. Deficiency of
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the Rad51 paralog XRCC2, a key component of HR-mediated
repair, significantly enhances AID-dependent genome-wide
DNA damage'”'”’. Notably, AID-expressing human chronic
lymphocytic leukemia cells are hypersensitive to HR inhibitors
and this is possibly due to AID-dependent synthetic cytotoxic-
ity from unrepaired DSBs at non-Ig loci'*'. Thus, HR is essen-
tial for repairing AID-generated DSBs and dysregulated AID
activity may provide a novel therapeutic approach to treat
B cell malignancies.

Concluding remarks

The discovery of AID as a master regulator of CSR and SHM
revolutionized our understanding of Ig gene diversification
and the mechanisms regulating genome integrity. The physi-
ological targets of AID during CSR and SHM are almost exclu-
sively restricted to S and V regions of the Ig loci, but AID can
deaminate in vitro any transcribed substrate and damage in vivo
many non-Ig genes, threatening genomic stability in B cells.
However, B cells have evolved mechanisms that promote
AlID-dependent mutagenic and recombinogenic DNA repair
within Ig loci while faithfully repairing collateral damage
at non-Ig loci using canonical, conserved DNA repair
pathways. Unlike V(D)J recombination, CSR has coopted the
general DNA damage response to simultaneously generate
and resolve DSBs within S regions. BER and MMR are essen-
tial, complementary pathways for CSR. ATM functions as a
generator of DSBs in S regions, an essential signaling mol-
ecule to mobilize DNA repair proteins, and a scaffold for these
proteins to resolve DSBs. As additional CSR factors, such
as RNF8/168 and BRITI, are identified, we will further
understand the genetic and molecular mechanisms regulating
the formation and repair of DSBs during CSR.
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