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Ischemia-reperfusion (I/R) injury is a well-known phenomenon that involves different pathophysiological processes. Connection in
diverse systems of survival brings about cellular dysfunction or even apoptosis. One of the survival systems of the cells, to the assault
caused by ischemia, is the activation of the renin-angiotensin-aldosterone system (also known as an axis), which is focused on
activating diverse signaling pathways to favor adaptation to the decrease in metabolic supports caused by the hypoxia. In trying
to adapt to the I/R event, great changes occur that unchain cellular dysfunction with the capacity to lead to cell death, which
translates into a poor prognosis due to the progression of dysfunction of the cellular activity. The search for the understanding
of the diverse therapeutic alternatives in molecular coupling could favor the prognosis and evolution of patients who are subject
to the I/R process.

1. Introduction

The ischemia-reperfusion injury (I/R) is a phenomenon
that occurs after the restriction of blood supply to the tis-
sues or organs [1]. Abrupt blockage of the blood supply
produces an imbalance in the oxygen supply and metabolic
nutrients necessary for cell survival at the affected site,
which produces a state of hypoxia and blockage of the
metabolic processes and the production of energy [2].
However, the reestablishment of blood supply, the increase
in oxygen, and the restoration of the metabolic substrates
and energy brings about exacerbation of injury in the
affected tissue and unchains an exaggerated immunological
response that could perpetuate dysfunction of the affected
tissue or organ [3].

The renin-angiotensin-aldosterone system (RAAS) is
activated locally in the injured cells by the occurrence of
I/R which plays an important role in the fate of the injured
tissue, as characterized by an increase in stress that the

tissue suffers during the assault, and changes caused by
I/R lead to changes in the processes of adaptation in the
cells subjected to hypoxia [4]. The processes of adaptation
involve transformation in the phenotype, function, and
structure of the cells involved in the vicinity of the injury
[5]. The changes that the cells of the affected tissue undergo
will, in the end, cause the deposit of fibrosis and result in
another group of cells that are characterized by hypertrophy
and dysfunction [6].

The standardization and administration of therapies
focused on this system in the late phase of the I/R injury
could prevent harmful changes to the affected tissues or
organs, improving the prognosis, evolution, and sequelae of
the injury process. In this review, we will describe the under-
standing of the possible mechanisms that unchain activation
of the system in I/R injury and the possible therapeutic tar-
gets to diminish or prevent sequelae from I/R injury due to
the pathological activation of oxidative stress, mitochondrial
dysfunction, and autophagy.

Hindawi
International Journal of Endocrinology
Volume 2018, Article ID 3614303, 18 pages
https://doi.org/10.1155/2018/3614303

http://orcid.org/0000-0001-8087-3597
http://orcid.org/0000-0002-3635-6135
https://doi.org/10.1155/2018/3614303


2. Components of the I/R Injury Connected to
the Activation of the RAAS

The I/R injury is an event characterized by multiple physio-
logical components, both early and late [7]. The RAAS plays
an important role in the dysfunction of the affected tissues in
the late phase of the I/R process. Among the processes
involved in I/R injury, some are connected and are perpetu-
ated by the pathological activation of the RAAS, like the
formation of reactive oxygen species (ROS) and the reactive
nitrogen species (RNS), the disruption of redox signaling,
the increase in the concentration of cations in the cytosol,
mitochondrial lesion, transcriptional reprogramming, apo-
ptosis, and autophagy [7].

2.1. Renin. Renin is an aspartyl protease glycoprotein enzyme
that catalyses the restrictive excision of the angiotensinogen
(AGT) to angiotensin I (Ang I), an essential component
within the processes of the system’s activation [8]. The renin
gene is found on the chromosome 1q32, contains 9 exons and
8 introns, and encodes different isoforms of the protein by
the activation of different promoters and splicing alternatives
that are translated into preprorenin [9]. Progenitor cells with
the renin secretor phenotype have been described in multiple
tissues (cardiac, liver, kidney, nervous, skin, etc.) with the
ability to produce renin in case of assault in homeostasis, like
changes in perfusion, osmolar changes, inflammation, oxida-
tive stress, and I/R injury. The alterations stimulate cell pro-
gramming and bring about differentiation and the activation
of cells with the renin secretor phenotype [10] (Figure 1).

There are three classic and principal mechanisms of con-
trol in the liberation of renin: (a) the activation of glomerular
baroreceptors (changes in the diameter of arterioles), (b) the
activation of glomerular chemoreceptors or macula densa
(changes in the concentration of Na+ and Cl−), and (c) the
activation of β1-adrenergic receptors (autonomous system
and circulating catecholamines) [11]. The acute production
of renin in the early phase of I/R injury is realized by the pre-
existing cells with the renin secretor phenotype and through
the quantity of renin stored in the specialized cells located at
the site of the injury. In the late phase, plasma concentration
is increased by stimulation, transformation, and migration of
the groups of cells with the renin phenotype. The number of
renin-producing cells is increased, augmenting the renin
concentration locally and systemically [5]. Differentiation of
the phenotype is mediated primarily by changes in the cellu-
lar microenvironment, induced by growth factors like the
transforming growth factor beta (TGFβ) and the epidermal
growth factor (EGF), by the activation of survival proteins,
hypoxia, stress signals, or unspecific phosphorylation of the
membrane receptors like the Ang, tyrosine kinase, and β-
adrenergic [5]. This kind of transformation of the phenotype
is known as epithelial-mesenchymal transition, which offers
the differentiated cell the capacity to express genes that in
normal physiological conditions are not present, as well as
changing its structure and cellular architecture [12]. The pro-
cess of renin secretion involves, in every case, the activation
of adenylate cyclase and the production of cyclic adenosine
monophosphate (cAMP) [13]. The renin gene contains a

receptor site for cAMP that is crucial for the expression of
renin. The production of cAMP is increased by the activation
of the AT1R receptors, β1-adrenergic receptors, adenosine,
and prostaglandins and the presence of low concentrations
of Ca++. However, the gene also has other promoters for
expression as an element of response to hormones, the
nuclear factor kappa B (NF-κB) and signal transducer and
activator of transcription (STAT), that also stimulate renin
expression, which will be expressed more avidly during the
initial and late phase of the I/R injury [11].

2.2. Angiotensinogen. The AGT is a glycoprotein and serine
protease inhibitor that belongs to the superfamily of the
inhibitory serpins. The AGT gene is located on the chromo-
some 1q42-43 and contains 5 exons and 4 introns with more
than 12 kb. The AGT has a receptor site for cAMP and is sen-
sitive to activation by the steroid receptor and elements of
response to cellular stress [14]. The AGT contains a disulfide
bridge between the cysteine 18 and cysteine 138 that gives it a
conformational change which permits the access of renin for
its maturation [15], and when this bond is oxidized, the affin-
ity of renin for the AGT is augmented, producing an impor-
tant increase in the concentration of Ang I and Ang II. The
AGT in plasma suffers from the processes of glycosylation
and polymerization, which confer it a greater affinity for
renin [16]. Increments of Ang II are highly influenced by
the production of AGT in its polymerized or oxidized state
[17] (Figure 2).

Ang I interacts with two enzymes that are similar to each
other, the angiotensin-converting enzyme (ACE) and the
angiotensin-converting enzyme type 2 (ACE-2) [18, 19].
The ACE produces an octapeptide called Ang II, a larger
angiopeptide whose biological function is mediated by the
receptors AT1R and AT2R that are involved in the signaling
pathways of survival, cell division, differentiation, the vaso-
pressor effect, hypertrophy, and the modulation of oxidative
stress in the I/R process [20, 21]. The ACE-2 produces the
nonapeptide called angiotensin 1-9 (Ang 1-9) that has been
attributed to antihypertrophic qualities, modulating the sig-
naling pathways of the norepinephrine and IGF-1, probably
activated by the bradykinin that potentiates the production
of nitric oxide (NO) and arachidonic acid. In addition, it acts
as a competitive substrate with Ang I by the ACE, diminish-
ing the production of Ang II on the increasing production of
Ang 1-7 [22]. Ang II, when it interacts with the carboxypep-
tidase B (Carb-B) or the ACE-2, produces Ang 1-7 (Ang 1-7)
with the capacity to be antiarrhythmic, a vasodilator of the
coronary arteries incrementing the concentration of NO, an
antifibrotic to attenuate hypertension, among other func-
tions, through the stimulation of the AT2R receptor, the
MAS, and the Ang type 7 receptor (AT7R). Even, the RAAS
system links the mitochondrial pathways in the treatment
of I/R-induced injury in cardiac cells because activation of
the Ang 1-7/MAS receptor could be a possible adjunct to
ischemic preconditioning during cardiac injury induced by
I/R [23–25].

2.2.1. Mechanisms of Angiotensinogen Regulation in I/R. The
secretion of Ang is regulated locally in the affected tissues on
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being transformed in the plasma by circulating renin and the
production of Ang I in the tissues and later of Ang II [26, 27].
More than 90% of Ang I and 75% of Ang II are produced
locally in the injured tissues during the I/R process. Multiple
promoters among which regulate the expression of the Ang
gene: mineralocorticoids, elements of response to cAMP, ste-
roid hormones, and elements responsible for the acute phase,
among others, that are activated during the stages of stress in
the cell that are unchained during the I/R process [28, 29].
Meanwhile, the rest of the metabolites are regulated by
the activity and concentration of the enzymes responsible

for cleavage depending on the state of stress the cell is
experiencing, promoting the state of differentiation, sur-
vival, transformation, or apoptosis [30, 31].

2.3. Aldosterone. Aldosterone is a steroid hormone and a
mineralocorticoid with the most influence in mammals on
the control of fluids and electrolytes [32, 33]. The physiolog-
ical production of aldosterone occurs in the glomerulosa zone
of the suprarenal gland; however, it can be produced in other
tissues like those of the heart, kidney, blood vessels, and adi-
pocytes [34–36], depending on the state of stress in the cell,
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where pathologically steroid production is increased. The
production of aldosterone involves the activity of multiple
enzymes and cholesterol transporters [37, 38] (Figure 3).
The cholesterol by endosomes, lysosomes, or peroxisomes
is the cholesterol transports to the internal mitochondrial
membrane. The main cholesterol transporter is constituted
by a family of proteins called steroidogenic acute regulators
(StAR), proteins with a high affinity for binding with choles-
terol that have capabilities to transport to the mitochondrial
membrane, and key proteins in the initiation of steroidogen-
esis that are phosphorylated during the process of I/R injury
[39, 40]. Among the enzymes involved in the liberation,
transport, and production of steroids during the I/R phe-
nomenon is the hormone-sensitive lipase that liberates cho-
lesterol from the droplets stored in the cytoplasm to be
transported to the mitochondria [41, 42]. The family of cyto-
chromes P450 [43, 44] that are activated by I/R injury, to
which the CYP11A1, the 21-hydroxylase (CYP21) and the
aldosterone synthase (CYP11B2), the CYP11A1, and the
CYP11B2 belong, is found in the internal mitochondrial
membrane, while the CYP21 is found in the smooth endo-
plasmic reticulum (ER). The transporters necessary for the
steroidogenesis are active and are highly regulated by the
activity of the AT1R and the AT2R that favor the phosphory-
lation of the PKC [26]. The transporters have the ability to
activate StAR and the enzymes of the cytochrome P450 and
the increase in expression of the sterol response element-
binding proteins (SREBP) [45]. They are sensitive to esters
of cholesterol oxidized during the acute phase of I/R injury,
and that maintains the active production of steroids through
the activity of AGT metabolites in the late phase of the I/R
injury [46, 47]. All of these changes in the expression of
enzymes in the cells with I/R injury are known as transcrip-
tional reprogramming [48]. Transcriptional reprogramming
can be mediated by the ROS and RNS that, together with
the metabolic changes and the signaling pathways mediated
by the toll-like receptors (TLRs), activate the signaling path-
ways of the NF-κB and the mitogen-activated protein kinase
(MAPK) that the cell suffers during the initial phase of injury,
which leads to the unspecific expression of genes that condi-
tion the phenotypical change of the cell in the production of
enzymes and the proteins mediated by the TGFβ and signal-
ing pathways of the SMAD proteins [49, 50] (Figure 3).

3. Activation of the Receptors in RAAS by I/R

Injury from activation of the RAAS system in the acute phase
is characterized by a mechanism of adaptation to the assault,
and as the event of I/R is established, the genes involved are
overexpressed in maintaining the adaptation, unchaining
the substitution of injured tissue with fibrous tissue, changes
in the function or phenotype of the cell (transcriptional
reprogramming), hypertrophy, cell division, or apoptosis
[14, 51]. These changes produce lesions that in the long term
diminish the functionality of the affected organs, perpetuat-
ing the injury and the chronic activation of the system. The
processes are mediated by the activation of receptors belong-
ing to the RAAS among which are the family of Ang recep-
tors (AT1R, AT2R, AT4R, and AT7R), the prorenin receptor,

the MAS receptor (MASR), and the MET (METR) receptor;
the last of which has an activity mediated by the insulin-
regulated aminopeptidase receptor (IRAP) [52, 53]. The
expression of these receptors is located in multiple cell
groups and in the cellular membrane; some of which are
found in the cytoplasm in a hydrosoluble form, and others
are anchored in the membranes of organelles like in the
mitochondria [30, 54]. The family of the ATR, MASR, and
METR has the structure typical of the type 7 transmembrane
receptors (7TMR) with the extreme N-terminal and three
extracellular loops (ECL) and with the extreme C-terminal,
three intracellular loops (ICL), and intracellular amphipathic
helix VIII, where the conformation of the helices II and III is
identical in these receptors. The binding sites to the receptor
are the helices II and III of ECL 1, the helices IV and V of
ECL 2, and the helices VI and VII of ECL 3 [55]. C-
terminal helix VIII shows an effector domain regulated by
Ca++ and mediated by calmodulin that is necessary for the
coupling and activation of the G protein [21]. Activation of
the receptor and the uncoupling of the G protein are medi-
ated by the “stretch-induced” process (mechanical stress)
by a conformational change in the structure of the TM7R.
It can also be activated by allosteric binding mediated by
sodium, lipids, and cholesterol, which demonstrates that
the receptor, physiologically, can have an active or inactive
state without the presence of a specific agonist [46, 56]. These
receptors coupled to G proteins have dimerization capabili-
ties in up to 80%. They can present as homodimers (AT1R-
AT1R) or as heterodimers (AT1R-B2 bradykinin, AT1R-β2
adrenergic, AT1R-D5 dopamine, AT1R-Mas, AT1R-AT2R,
and AT2R-B2) located in the cellular membrane, physiologi-
cally, or in states of stress of the same cell, modulating multi-
ple signaling pathways through direct activation of the
receptor or by indirect activation or inactivation of the paired
receptor [57] (Figure 4).

Specifically to the AT1R, primarily the Gq/11 (Ca
++ mobi-

lizers) proteins can couple secondarily to the proteins Gi/o,
G12/13, and Gs or the class of Rho, Ras, and Rac [58]. The sig-
naling pathway of the AT1R (Figure 5) is also found coupled
to other signaling pathways mediated by the receptors of the
tyrosine kinase type (RTK), mitogen-activated protein kinase
(MAPK), and Janus kinase-signal transducers and activators
of transcription (JAK-STAT) [58]. The activation of AT1R
during I/R injury produces the modulation of ion channels
through the activity of the beta-gamma complex of the G
protein (Gβγ) with the production of ROS by activation of
the NADPH oxidase enzyme complex, cellular differentia-
tion through activation of the signaling of MAPK, PI3K,
and JAK-STAT, and fibrosis through activation of the RTK
that promotes differentiation, activation, and proliferation
of fibroblasts that will suffer activation of the metalloprotein-
ases coupled with the membrane (ADAM and MMP) [58].
Hypertrophy and a decrease in apoptosis are produced by
the activation of the Ras, Raf, MEK1/MEK2, extracellular
signal-regulated kinase type 1 and type 2 (ERK1/ERK2),
and inflammation through the activation of the NF-κB factor
and STAT [59] (Figure 5).

The AT2R is 34% similar to the AT1R in its amino acid
sequence, and the structure is typical of the G protein-
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coupled receptor (GPCR). However, studies where they have
achieved designs of the tridimensional structure (from its
crystallized form) demonstrate that the receptor has an intra-
cellular section in the H8 domain that, depending on its posi-
tion, favors or impedes the coupling of what could be the G
protein or the bond with β-arrestin for it to be internalized
[26]. It has been described that the AT2R receptor can dimer-
ize with the bradykinin receptor (B2R) in the cell membrane
and with the mtNOS in the mitochondrial matrix, which, on
activation, increase the production of NO in the two micro-
environments [60, 61]. While the presence of NO in the
cytoplasm increases the production of cGMP in the mito-
chondria, the activation of mtNOS and the increase in NO
bring about blockage of complex IV of the mitochondrial
respiratory chain and an increase in the RNS like the perox-
ynitrite (ONOO−) [62, 63]. This activity during the early
phase of I/R injury will activate the mtNOS to produce
changes in the redox signaling that could increase the injury.
However, the late phase of injury produces vasodilation and
activation of the cGMP signaling involved in the activation
of apoptosis and the decrease in vascular proliferation, inhi-
bition of cellular proliferation of the injured tissue, fibrosis,
hypertrophy, and regeneration [64, 65]. The dimerization
of the AT2R-AT1R produces direct inhibition of the AT1R
receptor. Another mechanism of action described for the
AT2R is the activation of phosphatases (protein phosphatase
2a, MAP kinase phosphatase, and the SH2 domain-
containing tyrosine phosphatase-1) that dephosphorylate
the signaling pathways activated by the AT1R and are

activated by the RTKs, MAPK, JAK/SATA, and ERK1/
ERK2, which bring the inhibition of cellular proliferation
and differentiation, activation of fibroblasts, and activation
of the proapoptotic pathways [50]. The activation of AT2R
also reduces inflammation by inactivation of the signaling
pathway mediated by RTKs that activate through phos-
phorylation of the inhibitor IKκB of the NF-κB, decreasing
the concentrations of IL-6 and other proinflammatory
cytokines [66].

The mineralocorticoid receptor (MR) is a nuclear recep-
tor that contains 984 amino acids with three functional
domains, an extreme N-terminal activation function domain
(AF-1), a middle DNA-binding domain (DBD), and a C-
terminal ligand-binding domain (LBD) [67]. Activation of
the AF-1 and DBD is controlled by hormone binding in the
LBD that contains an activation function-2 domain (AF-2)
which can be modulated by the activity of hormones or by
heat shock proteins (HSP), nuclear translocation, and the
recruitment of transcriptional cofactors [68]. The MR is
found in the cell cytoplasm and accomplishes functions as a
monomer or dimer: it homodimerizes and this gives it the
capacity to translocate to the nucleus in order to have contact
with the elements of response to the mineralocorticoids
(Figure 6). The MR have two levels of action: one in the cyto-
plasm and the other in the nucleus [69, 70], interacting with
multiple signaling pathways with the TGFβ1, the monocyte
chemoattractant protein 1 (MCP1), the connective tissue
growth factor (CTGF), and the plasminogen activator inhib-
itor type 1 (PAI-1). The MR has the ability to activate the

�훽

�훾

GDP

�훽

�훾

GTP

�훽

�훾

GTP

�훽

�훾

PLC

GTP

Pi

PKC

DAG

PI3

�훽

�훾

PI3

PI3
PI3 PI3

PI3

PI3 PI3 PI3 PI3 PI3

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2 Ca+2
Ca+2

Ca+2 Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

AT1R activation and signaling

AngII AngIII

PI3

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

Ca+2

NADPH
Oxidase

NADPH
Oxidase

ROS RNS
ROS

ROS
RNS

RNSRNSROS

NADPH
Oxidase

Oxidative stress
protein misfolding

RTK

PI3K
AKT
Ras
Raf

MEK1/MEK2
ERK1/ERK2

ROS

ROS

ROS

mtNOS

�훼�훼�훼

�훼

�훼

SSS

S

S

Figure 5: AT1R signaling. The activity of the receptor will stimulate oxidative stress and activation of other signaling pathways.

6 International Journal of Endocrinology



NADPH oxidase anchored in the cell membrane, increasing
the formation of oxidative stress that leads to the activation
of the signaling pathways and the accumulation of extracellu-
lar matrix that produces hypertrophy, fibrosis, and alter-
ations in the stability and activity of ion channels [69, 70].
It has been observed that the overactivation of the mineralo-
corticoids produces alterations in the NO metabolism,
decreasing the production of the tetrahydrobiopterin and
uncoupling of the NOS [69, 70].

The prorenin receptor (Figure 7) has 350 amino acidswith
only one transmembrane domain, very similar to that of the

receptors of the growth factors. In fact, there are no known
proteins homologous to the receptor. The receptor has the
affinity for renin and prorenin [11] and does not degrade or
internalize, is always located on the membrane surface, and
has the ability to interact with Ang I, and this process
activates the receptor [12]. The activity of the PRR
unchains the activity of the signaling pathways of the
MAPK and ERK1/ERK2, and the activation of the signaling
pathways unchains the overexpression of the TGFβ recep-
tor, which brings about fibrosis and cellular proliferation.
During the phenomenon of I/R, the receptors’ expression
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and activity are increased, which signifies their critical role
in perpetuation of the I/R injury in the long term [71].

4. Oxidative Stress and RAAS in I/R

Oxidative stress is considered the state of disequilibrium
between antioxidant defenses and the excessive production
of ROS, among which are the superoxide anion (O2−), the
hydrogen peroxide (H2O2), and the hydroxyl radical (OH·),
whose fundamental characteristic is based on exceeding the
antioxidant defenses. There are several enzyme systems that
contribute to the formation of ROS, including the NADPH
oxidase, the xanthine oxidase, and the leakage of mitochon-
drial electrons of the mitochondrial electron transport chain
(METC). The ROS are normally generated as a natural by-
product of oxygen metabolism and play an important role
in cell signaling. However, when ROS levels augment dra-
matically under pathologic conditions such as cardiac insuf-
ficiency, I/R, and aging, oxidative stress is produced [29]. The
NADPH oxidase generates the production of ROS and
unchains additional ROS by the mitochondria [55]. The
mitochondria are the primary source of ROS production in
the cells. Complex I and complex III of the METC are impli-
cated in the generation of oxygen to the O2− anion. Ang II
facilitates the uncoupling of the NOS through the increase

in the production of the O2− anion, and the uncoupled
NOS additionally increases levels of the O2− anion in the vas-
culature and accelerates endothelial dysfunction. Hence, Ang
II is considered a potent activator of the NADPH oxidase.
The ROS derived from the NADPH oxidase promote the
generation of ROS from the mitochondria [72]. The clinical
relevance of Ang II induced by the ROS is unclear, and evi-
dence suggests that inhibition of Ang II decreases the risk of
cardiovascular regeneration and inflammation in the I/R
process. Various modulation pathways of direct action that
Ang II exerts on the ROS have been identified. The link
between the oxidative stress and clinical cardiac disturbances
is potentially of exceptional importance in the development
of diverse therapeutic strategies directed toward the cascades
of transduction of the ROS by Ang II, because diverse stud-
ies support the critical role of the system in the pathophysi-
ology of damage caused by myocardial ischemia from
reperfusion [73]. Therefore, it is considered that the admin-
istration of AT1 receptor blockers is efficacious in reducing
the reperfusion damage caused by myocardial ischemia.
Losartan is an AT1 receptor blocker that was initially intro-
duced for its hypotensive action, although other studies have
demonstrated that, apart from its hemodynamic effects, it
could have cardioprotective influences directly affecting the
myocardiocytes. Losartan is capable of augmenting the
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ventricular fibrillation threshold and decreasing the size of
an infarct and of augmenting the number of premature car-
diac beats, episodes of ventricular tachycardia, and the mor-
tality rate [74]. Nonetheless, losartan reduces the production
of ROS on inhibiting the NADPH oxidase enzyme and
increasing the production of NO in the endothelial cells on
activating the NOS [75].

The sirtuins (SIRT1–SIRT7) are a class of proteins that
are characterized by the deacetylation of the histones and a
wide range of nonhistone proteins such as enzymes and
transcription factors. The sirtuins undertake a fundamental
role in the regulation of biological cell activities like metabo-
lism, cell death, cell growth, and the cellular responses to
oxidative stress [76]. Sirtuin 3 is a mitochondrial sirtuin that
is located completely within the cellular nucleus [77, 78].
Because the mitochondria are entirely involved in the pro-
duction of energy and metabolism of the heart and because
mitochondrial dysfunction is an important factor in the dete-
rioration of ventricular contractions [79], sirtuin 3 regulates
themitochondrial function through deacetylation, themodu-
lation of mitochondrial proteins involved in metabolism,
mitochondrial dynamics, and the responses to oxidative
stress [80]. Sirtuin 3 protects the heart against oxidative stress
from the activation of the family of transcription factors O3a
(FoxO3a) that augment the transcription of the gene codifiers
for antioxidants like the manganese superoxide dismutase
(MnSOD) and the catalase [58, 81]. Vitamin D deficiency
is associated directly or indirectly with many traditional car-
diovascular risk factors like diabetes mellitus, hypertension,
and dyslipidemia [82]. The levels and the effect of vitamin
D are fundamental in the modulation of the RAAS system,
cardiac contractility, and the proliferation of smooth muscle
that leads to hypertrophy of the left ventricle [83]. The
greatest source of vitamin D is exposure to sunlight and
the endogenous production in the skin, although it can also
be obtained, to a lesser degree, from dietary sources. Vita-
min D deficiency is considered a problem in different popu-
lations, from young to old, and is frequent in patients with
cardiac failure [84].

5. Mitochondrial Function and Activity of the
RAAS in I/R

The mitochondria are energy-producing organelles that
carry out diverse, key cellular functions including the regula-
tion of the cytosolic Ca++ levels [85] and the oxygen gradient
of the tissues [63, 86], the signaling of H2O2, and the modu-
lation of apoptosis [87] (Figure 8). The mitochondria play a
crucial role in the cellular responses to a great variety of stim-
uli. They receive, integrate, and transmit signals. Mitochon-
drial damage can lead to functional alterations of the tissues
[88]. The mitochondria utilize >90% of the cellular oxygen,
while they transform most of it into water through complex
IV of the METC. Approximately 1-2% of the oxygen con-
sumed [89] receives electrons directly from complexes I
and III to form the O2− anion [90]. Other production sources
of mitochondrial ROS (mtROS) include electrons derived
from substrates of complex II that can be transported to oxy-
gen and complex I [69], matrix enzymes [70], the external

membrane [91], and the uncoupled mitochondrial NOS
(mtNOS) [92]. The O2− anion is liberated from the mito-
chondrial matrix and from the mitochondrial intermem-
brane space where it is converted into H2O2 by the MnSOD
and the copper-zinc superoxide dismutase (CuZnSOD)
[93]. The H2O2 can be detoxified to water through the action
of the mitochondrial enzyme glutathione peroxidase (GPx)
or to water and oxygen by the catalase by the cardiac mito-
chondria. These enzymes belong to a complex, multilevel sys-
tem of mitochondrial defense, composed of nonenzymatic
antioxidant enzymes that participate in the detoxification of
ROS [94]. The mitochondria generate other oxidants derived
from the NO on producing RNS, which include the ONOO−

anion that is formed when the O2− and the NO react. Thus,
the mitochondria are relevant formulators of ROS and
RNS, which leads to mitochondrial dysfunction with alter-
ation to the generation of energy (ATP) on augmenting the
generation of ROS [95].

Ang II stimulates mitochondrial dysfunction in the car-
diac smooth muscle, kidney, and vascular cells [96]. Inhibi-
tion of Ang II decreases the liberation of mitochondrial
ROS, increases the efficiency of the METC, protects mito-
chondrial structures, and favors the production of ATP.
The ACE inhibitors and the AT1 receptor blockers reduce
mitochondrial dysfunction related to age, attenuate the renal
mitochondrial dysfunction induced by hypertension, and
protect against cardiac mitochondrial dysfunction from
acute ischemia [97]. The mitochondria that malfunction
seem to be implicated in the pathogenesis of diverse illnesses.
One study showed that the inhibition of the ACE (enalapril)
in aged rats impeded the reduction of the number of mito-
chondria [98]. In studies performed with Ang II marked with
1–125, Ang II was detected in the heart, brain, and smooth
muscle mitochondria and nuclei [99]. In the adrenal glomer-
ulosa zone in rats, the renin, AGT, and ACE were detected in
the intramitochondrial dense bodies [100]. The immunore-
action of Ang II was observed in the mitochondria of the
rat cerebral cortex. Consequently, it is possible to speculate
that Ang II can have direct actions on the mitochondria inde-
pendently of the signaling of the AT1 receptor [101]. The
renal and cardiac benefits of the ACE inhibitors and AT1
receptor blockers of Ang II in patients with arterial hyperten-
sion, cardiovascular illness, and diabetes mellitus seem to be
partly [102] independent of their effects in reducing arterial
pressure [27]. That suggests that the ACE inhibitors and
AT1 receptor blockers of Ang II can exert direct effects on
the tissues in addition to the hemodynamic effects. In this
sense, the RAAS inhibitors act effectively against oxidative
stress and mitochondrial dysfunction [103]. There are inter-
national recommendations for the use of Ang II inhibitors as
first-line drugs for kidney protection in diabetics, even in the
absence of hypertension [104].

5.1. Endoplasmic Reticulum Stress in I/R. The ER is an
important intracellular organelle responsible for the synthe-
sis, folding, and trafficking of a wide variety of proteins,
hormones, enzymes, receptors, ion channels, and trans-
porters. In normal situations, there is homeostatic equilib-
rium between the inflow of displayed peptides and the
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folding capacity in the ER. However, when unfolded or mis-
folded proteins accumulate, ER stress (ERS) occurs and a
specific adaptive response of the cells is triggered to prevent
the abnormal accumulation of unfolding proteins. The ERS
activates intracellular signal transduction pathways that
together are known as the unfolded protein response (UPR)

[105]. The UPR is characterized by three phases: (a) an adap-
tive phase, (b) an alarm phase, and (c) an activation phase of
cell death. The adaptation phase is characterized by protea-
some degradation of proteins and the subsequent global inhi-
bition of protein transduction leading to the increase in the
group of chaperones and protein enzymes such as the X-
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box 1-binding protein (XBP-1) and the activation of tran-
scription factor 4 (ATF4) [106]. This process limits the ERS
by reducing the load of misfolded proteins. The alarm phase
consists of the induction of an inflammatory process by acti-
vating the N-terminal kinase pathways of NF-κB and c-
Jun. If these mechanisms are insufficient to alleviate the mis-
folded protein load, the ERS activates the immune response
against cellular stress and promotes cell death by apoptosis
or necrosis [107]. The injury by I/R of transplanted grafts is
considered one of the crucial problems that complicate post-
transplant care of patients by influencing short- and long-
term results. In all organ transplants and in other situations
in which I/R occurs, cold preservation and hot reperfusion
are temporarily produced; therefore, cell damage occurs in
the organ that worsens after the restoration of the oxygen
supply [108]. Because of the I/R, the ultrastructural examina-
tion of the cells subject to the I/R process reveals abundant
amounts of rough and uniform ER. Therefore, it can be con-
sidered that the UPR/ERS response contributes to the pre-
vention of the mediation of pathological changes. In this
sense, there is increasing evidence that disturbances of ER
are new subcellular effectors involved in ischemia [109].
The insult by I/R stimulates the intracellular Ca++ overload
of the ER lumen, which in turn modulates the mitochondrial
vulnerability of Ca++ and apoptosis, favoring the release of
cytochrome c and the activation of caspases. Once ER
homeostasis has been exacerbated, new expanded proteins
accumulate and UPR is activated. This occurs during the
cold storage of the graft in preservation solutions. UPR/
ERS alterations increase after reperfusion, which are deter-
minants for the graft result after transplantation [110]. On
the other hand, the RAAS system has a multitude of elec-
trophysiological effects with the capacity to produce cardiac
arrhythmia through various mechanisms. An experimental
study reported that proarrhythmic effects are suggested
on the ion channels of the sarcoplasmic reticulum and of
the membrane and that the increase in oxidative stress
probably contributes to the higher arrhythmic incidence
mediated by the RAAS [111].

5.2. Calcium Homeostasis in I/R. There is a large driving
electrochemical force that tends to translocate Ca++ to cells
through two components; the difference in the concentration
of Ca++ in the extracellular fluids (concentration of extracel-
lular fluids> 10,000 than the intracellular fluids), in addition
to the electrical potential through the plasma membranes.
The interior of the plasma membrane is 60–90mV, and for
the outside, the value is negative. The electrochemical poten-
tial is maintained because the Ca++ fluxes associated with sig-
nal transduction are small and tightly regulated and because
the increase in Ca++ triggers the extrusion of Ca++ by the
exchange of 3Na+-Ca++ and by a Ca++-2H+ exchanger driven
by ATP. The leakage ratio of the pump maintains Ca++ at
values of 100–200 nmol/L, although the concentration
increases transiently during the activation of the cell [112].
Ca++ enters the cell through multiple pathways; additional
channels can even be opened under adverse conditions, for
example, nonspecific cation channels and others activated
by ROS as per H2O2. However, in the depolarization and

accumulation of intracellular Na+, the 3Na+-Ca++ exchanger
is able to operate in reverse mode, which causes Ca++ to accu-
mulate in the cell [113]. The concentrations of intracellular
and extracellular Ca++ (normal free) are approximately 0.1
and 1000μmol/L, respectively. However, the total content
of cellular Ca++ (excluding extracellular spaces) is approxi-
mately 1000μmol/L (i.e., 1mmol/L·kg−1); it is deduced that
>99% of the total cellular Ca++ content is found bound to
proteins or phospholipids or sequestered in the ER in the
calciosomes and mitochondria. Although the source of the
increase in Ca++ is often due to extracellular Ca++, the cell
contains enough Ca++. The uncontrolled release of Ca++ pre-
disposes to cell damage [114]. During ischemia, the extracel-
lular Ca++ decreases to values< 10% approximately
0.1mmol/L, and the extracellular fluid decreases to ~50%
of the control. This means that almost all extracellular
Ca++ is translocated to cells. With an extracellular fluid of
20% tissue volume and an extracellular Ca++ of ~1.3mmol/
L, the load of Ca++ to which the cells are exposed is
~250μmol/kg of tissue. Since it is unlikely that much Ca++

uptake will occur in the cells, the Ca++ load could double that
number, which means that the total Ca++ content of the cells
can increase to ≥150% of the control. Long-term focal ische-
mia leads to pan necrosis and death of all cell types [115].
Therefore, vascular damage is a prominent feature of ische-
mic lesions causing a strong inflammatory response [116].
In the 1980s, it was reported that ischemia was accompanied
by translocation of Ca++ from extracellular fluids to intracel-
lular fluids and that reperfusion restored extracellular Ca++

to normal in 15–20min, without knowing whether changes
occurred in the total content of Ca++ in tissues [117, 118].
In 1984, results of transient ischemia of the brain< 20min
of duration were reported, which revealed greater incorpora-
tion of Ca++ in parts of the brain after 24 h of reperfusion
[119]. The highest incorporation appeared to occur without
an increase in the total cellular Ca++ content [114]. Based
on these results, another group explored the time course of
the changes in the total concentration of tissue Ca++ correlat-
ing it with microscopic data of cell death and found that the
total content of tissue Ca++ during reperfusion increased
between 24 and 48 h and that the increase in intracellular
Ca++ apparently preceded the morphological signs of cell
death [120].

5.3. Apoptosis in I/R. Apoptosis regulates cell turnover in
healthy living organisms by eliminating excessive or
unhealthy cells. Apoptosis plays a fundamental role in the
development of tissues and aging. The apoptotic process con-
sists of two main pathways, the death receptor pathway
(extrinsic pathway) and the mitochondrial pathway (intrin-
sic) [121–124]. The activation of the extrinsic pathway begins
through interactions mediated by transmembrane receptors.
The death receptors form a subset of the tumor necrosis fac-
tor receptor (TNFR) family, which consist of a cytoplasmic
domain of approximately 80 amino acids known as the
“death domain.” The death domain plays a critical role in
the transmission of death signals from the cell surface to
the intracellular signaling pathways through the binding of
ligands (FasL/FasR) to their corresponding death receptors
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(TNF-α/TNFR1). The receptor-ligand interactions result in
the grouping of receptors and the recruitment and oligomer-
ization of adapter proteins (FADD to the Fas receptor).
Following the recruitment and oligomerization of FADD,
procaspase-8 binds to FADD through the dimerization of
its effector death domain resulting in the formation of the
death-inducing signaling complex (DISC) and the autocata-
lytic activation of the caspase-8. The activation of caspase-8
triggers the execution phase of apoptosis [125]. The intrin-
sic pathway of apoptosis can be initiated by a variety of
physical, chemical, and pathophysiological stimuli including
ERS, oxidative damage to DNA, metabolic stress, cellular
stress caused by ionizing radiation, heat, hypoxia, cytokine
deprivation, and chemotherapeutic drugs. These stimuli
indicate a complex interaction of Bcl-2 proteins that trig-
gers the phase of apoptosis manifested by the apoptotic
pore formation, the loss of mitochondrial transmembrane
potential, and the release of cytochrome c and Smac/DIA-
BLO from the intermembrane space to the cytosol. These
pathways converge in an execution pathway that involves
the activation of caspase-3/7 by caspase-8/9 for the onset
of cell death. As a result, the cell is formed into small apo-
ptotic bodies that are swallowed by phagocytosis [126]. The
extrinsic and intrinsic pathways are not completely inde-
pendent of each other, and often the activation of one will
induce the other pathway [97, 127, 128]. In the ER, there
are damage sensors with the ability to bind to the apoptotic
pathways and lead to the activation of caspase-12 [129]. In
I/R injury, the ischemia injury is effectively managed with
organ reperfusion; however, reperfusion leads to several
additional lesions, including activation of the two path-
ways of apoptosis in the injured organ producing mito-
chondrial dysfunction, Ca++ overload, and overproduction
of ROS [130].

6. Autophagy: A Process of Cellular
Adaptation in I/R

Autophagy is a highly conserved process of bulk protein
degradation, responsible for the rotation and clearance of
proteins and the elimination of organelles [131]. Autophagy
executes an important role in the elimination of misfolded
proteins to maintain cellular homeostasis and maintain
healthy cells. Autophagy is a process of intracellular lyso-
some degradation that acts through homeostatic clearance
of the organelles and protein aggregates [132]. Autophagy
involves the isolation of cellular proteins and organelles,
forming autophagosomes (double-membrane structures)
that are directed toward the lysosomes [133]. The forma-
tion of autophagosomes is dependent on the induction of
various genes including the LC3, phosphatidylinositide-3-
kinase, Beclin 1, and the Atgs [134]. There are at least
three different autophagy paths:

(i) Macroautophagy (called autophagy) is the nonselec-
tive multistep process through which portions of the
cytoplasm and/or organelles are isolated in vesicular
structures that include mitochondria (mitophagy)
known as autophagosomes. The autophagosome

fuses with the lysosomes and degrades the autopha-
gosomic contents.

(ii) Microautophagy occurs when the cytosolic load is
isolated directly in the lysosome through engulfment
of the lysosomal membrane.

(iii) Chaperone-mediated autophagy (CMA) occurs
when the misfolded proteins of the cytosol are
degraded [135].

An efficient flow through the autophagy pathway is
essential for cell survival [136]. The frequent observation of
autophagosomes in dying cells has stimulated interest in
examining autophagy as a mechanism of cell death (pro-
grammed cell death type 2) [137]. The induction of autoph-
agy is critical for survival during the perinatal period of
hypoxia and relative starvation [138]. Autophagy is rapidly
induced in the myocardium in response to stress from pro-
longed fasting [139], the excess of pressure [140], and I/R
injury. The autophagy induced by stress has been attributed
to a healthy role as damaging to the function of myocardio-
cytes and survival [141]. The activation of autophagy is deter-
mined by the speed of autophagosome formation and the
rate of autophagosome destruction [136]. It is unclear if the
abundance of autophagosomes in dying cells reflects positive
regulation of the adaptive autophagy [142], deregulated and
excessive autocannibalism, and the deterioration of the flow
of autophagy with the reduced elimination of autophago-
somes in the activation of programmed cell death [143,
144]. In the heart, autophagy is produced at low levels under
normal conditions, but excessive and/or defective autophagy
can lead to severe cardiac pathology and finally to cardiac
failure [145]. The elevated quantity of vacuoles associated
with autophagy that are detected in myocardiocytes in car-
diac failure in different human organisms is a fact [146].
The overregulation of autophagy in myocardiocytes together
with hypertrophic remodeling after chronic treatment with
Ang II has been reported [147]. Ang II contributes to the pro-
gression of kidney injury through its hemodynamic effects
[148]. The hemodynamic effects are confirmed on diminish-
ing its production and blocking the binding to its receptors
[149]. However, apart from its hemodynamic effects, the
direct effects of Ang II on the kidney cells are recognized
more and more frequently [150]. In the past, the production
of Ang II in the kidney has been attributed solely to the spe-
cialized cells, yet it has been demonstrated that the majority
of kidney cells, including podocytes, mesangial cells, and
the epithelial tubular cells, are capable of generating Ang II
[151]. It has been suggested that the local concentration of
Ang II in the kidney is probably greater than systemic levels
of Ang II in blood. Therefore, the direct biological effects of
Ang II on kidney cells are perhaps more critical in renal
injury [29] since Ang II induces oxidative stress in diverse
kidney cells [152]. Also, it has been reported that the oxida-
tive stress induces the process of autophagy. The induction
of autophagy is necessary for the elimination of damaged
proteins and organelles (oxidized protein aggregates and
damaged mitochondria) [153]. The increase in autophagy
can cause reduction of the mitochondrial mass by 50%, while
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at the same time, it reduces the susceptibility of the cells to
apoptotic stimuli dependent on the permeability of the exter-
nal mitochondrial membrane [144]. The exposure to Ang II
or the overexpression of the G protein coupled to the AT1
receptor induces the excessive production of ROS and
unchains autophagy, senescence, and apoptosis in the myo-
cardiocytes and smooth muscle cells. However, if the activity
of the RAAS rises, there are benefits with the use of ACE
inhibitors or AT1 receptor blockers in diabetic patients with-
out cardiovascular complications, although this fact remains
controversial [154].

7. Therapeutic Targets in the Modulation of the
RAAS Activity during I/R

Based on what has been observed, the activation of the signal-
ing pathways for AT1R at the onset of the injury is necessary
for the cells or injured tissue to have the capacity to survive
the ischemic assault. However, the subsequent pathological
activation of these receptors during the early phase of I/R
injury and the overactivation of the signaling pathways and
the genes involved will lead to the epithelial-mesenchymal
transition, fibrosis, hypertrophy, and cellular proliferation.
For this reason, it is important to understand that blocking
the signaling pathways in the ischemic phase will likely not
improve the evolution of the initial injury, yet modulation
of the signaling pathways in the subsequent phases will favor
the limitation of damage and can probably reverse it Table 1.

8. Perspectives in RAAS and I/R

The elements of the RAAS are considered potent activators of
the NADPH oxidase: the ROS derived from the NADPH oxi-
dase promote the generation of ROS from the mitochondria.
Ang II and the other active metabolites facilitate the uncou-
pling of the NOS, favoring an increase in the production of
the O2− anion and of the uncoupled NOS, increasing the
levels of the O2− anion in the vasculature, and accelerating
endothelial dysfunction. The mitochondria play a critical role
in the cellular responses to a great variety of stimuli. The
mitochondria receive, integrate, and transmit signals and
activate metabolic processes and the processes of adaptation.

Mitochondrial damage can lead to dysfunction of the
organelle with alterations in the functioning of the tissues.
Ang II stimulates mitochondrial dysfunction in the cells of
cardiac smooth muscle and kidney and vascular cells, and
its inhibition decreases the liberation of mitochondrial
ROS, augmenting efficiency of the METC, protecting the
mitochondrial structures, and favoring the production of
ATP. The local concentration of Ang II in the kidney is, it
seems, greater than systemic levels of Ang II. Treatments
for the regulation of the RAAS are well known, such as the
ARBs, ACEI, renin inhibitors, MR inhibitors, and inhibitors
of aldosterone and antioxidant production; yet, despite being
able to rely on this number of drugs, the dosage and stan-
dardization of a regimen for the management of I/R injury
have still not been established. The recommendation would
be to start the medications based on an understanding of
the physiological processes of the I/R injury and activation
of the RAAS. The end result is not to block the response
entirely but rather to modulate the exaggerated response of
the RAAS when faced with I/R injury.
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