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Abstract

Machine learning extracts general principles from observed examples without explicit instructions.

In previous columns we have discussed several unsupervised learning methods—for 

example, clustering and principal component analysis—as well as supervised learning 

methods such as regression and classification. This month, we begin a series that delves 

more deeply into algorithms that learn patterns from data to make inferences. This process is 

called machine learning (ML), a rapidly developing domain closely related to high-

dimensional statistics, data mining, pattern recognition, and artificial intelligence. Such 

methods fall under the broad umbrella of “knowledge discovery”, a computational and 

quantitative approach to characterize and predict complex phenomena described by many 

variables.

ML is a strategy to let the data speak for themselves, to the degree possible. Rather than 

choosing a set of formal assumptions, ML applies brute-force to fit patterns in the observed 

data using functions with potentially thousands of weights. Even if there is no a priori 

model, ML can apply heuristics and numerical optimization to extract patterns from the data. 

Although ML algorithms typically allow fitting to very complex patterns, data may exhibit 

salient patterns outside the ML algorithm’s learning capabilities. Due to their adaptive and 

flexible nature, many ML algorithms perform best when data are abundant [1]. However, 

increasing data does not necessarily mean that learning improves. ML algorithms are limited 

by bias in the algorithm and bias in the data, which can produce systematically skewed 

predictions.

ML is often applied to complicated, poorly understood phenomena in nature [1], such as 

complex biological systems, climate change, astronomy, or particle physics. For example, 

we have little definitive knowledge about the workings of the healthy brain and the 

progression and changes associated with neurobiological disease. Mental health researchers 
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studying psychiatric disorders are struggling to explain the disease mechanisms at the level 

of genome, epigenetics, thinking and behavior, and life events.

The flexibility of data-guided pattern learning is well suited to address this multitude of 

possible influences and their complicated relationships. For example, ML algorithms can 

computationally derive abstract rules to distinguish healthy individuals from affected 

patients—a process that we cannot expect to be captured by an explicit equation or hand-

picked model. With some a priori assumptions, ML approaches can identify disease-specific 

biological aspects that provide potential indicators for accurate diagnosis, treatment, and 

prognosis in complex diseases.

The sensitivity and performance of ML algorithms can be quantified for each potential 

influence, such as genomic variation, presence of risk variants, brain properties, cognitive 

performance, and epidemiological descriptors (Fig. 1). For example, some genetic or 

neurobiological markers may be more indicative of disease (e.g., genetic mutation or brain 

connectivity features) and this can provide insight into the mechanisms underlying mental 

disease. One way to estimate the statistical uncertainty around this and other influences is by 

bootstrap confidence intervals [3], which estimate how the prediction would fluctuate in new 

data from the same population.

When applying ML techniques, one question that often arises is “How much data do I 

need?” To address this, we need to look at some of the fundamental properties of ML.

One of the primary considerations in ML is the n-p ratio, where n is the number of samples 

and p is the number of variables per observation. ML is particularly effective in the high-

dimensional setting (p ≫ n) with hundreds or many thousands of variables to be fitted. But, 

learning algorithms need to tackle the challenges specific to scenarios when p is large—the 

so-called curse of dimensionality. The danger for overfitting can be counteracted with more 

samples [4], which allows for a better final algorithmic solution (e.g., higher accuracy in 

single-patient prediction) and by dimension reduction methods such as PCA.

The complexity of the learning algorithm is critical and should be calibrated with the 

complexity of the data. The more sophisticated the underlying algorithm, the more data are 

needed. For instance, a 50th-order polynomial or a deep neural network algorithm is able to 

capture very complex trends, but requires abundant data in practice to avoid overfitting. 

Simple algorithms are often easier to interpret, require less data, and are useful to the extent 

that complicated interactions between the variables can be neglected. When trained with 

large data sets, overly simple algorithms that do not overfit can sometimes outperform 

complex algorithms with the same number of samples [2].

An underlying goal of ML is to approximate the so-called target function, which captures 

the ground-truth relationship in nature between the input variables (e.g., functional 

relationships between genes) and an outcome variable (e.g., brain phenotype such as brain or 

personality disorders). The target function is not known and potentially not knowable. In 

general, the more complex the target function, the higher the risk for overfitting, so there 

may still be advantages to choosing a lower-complexity algorithm.

Bzdok et al. Page 2

Nat Methods. Author manuscript; available in PMC 2018 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The learning process can be impeded by different sources of randomness. Stochastic noise is 

non-identical in different samples drawn from the same population and does therefore not 

exhibit coherent structure. Such randomness in the data increases the tendency for 

overfitting by adapting algorithm weights to noise in the training data. In this case, 

prediction errors will rise in held-out or new observations. This can be mitigated with larger 

training sample sizes at the same level of complexity, for example the same number of 

adaptive weights.

Typically, ML algorithms cannot achieve perfect accuracy on new data even if the “ground 

truth” model - the pattern to be uncovered from the data - was known [5,7]. For example, 

when the relationship between genetic profile and a patient’s disease status was known, a 

learning algorithm that perfectly describes the target function will nevertheless infer wrong 

outcomes from some new observations. This source of irreducible error is caused by 

fluctuation in the outcome association with each observation (“label noise”) and is 

characteristic for each learning problem. It can be quantified using the Bayes error rate 

(BER), a theoretical quantity capturing algorithm failures that occurred under the condition 

that the “true” data distribution and the input-output mapping are accessible. In practice, as 

the amount of data for algorithm training keeps increasing towards the entire population, the 

maximal performance of an optimal-complexity algorithm predicting new data points 

converges to the BER.

All these fundamental considerations point to a core insight on ML practice: there is no 

single right answer to the question how many samples are needed to reach a certain 

prediction performance. Moreover, if a relationship between input and output variables 

exists, we cannot be assured that it can be captured in a given dataset or extracted with a 

particular learning algorithm (Fig. 2).

The holy grail in ML is to use the data at hand to assess the algorithm performance in 

independent, unseen data points [4]. In other words, we want to perform an in-sample 

estimate of the expected out-of-sample generalization. We want to know under what 

circumstances does a statistical relationship discovered in one set of data (e.g., patients in 

the current dataset) successfully extrapolate to another set of data (e.g., future patients)?

In practice, cross-validation procedures [4,7] are routinely used to obtain an accurate 

estimate of an algorithm’s “true” capacity to extrapolate patterns to future datasets. 

However, the outcome is invalidated if some part of the data used for algorithm testing has 

affected some aspect of the learning process during algorithm building based on the training 

data split (i.e., data snooping or data peeking by variable selection or selection of some of 

the weights).

More broadly, pattern generalization beyond a particular data sample is only possible 

because every learning algorithm has some inductive bias. The chosen algorithm can be 

viewed as defining a characteristic class of functions (called the hypothesis space), each 

being a candidate to best represent the pattern to be extracted from the data. Each hypothesis 

class embodies different knowledge about the possible types of configurations to be 

encountered in the training data. This prerequisite for pattern generalization is also the 
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reason why no single algorithm can be considered an optimal choice in all analysis settings 

(“no free lunch” theorem, http://www.no-free-lunch.org/). Choosing an algorithm 

unavoidably imposes specific complexity restrictions on how we think the function of 

interest should behave at data points that have not been observed in the data at hand [7]. 

Interpretation of ML findings thus hinges on the investigator’s awareness of the subset of 

problems to which a given algorithm is specialized.

Ultimately, there is an important convergence guarantee from statistical learning theory [7] 

for many learning algorithms. The rate at which algorithms increase their capacity to capture 

complex structure from a stream of observations is greater than the simultaneously 

increasing difficulties of extrapolating to new samples.
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Figure 1. 
Probing the basis of a psychiatric disorder at multiple levels. Schematic of how 

psychological, genetic, neurobiological and epidemiological observations can be used to 

automatically learn the difference between healthy individuals and affected patients. For 

each type of measurement (e.g., attention test scores), a learning algorithm is trained on part 

of the data and subsequently evaluated on remaining test data from independent individuals 

to obtain prediction performance estimates (50% accuracy corresponds to random guessing). 

The statistical uncertainty of the prediction accuracies is shown by 95% confidence intervals 

obtained from bootstrap resampling of data points with replacement.
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Figure 2. 
General behaviors of machine-learning algorithms. (a) When algorithm complexity is low, 

both prediction on new data (“prediction error”) and failed model evaluation on the training 

data (“training error”) are high. In this high-bias regime, prediction is poor because the 

algorithm has a tendency to underfit structure in the data. As algorithm complexity 

increases, both errors drop but eventually prediction error rises again. The algorithm enters 

the high-variance regime, where it starts to overfit. (b) As training sample size increases, for 

a fixed level of algorithm complexity, prediction error drops and training error increases. 

This trend is more pronounced for low-complexity algorithms, such as logistic regression or 

linear regression, which have a limited capacity to improve with additional data. High-

complexity algorithms, such as high-order polynomials, CART, or (deep) neural networks, 

on the other hand, continue to improve on the test data but their predictive performance is 

still limited by sources of noise. In this practical example, the low-complexity example 

could benefit from a more flexible algorithm and the high-complexity example from more 

data. The three dashed lines show a hypothetical desired error level.
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