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Abstract

Mapping tissue microstructure with MRI holds great promise as a noninvasive window into tissue 

organization at the cellular level. Having originated within the realm of diffusion NMR in the late 

1970s, this field is experiencing an exponential growth in the number of publications; at the same 

time, model-based approaches are also increasingly incorporated into advanced MRI acquisition 

and reconstruction techniques. However, after about two decades of intellectual and financial 

investment, microstructural mapping has yet to find a single commonly accepted clinical 

application. Here we suggest that slow progress in clinical translation may signify unresolved 

fundamental problems. We outline such problems and related practical pitfalls, and review 

strategies for developing and validating tissue microstructure models, to provoke a discussion on 

how to bridge the gap between our scientific aspirations and the clinical reality. We argue for 

recalibrating the efforts of our community towards a more systematic focus on fundamental 

research aimed at identifying relevant degrees of freedom affecting the measured MR signal. Such 

a focus is essential for realizing the truly revolutionary potential of noninvasive, three-dimensional 

in vivo microstructural mapping.
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Introduction

We are witnessing a paradigm shift in our scientific community. In previous decades, the 

main goal of magnetic resonance imaging (MRI) has been to acquire a high-quality, artifact-

free image; gradually, though, we have begun to pay more attention to what this image 

means. Unwilling to settle for the nominal resolution of clinical MRI, which is most likely 

constrained to the millimeter level by fundamental physical and physiological limits, many 

of us are pondering how to quantify tissue “microstructure” at the cellular scale of 
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micrometers, hoping one day to supplement the subjective interpretation of anatomic images 

based on clinical experience with objective parametric maps. This is bringing us closer to a 

kind of super-resolution, similar to what has recently revolutionized optical microscopy via 

breaking the Abbe diffraction limit (1) by orders of magnitude (2–4). An ability to map 

cellular-level biophysical parameters (e.g. cell sizes, water fractions in different cell types, 

membrane permeability), even if averaged over the nominal mm-level voxels, would likely 

open new productive avenues for both clinical applications and basic research. These 

aspirations have stimulated an exponential growth in the field of microstructural mapping 

over the past two decades (Figure 1).

Quantifying tissue parameters far below the nominal resolution — i.e., microstructural 

mapping — is necessarily based on biophysical modeling of the underlying cellular-level 

contributions to the observed MR signal from a macroscopic voxel. The paradigm of 

biophysical modeling of a complex cellular environment for diffusion NMR first appeared in 

the classic 1979 publications of John Tanner (5) and Paul Callaghan et al. (6). With the 

advent of MR imaging, the concept re-emerged in the context of interpreting R2
∗ maps in the 

mid-1990s (7, 8), and in diffusion MRI (9, 10) in the late 1990s (11, 12), in parallel to 

quantifying the structure of porous media (13–15). Since then, the focus on MRI-derived 

tissue model parameters has been gaining ground in the arena of transverse relaxation 

(functional MRI, DSC and DCE perfusion); in lung microstructure using diffusion of 

hyperpolarized gas (16); in the ASL approach to perfusion (17, 18); and in quantitative 

susceptibility mapping (19, 20). The diffusion MRI (dMRI) community has been at the 

forefront of this effort (21), and our discussion will use dMRI as a case in point.

The exquisite sensitivity of dMRI to previously occult acute pathology was established in 

1990 with the ability to detect ischemia in real-time, initiating a profound change in clinical 

imaging protocols for acute stroke (22). In the same year, diffusional anisotropy of nervous 

tissue was discovered (23), with the means to quantify it based on diffusion tensor imaging 

(DTI) formalized soon after (24–26). Around 1999–2000, this anisotropy was applied for 

tracing macroscopic fiber tracts (27–29), which later resulted in the ability to detect large 

portions of the major white matter pathways of the brain with reasonably high fidelity for 

presurgical planning.

However, we feel that the subsequent 15+ years have witnessed a slower progress, despite 

the great number of models (and acronyms!) introduced. In the words of one of our clinical 

neuroradiologist colleagues, “Advanced diffusion acquisitions and models just seem to be 

mathematical magic tricks for new grants and publications … we are still just using the 

diffusion trace for almost everything”. We wrote this review article with the desire to initiate 

a broader discussion of the model-based, microstructural MRI. Here we attempt to identify 

the fundamental bottlenecks and practical pitfalls to realizing the potential of microstructural 

mapping, and suggest new approaches to overcome them.
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Problem

Promising applications?

To formulate the problem, let us consider the most well-known examples of dMRI-based 

microstructural mapping techniques. They have been tried in multiple animal models and in 

pathologies, and comprise the bulk of dMRI conference presentations and publications for 

the past decade. Unfortunately, they are still yielding inconsistent, poorly understood or 

contradictory outcomes, exemplified by the following issues:

1 Axonal diameter mapping (30–32) based on modeling fully restricted diffusion 

inside an axon as that in an impermeable cylinder. After initial animal validation 

using very strong diffusion gradients (33), human implementations were 

disputed due to almost an order-of-magnitude overestimation of axonal 

diameters in the brain, both from within our community (32) and by 

neuroscientists from outside MRI (34).

2 Estimation of water fractions and diffusion coefficients for intra- and extra-

axonal compartments in the brain. Multiple methods (35–45) have essentially 

relied on the same so-called “Standard Model” (46) of non-exchanging 

anisotropic Gaussian compartments. They differ at the level of constraints on the 

Standard Model parameters: e.g. NODDI (neurite orientation dispersion and 

density imaging) (39) fixes all compartment diffusivities and the functional form 

of axonal orientational distribution function (ODF); SMT (spherical mean 

technique) (44) factors out ODF but fixes two out of three diffusivities; WMTI 

(white matter tract integrity) scheme (38) attempts to estimate all three 

compartment diffusivities under a certain “branch selection” assumption, yet 

relies on highly coherent fiber tracts. As a result, parameters estimated using 

these differing assumptions quantitatively disagree with each other (47). 

Furthermore, they generally disagree with estimates using unconstrained fits (42, 

43, 45) and “orthogonal” measurements such as isotropic diffusion weighting 

(48, 49).

3 Anomalous diffusion (50–52) implying non-analytic dependence of the dMRI 

signal on diffusion time and diffusion weighting – an effect realized for diffusion 

in a fractal geometry (53). Tissues, however, are not mathematical fractals, so 

concerns exist (46, 54) about the basic applicability of this paradigm, and about 

the microstructural meaning of the corresponding anomalous exponents.

Major inconsistencies in the most common microstructural dMRI applications seem to be 

consequences of an arms race to develop a perfect “black box” application that could give 

clinicians and biologists a way to produce maps of microstructural parameters, such as 

axonal diameters or compartment water fractions. As we argue below, we are still, 

unfortunately, quite far from being able to provide such black boxes reliably. With that, let 

us outline a less obvious fourth issue, an important problem that we feel is not discussed 

enough – and that may help to understand why clinical applications of microstructural 

mapping methods are still lacking:
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4 Acquisition/modeling variability vs. biological variability: How much of the 

variability in parameter maps comes from intrinsic variability of tissue biology, 

and how much is it due to inadequacies of our models, acquisition artifacts, and 

noise propagation into the estimated model parameters?

Slow progress in developing an application may indicate a hidden fundamental problem

We will now argue that each of the above issues with common microstructural applications 

presents a case of a fundamental problem in disguise. Furthermore, the nature of the 

fundamental problem in each case is distinct. The overarching theme, however, is that none 

of these issues can be addressed by a mere increase in the acquisition time, or by buying 

extra computer power to ensure that the best fit is found, e.g., by exhaustive search in 

parameter space. In other words, developing reliable applications cannot predate getting the 

basic science right. Let us identify fundamental problems with each of these issues:

• Issue #1, to the best of our understanding, arises due to an inadequate 
biophysical model (theory) that misses the dominant physical effect. Specifically, 

the diffusion time-dependence of the signal, which contains information about 

axonal sizes, has been attributed to come solely from within axons. Recently, the 

dominant contribution to the time-dependence has been shown to arise from 

extra- rather than intra-axonal space (54–56). This basic physics effect has 

changed the interpretation of human axonal diameter mapping outcomes: the 

“apparent diameters” have little to do with inner axonal sizes, and may be 

entirely dominated by the extra-axonal space geometry.

• Issue #2 is a result of degeneracies in parameter estimation for the model that is 

likely biophysically justified. Recently, two fundamental problems in parameter 

estimation in all brain multi-compartmental models generalized under the 

overarching Standard Model (46) paradigm were identified: bi-modality (two 

biophysically plausible sets of model parameters mimicking the measured signal 

equally well), which ruins accuracy if an outcome ends up in a wrong minimum 

of a fit objective function (38, 42, 43, 57, 58); and “flatness” (or “shallowness”) 

of the fit objective function around either minima (42, 43, 58). The unfavorable 

topology of the parameter estimation landscape tells us that the information 

content in the conventional dMRI signal for clinically relevant diffusion 

weightings is limited (42, 43, 45, 58). Furthermore, the constraints (32, 39, 44) 

introduced to improve the stability of fitting, recently put into question (42, 43, 

47, 48), can push the fit outcome far from ground truth along the flat directions 

(42). This issue underscores challenges of biophysical modeling coming from 

different facets: even for the major white matter tracts, where theory is “easy” (a 

sum of anisotropic Gaussians in the long diffusion time limit, with myelin 

preventing significant transmembrane water exchange (11, 59, 60) on the time 

scales of dMRI), parameter estimation is unexpectedly tricky. Going to gray 

matter or to mixed tissue regions will be even harder, as theory there is less 

established.

• Issue #3, anomalous diffusion, is incompatible with the existence of a bulk 

diffusion coefficient, and hence must assume anomalously heterogeneous tissue 
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structure with a diverging correlation length, contradicting histological 

observations (see Theory Section below). Here, again, the fundamental problem 

is a lack of solid theoretical foundation, which renders estimated parameters 

meaningless.

• Issue #4, acquisition/modeling vs. biological variabilty, is one of the most 

important and under-recognized impediments for adopting quantitative MRI 

approaches in the clinic. Biological variability is an unavoidable natural 

phenomenon that we need to quantify and understand, but too often we are 

misled by the acquisition/modeling variability (and in most cases we are not even 

sure which one dominates). The acquisition/modeling variability is a symptom of 

multiple fundamental problems. Depending on the organ and on the MR 

modality, it may come from either an inadequate theory (model) whose fit 

parameters then depend on the acquisition details rather than on tissue properties 

(e.g. issues #1 and #3); or from a formally correct signal functional form albeit 

taken outside of its range of validity (e.g. estimating diffusion tensor components 

using diffusion weightings that are too large for DTI to apply); or from 

degeneracies in parameter estimation for an adequate model, leading to biases 

and to noise amplification (issue #2). There is no universal cure for acquisition/

modeling variability; to address it in each organ and modality means that we 

need to understand and identify pitfalls in modeling, so that each time we focus 

on the right problem.

To find good answers, begin with good questions

Since it has proved problematic to develop reliable microstructural applications despite 

many years of effort, maybe there are more fundamental questions that need to be asked and 

answered first? To formulate them, we believe we need to augment our applications-driven 

field with a basic-science mindset. To illustrate the difference, consider this example: When 

an MRI reconstruction algorithm fails or an RF coil breaks down, the artifact is usually not 

too difficult to spot (even though it may remain challenging to resolve). At the very least, the 

appropriate question “Does the new method/device work (better)?” as a rule has a well-

defined answer. This is because, if one pays enough attention, flaws in solving engineering 

problems become obvious (sometimes even annoying), and there exist well-defined criteria 

for performance of hardware and algorithms.

A basic science question, underlying any microstructural mapping effort, is rather “Do we 

truly understand this physical phenomenon and its relevance?”, – a common theme in the 

issues discussed above. Criteria for understanding are less well defined. Hence, it is not 

surprising, that in microstructural modeling, a parametric map does not fail as conspicuously 

when one fits an unphysical model to data. Most often, there is nothing in the map that 

immediately alarms us and pushes us to question its meaning. This makes such maps prone 

to overinterpretation, which can reduce the credibility of model-based MRI methods among 

basic biologists and neuroscientists. Premature modeling paradigms, promoted without 

thorough validation, are counterproductive. They deliver suboptimal diagnostic power, waste 

precious time and resources during clinical studies, and may, over time, lead to resistance 

that impedes adaptation of quantitative approaches in the clinic.
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We feel that now is a good moment, before inviting models into our daily research lives, to 

step back and formulate what modeling means. Modern physics has given us a constructive 

answer. In what follows, we explain and adopt it to our field, and offer our perspective on 

how not to get lost on the treacherous, yet exciting path towards an appropriate model. We 

see two closely related fundamental questions – one theoretical, the other experimental in 

nature – that need to be answered.

The theoretical question can be formulated as “What is a model?”. It is about drawing a 

clear distinction between genuine biophysical models, and convenient mathematical 

expressions (“representations”) that merely fit the data well, as we discuss in detail below. 

This is crucial – even though the borderline can be sometimes difficult to draw – since such 

a distinction results in a radically different role of a candidate mathematical expression in 

the overall research process.

The experimental question can be formulated as “How to validate?”. It presupposes 

addressing the theoretical question, since only genuine biophysical models can be validated. 

Furthermore, designing convincing model validation strategies is crucial in the view of a 

generally subtle and indirect dependence of the measured MR signal on the cellular-level 

tissue characteristics.

We discuss these two questions in the following Sections: Theory and Practice, respectively.

Theory

Building a theory = identifying relevant degrees of freedom

MRI is a physical measurement, and its interpretation is ultimately governed by physics 

paradigms. In physics, a theory is a rough sketch of reality, specified by its assumptions 

meant to simplify nature’s complexity. These assumptions are more important than 

mathematical expressions, as they conceptualize the problem and prescribe a parsimonious 

way to think about complexity in nature. Validation of a theory is thereby validation of our 

frame of thinking.

One of the key achievements of 20th century physics is the understanding of complex 

systems by formulating their emergent macroscopic behavior through effective theories that 

involve only a handful of relevant degrees of freedom, while ignoring myriads of other, 

“irrelevant” ones. At each level of complexity, the effective theory and its relevant 

parameters can look very different (61). Celebrated methods such as renormalization (62) 

have been crafted specifically to single out relevant parameters from the rest using iterative 

coarse-graining (63, 64), which is a procedure that averages the dynamics over finer-scale 

degrees of freedom to derive approximate effective dynamics at the coarser scales involving 

a minimal number of parameters.

Coarse-graining is highly relevant for MRI (46). For water protons, the nm-level quantum-

mechanical couplings typically average out to produce effective μm-level parameters such as 

the local T1 and T2 values, and the local diffusion coefficient; at this point, the details of 

(quantum) molecular dynamics become irrelevant for the majority of MRI techniques. 
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Subsequently, the μm-level variations of these properties produce deviations from mono-

exponential relaxation and Gaussian diffusion at the macroscopic scale of a mm-size voxel, 

at which point only a few parameters characterizing spatially varying relaxivities and the 

diffusive properties remain relevant (65–67). It is these few parameters, specific to the tissue 

architectural features in a given voxel, that constitute nontrivial information content and 

allow us to peek far below the voxel dimensions. Identifying these degrees of freedom is an 

exciting and challenging problem (46, 68) involving connections to modern physics methods 

(46).

Diffusion can itself be viewed as a coarse-graining process, which homogenizes tissue 

properties over a diffusion length (rms molecular displacement) that grows with diffusion 

time. The fundamental relation (69), of the diffusion-weighted signal in the narrow-pulse 

limit being equal to the voxel-averaged diffusion propagator, connects the physics of 

diffusion in a heterogeneous tissue environment to an MR measurement. Varying the 

diffusion time t and the diffusion weighting q can effectively freeze the coarse-graining at a 

given scale, commensurate with cellular dimensions. In other words, diffusion 

serendipitously provides us with the diffusion length scale, between a few μm and a few tens 

of μm, far below the nominal voxel dimensions, enabling the potential sensitivity to tissue 

microstructure. As diffusion mediates inhomogeneous transverse relaxation, the R2
∗(t) rate 

also becomes time-dependent, exemplifying the gradual coarse-graining of heterogeneous 

magnetic structure (e.g. microvasculature); technically, building effective theories of 

diffusion (66, 67) and transverse relaxation (65, 70–75) is intimately linked.

Relevant degrees of freedom may differ from our naive expectations

Much like the Navier-Stokes equation (governing hydrodynamics) does not involve 

quantities entering in the Dirac or Schrödinger equations describing complicated quantum 

behavior of individual atoms and molecules in a liquid, there is no reason to expect that an 

effective MR theory after a massive coarse-graining would involve intuitively obvious tissue 

parameters. For instance, the approach of the diffusion coefficient in the extra-axonal space 

to its long-time limit D∞ is determined by the form of the correlation function Γ(r) of the 

positions of axons within an axonal fiber tract cross-section at large separations r 
(represented by its Fourier transform, or the power spectrum Γ(k) of the restrictions, at k → 
0) (54). This results in a nontrivial temporal scaling of transverse diffusivity D(t) − D∞ ~ (ln 

t)/t (54), which ends up changing the interpretation of axonal diameter mapping (Issue #1 

from the Problem Section). The long-r limit of the correlation function is not an obvious 

quantity one would immediately see on a histological slide, as it involves collective, rather 

than individual properties of axons within a bundle, whereas our mind is drawn to looking at 

separate cells. Yet it is this quantity to which a standard dMRI measurement transverse to 

axonal fiber tracts happens to be sensitive (54–56). The correlation function Γ(r) depends on 

the outer axonal diameter – but it would also generally depend in a non-obvious way on 

other details of how axons are packed; its relation to extra-axonal space geometry is still 

poorly understood.

Nature is not keen to readily reveal its secrets and often operates in ways that are not 

intuitive to conventional thinking. The above example illustrates that it is important to learn 
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to listen to what nature tells us, rather than insist on formulating our theories a priori in 

terms of parameters convenient to our everyday perception. The good news is that, often 

times, the same quantities may be independently determined from other, non-NMR based, 

techniques; in our example, the power spectrum Γ(k) can be determined from histology (54) 

or, in principle, from high-resolution optical imaging. Formulating MRI-relevant theories in 

terms of parameters understood by researchers in other scientific disciplines can create 

unexpected and fruitful synergies. For instance, in physics, the power spectrum Γ(k) is the 

structure factor governing diffraction in a heterogeneous media. Once the correct theory has 

been established, biologists and clinicians can begin to undertake the task of unraveling the 

biological significance of its parameters – intuitively obvious or not – in health and disease.

To recap, deriving and validating a successful theory amounts to understanding which 

parameters we can ignore, and which we must keep at a given coarse-graining scale. It is this 

realization, rather than the derivation of the final expression, that usually constitutes most of 

the effort, and arguably is the most important outcome. A theory, therefore, embodies our 

ability to predict the result of any measurement on the same system at a given scale, after 

quantifying only a handful of relevant parameters using only a few measurements.

Modeling = theory + parameter estimation

For practical estimation of parameters of a theory, one derives a model that describes an 

outcome of a particular type of measurement.1 A model can be viewed as a concrete 

realization (an instance) of a theory, that contains the relevant degrees of freedom2 (in our 

case, those based on actual tissue microstructure), typically in an expression suitable for 

comparing with measured data. An illustration in terms of everyday experience is given in 

Figure 2. As we discuss in the Section Practice below, at a given coarse-graining scale 

multiple measurement types exist – and hence, there exist multiple concrete mathematical 

predictions of the theory (one can say, multiple models to explain distinct measurements), 

that involve the same microscopic tissue parameters in different combinations. However, all 

of those expressions are unified by their common theoretical foundation, an overall “picture 

of the world”.

For example, issue #1 is centered on the scale of coarse-graining defined by available 

experimental protocols. Axons are cylinders of finite diameter, which have been quantified 

in animal studies using very strong diffusion gradients and narrow gradient pulses (33, 78–

80), and/or in the spinal cord (78, 79, 81) where these diameters are much larger than in the 

brain and thus more amenable to the technical limitations of current hardware. However, 

diffusion times exceeding 10ms, and low diffusion weightings q in clinical scanners make 

both the diffusion length scale and 1/q greatly exceed the bulk of axonal diameters in the 

1The definition of a model is, generally, a point of debate – e.g., previously among statisticians (cf. the part on Box vs. Cox below), 
and recently in the context of neuroscience and neural networks [76. Kay KN. Principles for models of neural information processing. 
Neuroimage. 2017. doi: 10.1016/j.neuroimage.2017.08.016. PubMed PMID: 28793238, 77. Kubilius J. Predict, then simplifyibid. doi: 
10.1016/j.neuroimage.2017.12.006.]. In contrast to these works, we refer to theory as the basis, while a model is its derivative. Models 
make theory more concrete, specify the system’s parameters and the measurement. It is perhaps not surprising that physicists 
sometimes use “model” and “theory” interchangeably.
2The broader the theory, the broader can its instances be. For example, theory of phase transitions has Ising model as one of its 
instances. Physicists also like “toy” models which are oversimplified, yet tractable illustrations of a more general point, with the 
primary goal to build intuition and to develop understanding.
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brain (~1μm), effectively coarse-graining these diameters to zero (unobservable). At such 

coarse-graining scales, the effective theory becomes that of “sticks” (zero-radius channels) 

(35, 36). Hence, for any model predicting the outcome of any diffusion sequence involving 

these long temporal scales and low diffusion weightings, axonal diameter becomes an 

irrelevant parameter (56), irrespective of model asssumptions about the orientational 

distribution of axons in a voxel. (Monte Carlo simulations show that for a typical clinical 

scenario, a gradient strength exceeding 900 mT/m would be needed to detect the attenuation 

from spins inside 1μm-sized axons, against a signal-to-noise ratio (SNR) of 50; on the other 

hand, the extra-axonal contribution dominates at low gradients.) Therefore, issue #1 is 

fundamentally about the theory aspect of modeling.

In contrast, as already mentioned in the Problem Section, issue #2 regarding degeneracies in 

the parameter estimation for multi-compartmental models of neuronal tissue at long 

diffusion times, is fundamentally about the parameter estimation (fitting) aspect of 

modeling. Successful modeling outcome involves the solution of both theory and parameter 

estimation aspects; both of them can be nontrivial, and their solutions generally rely on 

different methods and ways of thinking.

Representation = decomposition in a basis

In our experience, the word “model” is, unfortunately, often taken to be synonymous with 

any “approximate mathematical description of the signal”. Here we underscore – based on 

the physics definition above – that such descriptions, lacking a theoretical (physical) 

foundation, are generally not models, and propose to call them representations3 ; one may 

also call them data or signal interpolations (36). Developing adequate representations is 

often the first step in analyzing the signal.

We are not the first who try to differentiate representations from models. Already in the pre-

MRI era, statisticians concerned with selecting variables in observational studies attempted 

to formulate this kind of challenge. Cox and Snell (83) stated in 1974: “There is a working 
distinction between producing (i) a fit to the data useful for future prediction in the absence 
of major changes in the system and (ii) an “explanation” which will link with other studies, 
e.g. fundamental laboratory work, and will predict under quite different circumstances. For 
(i), two quite different models, involving different explanatory variables, are equally 
acceptable if they fit the data equally well. If a choice has to be made between them, it may 
be done on the basis of simplicity <…>. In (ii), however, it is usually of central importance 
to find which explanatory variables have important effects.” Although Cox and Snell use the 

3Sometimes, they are referred to as “phenomenological models”, e.g., [76. Kay KN. Principles for models of neural information 
processing. Neuroimage. 2017. doi: 10.1016/j.neuroimage.2017.08.016.]. However, this term has a different meaning in physics, 
where such class of theories/models attempts to guess the functional form of an effective theory – not by deriving it from the first 
principles, but by using falsifiable assumptions about the relevant collective degrees of freedom (e.g., symmetries of the system). A 
classic example is the phenomenological theory of phase transitions by Lev Landau [82. Landau LD, Lifshits EM. Statistical physics. 
2d rev. and enl. ed. Oxford, New York,: Pergamon Press; 1969. xii, 484 p. p.]. The fundamental statistical sum is not calculated; 
instead, one considers a “critical point”, where the leading term in the Taylor expansion of free energy in the powers of the order 
parameter turns to zero. This approach has contributed enormously to the understanding of many-body systems, in particular, by 
providing the mean-field critical exponents, the deviations from which initiated the development of renormalization-group approaches 
to account for fluctuations near the critical point.
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word “model” in the tradition of statistics4, it is straightforward to identify their (i) and (ii) 

with representations and theory/models, respectively.

More formally, a representation could be defined as a theory-independent decomposition in 

a basis to store, or to compress measurements. Here we understand “decomposition” quite 

broadly; sometimes, just one or very few suitably selected functions are enough (a low-rank 

representation). In contrast to models, representations are as general as possible, and have 

very few assumptions. As there are infinite ways to represent a continuous function, the 

choice of representation is often dictated by convenience or tradition. Practically, not all 

representations are equivalent, because one only uses a few basis functions rather than an 

infinite set; from this point, sparser representations are more favorable. A less obvious but 

very desirable requirement, from the reproducibility standpoint, is a limited sensitivity to the 

acquisition protocol, cf. issue #4 above (see also below for concrete examples).

A classic dMRI signal representation, using monomials 1, q2, q4, … as the basis set for the 

log of signal, is the cumulant expansion (85, 86). One can look for some other convenient 

basis set of functions that can capture most of the information in the signal in a few 

parameters, e.g. the bi- or multi-exponential decay (87, 88), or expansion in the harmonic 

oscillator basis (89).

At this point it becomes clear that one should have very different expectations for models 

and for representations. Rigorously distinguishing between the two in scientific papers 

would help define their scope, and prevent depreciation of the considerable effort behind 

building and validating adequate theories/models [“explanations (ii)” per Cox and Snell]. 

The distinction between models and representations is thus not merely a semantic formality, 

as it is needed for placing published works into a broader context, and for clarifying our 

thinking.

DTI is not a model; neither is DKI

Consider the following example of a well-known signal representation, the Taylor expansion 

of the diffusion signal Sq(t) (expansion in moments), or a much more often used expansion 

of its logarithm (expansion in cumulants) (85, 86) already mentioned above:

ln Sq(t) = ln S0 − D(t)t · q2 + C(t)t2 · q4 − … [1]

where q = |q| is proportional to the applied diffusion-sensitizing field gradient. Equivalently, 

this expansion can be viewed as that in the powers of the diffusion weighting parameter b = 

q2t at fixed diffusion time t. This leads to diffusion tensor imaging (DTI) (25) and diffusion 

kurtosis imaging (DKI) (90), wherein the terms D(t) and C(t) give rise to diffusion and 

kurtosis tensors in the presence of tissue anisotropy, probed by the direction of the vector q.

4This also explains why we would rather refrain from using the term “statistical models” [84. Alexander DC, Dyrby TB, Nilsson M, 
Zhang H. Imaging brain microstructure with diffusion MRI: practicality and applications. NMR Biomed. 2017. doi: 10.1002/nbm.
3841.], as statistics is not addressing the fundamental question about model assumptions; a statistician tends to use the term “model” 
for any expression to be fit to data, whether derived from a theory or not.
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In the literature, DTI and DKI are often categorized as models. DTI, for example, is 

certainly a very useful approximation to the diffusion signal in a limited b-range, and it 

measures a well-defined physical quantity, the diffusion tensor Dij(t), at least in the limit of 

narrow gradient pulses. However, according to the above logic, DTI is not actually a model, 

since it does not rely on any assumptions about tissue structure. The same logic, however, 

classifies DTI as a model for a water phantom, where the q4 term and beyond vanish 

identically. In this particular case, it is not the anisotropy (or rather its absence), but the 
absence of higher-order terms in Eq. [1], that constitutes a model which can be physically 

formulated as the absence of any structure at the micrometer scale and above.

In the general case of structured media, DTI is a diffusion signal representation based on a 

fundamental property – namely, the existence of a regular Taylor expansion, Eq. [1], around 

q = 0. Contrary to what is still often stated in the literature, DTI is not based on the Gaussian 

diffusion assumption either: rather, it captures only the lowest-order, q2-term, in the 

cumulant expansion [1]. Any reasonable biophysical model of diffusion has a DTI 

representation to which it reduces in the limit of low diffusion weighting. The same applies 

to DKI (the next-order, q4-term). Therefore, one cannot validate DTI or DKI (e.g., with 

histology): there are virtually no assumptions there. All we can do is evaluate the empirical 

sensitivity of diffusion and kurtosis tensor components to a given pathology; such sensitivity 

can already be very useful for clinical diagnosis (22), yet it does not reveal the 

microstructural underpinnings of the signal.

DTI and DKI are used appropriately as representations when their estimated parameters are 

insensitive to the range of b-values, i.e., at sufficiently small b; exceeding this range is a 

pitfall contributing to acquisition/modeling variability, issue #4 from the Problem Section. 

For instance, the diffusion tensor should be estimated when the curvature term C · b2 ≪ D · 

b can be neglected compared with the estimated linear one (DTI); the applicability range of 

DKI is, respectively, determined by ensuring that the subsequent b3 ~ q6 term does not 

notably affect the estimation of D and C, and so on. Practically, this is not an easy task given 

realistic SNR (68, 91, 92). Fundamentally, the range of b-values for which DTI/DKI are 

appropriate representations is limited from above by the convergence radius of the cumulant 

expansion (93). Within this range, adding subsequent cumulants improves accuracy (at the 

cost of precision). When used beyond this range, the terminated cumulant series [1] acts as a 

generic polynomial approximation, for which adding an extra higher-order term changes all 

other terms, causing the large variability in the polynomial coefficients.

Recognizing DTI as a representation at low diffusion weighting rationalizes its widespread 

clinical applicability in the face of unfair criticism (“Diffusion in tissues is non-Gaussian, 

contrary to what DTI assumes, so DTI is wrong”). Taken literally as a model, one must 

indeed never use DTI; however, using it as a representation is fully justified within the b-

range defined above. Proper terminology should guard against inappropriate use and 

interpretation of DTI or DKI by reminding of their lack of microstructural specificity, and of 

the need to ensure that the appropriate b-range is probed. Finally, it helps define which 

aspects of dMRI can be validated, and which cannot.
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Stretched exponentials and anomalous diffusion

To further illustrate the dangers of using ad hoc representations, consider the stretched 

exponential formalism, S = S0 exp(–(bDS)α). This representation is very flexible; a three-

parameter fit mimics the diffusion signal in rats very well (50). However, the anomalous 

exponent α < 1 implies that the diffusion coefficient D ≡ –(d lnS/db)b → 0 defined in terms 

of the above expansion [1] is formally infinite, as is the mean-squared molecular 

displacement 〈r2〉 at any time t. This is clearly unphysical; practically, it is incompatible with 

DTI, and hence its fits to data will depend on the acquisition details rather than on tissue 

properties (cf. issue #4). It is then not surprising that the recently observed (94, 95) S ~ b−1/2 

~ q−1 scaling at large q (cf. Fig. 5C further discussed in Section Practice below), notably 

different from a stretched-exponential form, and originating from the Gaussian diffusion 

within the one-dimensional randomly-oriented neurites, explicitly invalidates this scenario in 

human white matter.

A related phenomenon with less dramatic consequences, sometimes invoked for tissues, is 

the so-called anomalous diffusion (53, 96, 97), cf. issue #3 above, where the second moment 

〈r2〉 may exist, but grows asymptotically with time as 〈r2〉 ~ tv, v ≠ 1, as t → ∞. (Normal 

diffusion corresponds to v = 1 asymptotically (53).) Fits again look great in the finite time 

range in the brain (51); however, taken literally, the macroscopic diffusion coefficient D∞ ∝ 
[〈r2〉/t]t → ∞ is either zero (when v < 1) or infinite (when v < 1). Neither value is supported 

experimentally; the overwhelming experience is that the time-dependent diffusion 

coefficient D(t) approaches a finite value D∞ > 0 as t → ∞ (55, 67, 98, 99). Practically, this 

again means that the fit results are determined by the employed range (in this case, of t), 
rather than by the tissue itself, contributing to the issue #4 of acqusition/modeling variability.

Fundamentally, anomalous diffusion can emerge as a result of a very broad distribution of 

elementary time-steps or hopping distances for random walkers (53), pointing at some kind 

of anomalous heterogeneity of system’s properties. This is a very stringent and exotic 

condition; it is no wonder that the overwhelming majority of systems do not fulfill this 

requirement and instead fall in the wide basin of attraction of the central limit theorem (for 

which v = 1 (53). Importantly, the heterogeneity required for v ≠ 1 has not been observed in 

tissues, at least at the diffusion length scales that we usually study – for example, a recent 

investigation (54) using histology of white matter tracts points at a finite correlation length, 

consistent with a finite tortuosity limit D∞ and asymptotically “normal” diffusion 

characterized by exponent v = 1

Both the stretched-exponential and anomalous-diffusion examples illustrate the above 

statement that a representation does not have predictive power outside the data range used 

for the fitting, and serve as a precaution for using representations whose basis functions are 

incompatible with the physical origins of the signal.

Representations are sensitive; models strive to be specific

By design, a theory, and models derived on its basis, have limited scope of applicability; 

their main advantage is specificity. A theory tells us which biophysical parameters – e.g. cell 

water fraction, membrane permeability – are relevant, i.e., are absolutely necessary to 
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predict the measurement, and, consequently, can be quantified given sufficient data quality. 

Attaining specificity rather than just sensitivity is much harder, but has much more potential 

impact. We believe it is one of the most promising goals of microstructural mapping.

Are all models wrong? (Box vs. Cox)

George Box famously said (100) “All models are wrong but some are useful”. As this quote 

is becoming popular in discussions within our scientific community, we are concerned that it 

will be misused as a justification for a certain intellectual relativism (if all models are wrong, 

why try so hard?). Fortunately, not all statisticians agree with Box. Notably, David Cox says 

in his comment on ref. (101): “Finally it does not seem helpful just to say that all models are 
wrong. The very word model implies simplification and idealization. The idea that complex 
physical, biological or sociological systems can be exactly described by a few formulae is 
patently absurd.” We agree with Cox, as he clearly means “model” as derived from a theory. 

The key word here is “simplification” – theories are approximations by design, and the 

achieved simplification (per modern physics viewpoint, due to coarse-graining over the 

shorter-scale degrees of freedom) is their key strength.

Representations can be viewed as an intermediate step, to store a measurement for future 

use, before an adequate theory is settled on; for empirical correlation of the basis coefficients 

with pathology; and for model parameter estimation, by comparing, e.g., corresponding 

Taylor coefficients of the signal and of the model (38, 43, 102). Representations can be 

extremely useful, as they can parsimoniously capture the behavior of the signal and can 

provide clinically valuable markers with high sensitivity. However, in the grand scheme of 

things, they are the means rather than the goal.

Box’s quote may become acceptable in the following form: All representations are wrong, 
but some are useful. On the other hand, if we talk about genuine models, then, for a given 

spatio-temporal scale (reflecting the level of coarse-graining), there is only one correct 

theory, and all the others are, consequently, incorrect. The correct theory is very, very useful. 

Validating such theory is very, very hard. We end up returning to the same assumptions 

multiple times, trying to see where they break down. Perhaps this is why it’s called research 

rather than search.

A model detached from its roots becomes a representation

Modeling and representing are not mutually exclusive ways to proceed; frequently, one 

researcher is involved in both. Moreover, the borderline between models and representations 

can be subtle, and it is increasingly important to realize on which side we are in any given 

situation or problem. A model detached from its theoretical origin, i.e., from a specific 

picture of microstructure or system composition, becomes a representation.

For example, the biexponential model of diffusion is an appropriate model of two Gaussian 

compartments without exchange. However, it is a representation outside this original 

context. Its enormous mathematical flexibility as a representation, for better or for worse, is 

illustrated in Figure 3. One can claim a biexponential to be a genuine model only if one 

really has reasons to assume two compartments with Gaussian diffusion (or 

monoexponential relaxation); justifying this assumption is much less trivial and much more 
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impactful than performing biexponential fitting. To generalize, performing a 

multiexponential fit (equivalent to the Laplace transform) without identifying meaningful 

non-exchanging Gaussian compartments is not modeling either – it’s just a change of basis.

In a similar vein, fixing certain model parameters (or introducing stringent priors), strictly 

speaking transforms a physical model into a representation, unless there are compelling 

reasons to believe we really know these parameter values, and that they do not change in the 

pathology we are studying. For instance, in the brain diffusion community there is an 

ongoing debate (42, 43, 48) on how well we know the values of compartment diffusivities 

and what is the effect of fixing their values (32, 39, 44) in the Standard Model (46), cf. issue 

#2 in the Problem Section. Expressions involving un-validated constraints merely interpolate 

the dMRI measurement; the bar for providing its microstructural explanation and for 

revealing biophysical parameter trends in disease is much higher.

Practice

Fit quality does not validate a model

While Figure 3 demonstrates the fascinating flexibility of the biexponential representation, 

Figure 4 shows how well other fundamentally distinct mathematical functions 

(representations) can fit the same data, with the ground truth in this example being 

biexponential. A hint about the reason for such ambiguity comes from the cumulant 

expansion [1], which renders all diffusion-weighted signals accurately represented by 

diffusion and kurtosis terms for the low diffusion weightings typically used in clinical 

settings (93).

These examples emphasize that fitting quality (embodied, e.g. by R2, or by Akaike 

Information Criterion) is not necessarily a signature of the correct model — and may even 

prefer wrong models over the right one (Fig. 4C). Good fitting quality of a derived model is 

a necessary, but not a sufficient condition for validity of the underlying theory. In dMRI, for 

instance, many expressions fit data extremely well in the clinical range of t and q, yet very 

few of them are proven to be correct models.

To further quote D. R. Cox (in his discussion of ref. (101)): “Within a given broad 
framework it may be essential to recognize explicitly that different models with different 
interpretations fit about equally well; procedures which then force a single choice are bound 
to be potentially misleading.” We believe that this wisdom applies whether the choice is 

between a few models (Figure 4) or dozens of them (103, 104).

Validate theories and derived models, not representations

In general, representations cannot be validated by their very definition. They can be judged 

by their fitting quality, parsimony, applicability range, flexibility and sensitivity – and maybe 

even elegance.

Theories and the derived models, however, must be validated, and currently this may be our 

greatest challenge. Although a highly valuable means of validation, even histology often 

cannot provide the gold standard for in vivo MRI: besides suffering from hard-to-control 
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changes in tissue properties caused by sample preparation (105), it is in principle insensitive 

to MRI-specific parameters such as diffusivities and relaxation rates in different tissue 

compartments. How do we overcome this validation challenge?

Validate models where they exhibit distinctive functional dependencies

This problem is not new. Physicists have struggled with it all the time: How can we “see”, 

e.g., the internal structure of a proton? There is no histology there; our only way is to 

bombard a proton with other particles – say, electrons, – and to study the indirect effect of 

the constituent parts (the quarks, as it turned out) via deep inelastic scattering. The key is to 

have a detailed theory (at a given coarse-graining length scale) of how the result of such an 

experiment depends on the kinetic energy of electrons and on the proton structure. By 

identifying the expected features in such functional dependencies, remarkably far-reaching 

conclusions about the structure of elementary particles have been made (106, 107). We 

underscore that all such understanding has been achieved indirectly without any alternative 

validation – solely based on the observed functional forms.

In other words, it is pointless to perform model selection in a regime where they all look 

similar. We should instead drive the measurements into domains where different physical 

assumptions lead to qualitatively distinct functional forms of theoretical predictions. By 

validating the model where it is distinctive, we amplify the role of its physical assumptions 

and learn something definitive.

This tradition has yet to fully percolate into our burgeoning field. This is especially 

necessary in view of the featurelessness of, e.g., commonly acquired dMRI signal as a 

function of b, which is famously regarded as “uninformative” or “remarkably unremarkable” 

(108, 109). The reason for such an unfortunate property in dMRI is again the validity of the 

cumulant expansion, Eq. [1] above: all models predict similar-looking signals for low b-

values (68).

A few fortunate examples of breaking through the fog of a featureless MR signal include:

• Identifying the diffusion narrowing regime in the mesoscopic transverse 

relaxation via the B0
2 scaling of the R2

∗ rate, helping to validate models which 

enable quantification of iron in the brain (75) and contrast agent in blood (110).

• A scaling law (111–113) derived from the Bloch-Torrey equation helped to 

simplify the parametric dependence of transverse relaxation rate caused by blood 

pool contrast agents, and to explain the increased sensitivity to the 

microvasculature for increasing contrast concentration (114).

• Observation of the t decrease of D(t) at short diffusion times (14) in porous 

media (115, 116) (Fig. 5A), in a fiber phantom (117), in cell suspensions (118), 

and in vivo in breast (119) and in brain tumors (120).

• Effect of structural disorder on the time-dependent diffusion, relating structural 

fluctuations of a heterogeneous media to the diffusive dynamics. Technically, this 

is embodied by the relation (67) between the power-law exponent p in the low-k 

Novikov et al. Page 15

Magn Reson Med. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scaling of the power spectrum Γ(k) ~ kp of restrictions to diffusion, and the 

dynamical power-law exponent υ describing the approach of time-dependent 

diffusion coefficient to its long-time (tortuosity) limit D∞. This relation was 

validated in phantoms (54, 121), and it practically helps in the model selection. 

For instance, it was used to argue that axons are not just straight hollow tubes 

from the diffusion standpoint, and are characterized by short-range disorder 

along them (55). The diffusion time-dependence in cortical gray matter (99), and 

the diffusion coefficient drop in stroke, were explained in tems of of this 

structural one-dimensional disorder along the neurites in the brain, and its 

increase in ischemia (67).

• Effect of structural disorder on the time-dependent transverse relaxation (Fig. 

5B), relating structural fluctuations of a heterogeneous magnetic media to the 

relaxational dynamics. Technically, this is embodied by the relation between the 

power-law exponent in the low-k scaling of the power spectrum Γχ(k) of 

heterogeneous magnetic susceptibility, and the dynamical power-law exponent 

describing the approach of time-dependent transverse relaxation rate R2
∗(t) to its 

constant value R2
∗( ∞ ) for long times (71, 75, 122).

• Effects of laminar flow and multiple generations of vasculature on the functional 

form of the impulse response function that describes blood pool tracer 

propagation in the brain vasculature (123).

As a further illustration, Fig. 5C shows how one can potentially validate the picture of 

neurites as infinitely narrow “sticks”, by studying the nontrivial power-law form S ~ b−1/2 of 

the diffusion signal at large b (94, 95). The functional form S ~ b−1/2 ~ q−1 at large b (and 

fixed t) restricts the family of dMRI models in human brain white matter so strongly, that it 

(i) excludes observable effects of inner axonal diameters on regular human scanners (cf. 

Issue #1); (ii) invalidates, to the best of our understanding, the picture of water bound to 

membranes (124) (as that would yield notable positive intercept S|b → ∞ given by the 

stationary water fraction); and (iii) reveals that the so-called (differential) return-to-origin 

probability RTOP = ∫ d3q

(2π)3
S(t, q) ∫ d3q

q = ∞ would diverge in brain white matter if S ~ 1/q 

for q → ∞. The spurious RTOP divergence gets cut-off at much higher q, of the order of 

inverse axonal diameter, beyond which S should decrease exponentially. Consider then 

RTOP maps (89), calculated from brain dMRI signal acquired in the b-range where the 

deviations from the scaling ~ b−1/2 are unobservable. The above divergence will make such 

maps mostly depend on the largest b-shell of the acquisition (providing an artificial cut-off 

for the above diverging integral), rather than on the tissue properties, cf. reproducibiity issue 

#4.

The last RTOP example also illustrates that not all representations are created equal. The 

harmonic oscillator basis (89) is good for representing signals that are close to a Gaussian. 

However, not including the slowly decaying function ~1/q, this representation requires a lot 

of exponentially decaying and oscillating terms to converge for fitting the actual signal. 

Hence, it is practically suboptimal for the central nervous system. This unexpected pitfall 
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illustrates our broader point: Applied challenges are often fundamental problems in disguise. 

Even such a practical problem as interpreting the expansion coefficients of a dMRI signal in 

a seemingly innocuous basis can have pitfalls stemming from the nontrivial fundamental 

origins of the signal.

Further validation: Alter functional dependencies by applying “orthogonal” measurement 
schemes

A defining property of a theory is its ability to predict the outcome of a different 
measurement on the same system (at the same level of coarse-graining). Figure 5D 

illustrates this point on the earlier example of Callaghan’s model introduced in Figure 3. In 

this case, isotropic diffusion weighting, which results in signal suppression if water can 

move in any spatial direction, and thus cannot be replicated by the conventional (single-

direction) diffusion encoding measurement schemes, yields an essentially different – 

monoexponential – functional form (125–127). This principle has recently been applied in a 

more complex situation of water diffusion in the human brain (49, 128). We believe that 

multiple diffusion encoding schemes (128–133), which have been gaining popularity 

recently, can provide distinct functional forms of the models suitable for validation.

Complementary MRI modalities offer promising synergies for microstructure parameter 

estimation: e.g., myelin water fraction, estimated via T2 mapping or magnetization transfer 

(134–138), may subsequently be fed into diffusion modelling; varying the echo time (139) 

helps cure the inherent degeneracy in the free water elimination problem (140–142), which 

is most pronounced when used on a single-shell DTI (141); employing both the echo time 

dimension (143) and multiple diffusion encodings (144) helps to lift the degeneracy in white 

matter parameter estimation, cf. issue #2 from the Problem Section.

We underscore that all these diverse “orthogonal” methods are beneficial not just for robust 

parameter estimation, but also for the more fundamental goal of theory validation, by 

providing different facets of the same physical reality and testing an overall consistency of 

our physical assumptions. Representations do not have such a predictive power.

Information content and new contrasts: Where is value?

While sparse representations can give us a good idea about how many basis functions are 

needed to reproduce the signal, theory defines the ultimate information content, since it 

identifies the biophysically relevant parameters. It tells what is in principle possible to 

measure, and what is not. Any claim of a “novel contrast” should be scrutinized: does the 

technique reveal the previously unattainable degrees of freedom, or can its results be re-

generated using conventional measurements?

Considering specific examples, the value of the cumulant representation [1] at low diffusion 

weighting is manifest in restricting the functional form –ln(Sq/S0) = Σij Dijqiqjt + ··· to the 

second-rank tensor Dij, equivalent to expanding the signal in spherical harmonics (SH) up to 

l = 2; likewise, if the signal is well approximated by the terms up to b2, DKI sets maximal 

SH order l = 4, and so on (85, 145). This general radial-angular connection in the q-space 

(43) implies that, for HARDI data at b ~ 1000 ms/mm2, where DTI (and at most DKI) are 

enough to represent the signal, employing SH with orders above l = 4 is counterproductive, 
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as it leads to overfitting. Here, the sparsity of representation [1] is twofold: involving terms 

~ql with only even orders l is set by the time-translation invariance of the Brownian motion, 

while the limit on the number of independent tensor components in each cumulant term is 

set by counting the dimensions of irreducible representations of the SO(3) rotation group 

(43).

Theory allows us to go one step further in limiting the number of parameters. In the above 

example (54) of the extra-axonal diffusivity D(t) ≃ D∞ + A (ln t)/t transverse to fiber tracts 

approaching its t = ∞ limit D∞, the corresponding kurtosis K ≃ (6A/D∞) (ln t)/t approaches 

zero in a way completely defined by the effective medium parameters D∞ and A. Therefore, 

in this limit, kurtosis in the extra-axonal space does not provide independent contrast, even 

though it is viewed as an independent parameter in the cumulant series representation [1]. 

Here, theory can add value in constraining the functional form of the signal, thereby 

minimizing the number of independent parameters to be estimated and, hence, maximizing 

their precision.

Sometimes, unconventional acquisitions can create an appearance of providing new contrast. 

Multiple diffusion encodings (130, 131), such as double PFG, appear quite different from 

the conventional pulsed-field gradient (PFG) sequence. However, they provide novel contrast 

only starting from the O(q4) level (146), while at the O(q2) level the result of any diffusion 

encoding can be fully synthesized from the knowledge of the time-dependent diffusion 

tensor (147, 148) that can be measured with conventional DTI by varying the diffusion time 

t. In this case, theory helps understand how far one needs to push an acquisition to become 

truly valuable.

Conversely, empirically informative acquisitions may mask problems with modeling. A 

multi-shell dMRI acquisition, involving up to, say, b ~ 2,000 – 3,000 s/mm2 and a multitude 

of directions, is empirically much more informative than DTI at b ~ 500 s/mm2. Almost any 

plausible metric, physically sound or not, derived from such a rich acquisition, may turn out 

to be more sensitive to pathology than the diffusion tensor. This should not be viewed as an 

automatic justification of such metrics to be more “valuable” than, say, DTI. If the theory is 

wrong or the fitting is biased, the added value does not lie in the modeling, but rather in the 

high-b acquisition, and the whole pipeline becomes more informative not because the 

modeling is so great, but if anything, in spite of it. If unsure about a modeling framework, it 

may be more intellectually honest (and valuable) to stay at the level of a representation, 

foregoing microstructural specificity; for instance, in the above example, a metric such as 

mean kurtosis (149) will be sensitive to many pathological and developmental changes 

(150–154). Of course, ultimately, we would like to become specific, not just sensitive. 

However, a wrong theory or a biased estimation does not help achieve specificity, which is 

why the choice between modeling and representing is nontrivial, akin to striking the right 

balance between what we can claim and what we cannot.
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Discussion

Uncover a little rather than cover a lot

Each careful validation study — e.g. a proven constraint on the model’s functional form, and 

hence, on the relevant microstructural degrees of freedom — may seem to be a small and 

incredibly tedious step for a researcher, but it is a giant step for the scientific community. 

This is because its ripples are exponentially propelled into the future, eliminating a 

snowballing array of choices for a model candidate in all future studies. From that point 

onward, all models for a given tissue (at that coarse-graining scale) should obey this 

constraint! Cumulatively, this saves all of us enormous amount of time and resources.

Blind and premature push-button fitting, conversely, gives us a false sense of achievement. It 

is relatively easy to produce a lot of output. Unfortunately, this is merely a way to produce 

more incorrect results faster, which would inevitably prompt the need for a fairly depressing 

effort to re-assess all of them at some future point. Since, as we pointed out above, an 

unphysical parametric map does not immediately create discomfort, it pays to make a very 

conscious effort to get alarmed and question our own results earlier rather than later.

We note that model validation, involving driving acquisition to the limit of hardware and 

acquisition time for identifying a nontrivial functional form, is usually incompatible with 

routine clinical protocols. This represents a distinction between the basic and applied 

research: pushing the boundaries is meant to be difficult and rare, whereas the point of 

developing applications is to make them user-friendly. Once the correct theory/model is 

established, there is no need to validate it in every patient – instead, one can begin 

optimizing both acquisition and parameter estimation, to reach acceptable precision for the 

parameters relevant to a particular clinical situation and suspected pathology.

Which model is right?

“I am a clinician, I am lost – how do I know I am using the right model for my study?” A 

short answer is, you don’t – much like we have no idea how to recognize a sound radiology 

report. Achieving sufficient qualification either in modeling or in the clinical work requires 

many years of highly specialized training.

One question that can be answered relatively easily is whether it is really a model, or a 

representation; this realization could already help placing results of the study into a proper 

scientific context. For that, the following empirical rule is helpful: Models are pictures, 
while representations are formulas (46). Describing genuine models always entails creating a 

sketch of the relevant parts of microstructure, while representations are just some sets of 

functions.

An ultimate answer to the above question lies in creating an active modeling community in 

the area of microstructual mapping (spanning diffusion, transverse relaxation, magnetization 

transfer, quantitative susceptibility mapping, and perfusion, at the very least), that fulfills the 

two functions: (i) building new theories and models, and (ii) maintaining our common 

knowledge base by constantly questioning existing models and subjecting them to novel 

validation methods. Then virtually anyone from such community could give a widely-
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accepted answer to this question. In the absence of a common theoretical ground, the answer 

too often depends on whom you ask.

One of the major lessons learned from the progress fundamental physics has achieved over 

the past century, is how much theory has played a role in it. Building the modeling 

community involves an investment: specialized training for junior scientists; enabling a 

career path in modeling; conducting targeted workshops; and stimulating theory-focused 

publications. This investment pays off by informing the discussion of new acquisition 

methods, designing novel contrasts and biomarkers based on objective tissue characteristics, 

as well as by saving us enormous resources and time in not pursuing costly studies based on 

unsound quantitative methods.

To model or to represent?

If modeling is hard, and validation is even harder, why bother? As argued above, building 

and validating an adequate theory achieves an overarching scientific milestone, by 

identifying relevant tissue properties that manifest themselves in the voxel-wise MRI signal. 

This fundamental milestone, reflected in our ability to predict the response of the tissue to 

other independent measurements, unveils the information content of our acquisitions, and 

opens up the following practical avenues:

i. Modeling offers unforeseen insights into optimizing or discovering novel 

acquisitions and independent contrasts, feeding the next generation of technical 

MRI development;

ii. Unbiased estimation of relevant tissue parameters is key to the ultimate 

harmonization of measurements across vendors and sites, with a potential to 

achieve maximal possible statistical power and reproducibility in large-scale 

studies, limited only by the inherent biological variability;

iii. Building microstructural maps could connect our field in a whole new way to the 

basic biology and neuroscience, translating our fundamental insights into a new 

kind of multi-modal super-resolution microscopy.

Clinically though, one could argue that staying at the level of parsimonious representations 

could be sufficient – if we can robustly correlate empirical basis coefficients with pathology. 

The classic example of the diffusion coefficient drop in stroke (22) can be viewed as a case 

supporting this viewpoint. At the very least, limiting ourselves to representations allows us 

to stay intellectually honest yet already clinically useful in some cases.

It seems that the choice between modeling and representing depends on how ambitious we 

want to be. In a sufficiently complex pathology – e.g. Alzheimer’s disease or multiple 

sclerosis – the earliest-stage pathological processes should change the signal only in very 

subtle ways. Early detection effectively means amplifying these changes by some analysis 

scheme. This, formally, can be regarded as applying a certain nonlinear transformation to the 

measured data, as well as performing the measurement within the most optimal domain in 

the parameter space. One can intuitively expect that the more complex the measurement and 

the pathology, the wider the search space is for finding the most optimal data transformation 

and measurement paradigm, and the less chances a simple guess, or a basis coefficient, 
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would have. We can view biophysical modeling as a constructive path to uncover such a 

transformation together with suggesting optimal measurement parameters or even new 

measurement paradigms. While one can sometimes arrive at them by serendipity, or, 

possibly, by mining enormous data sets acquired using the broadest possible range of 

sequence settings and MR modalities, the history of science tells us that building our insight 

through a combination of theory and experiment is the most powerful and certain way of 

reaching this goal.

Fundamental or applied?

As a premise of our article, we posited that progress in microstructural mapping may hinge 

on our ability to recognize fundamental problems behind building applications. Making such 

distinction is easy, perhaps, only in retrospect. Here, our community is not an exception – 

the fundamental nature of the seemingly applied challenges has often been missed in other 

fields.

One may recall the “reductionist” trend (155) in the glory days of high-energy physics, to 

selectively classify only the elementary-particles and nuclear physics as “intensive” science, 

painting all other fields as “extensive”, with no fundamental problems to overcome, which 

often associated condensed matter physics with device engineering. Countering this trend, in 

the inspirational article “More is Different” (61) Philip Anderson formulated the hierarchical 

nature of science: “At each level of complexity entirely new properties appear, and the 
understanding of the new behaviors requires research which I think is as fundamental in its 
nature as any other.” Truly remarkable developments in condensed matter physics over the 

past half-century have proven this point decisively: Complexity both due to interactions 

between many particles, and due to effects of a disordered environment, has been understood 

to result in fundamentally new effective theories of emergent collective behavior. Besides, 

engineering the new generation of devices employing quantum information requires 

fundamental advances (156, 157).

Similarly, at the dawn of quantum theory a century ago, Planck’s formula for the spectral 

shape of the black-body radiation was first written down merely as a representation of 

experimental data (158, 159), where the quantum of energy was introduced as a 

computational trick to calculate the entropy of a continuous energy distribution. Meanwhile, 

Ritz attempted to explain the atomic spectra in the spirit of classical mechanics as 

eigenfrequencies of elementary elastic membranes (160, 161). We know today how far these 

efforts were from reality. In both cases, truly revolutionary progress only came when the 

fundamental physical assumptions behind the empirical formulas were fully appreciated.

Recognizing the fundamental problems early on will help us to adjust our strategy: Avoid 

premature optimization (in the words of Donald Knuth, “the root of all evil” (162)), and 

rather spend most of our efforts on understanding and validating. As we noted in the Theory 
section, in every kind of measurement, there exists only one correct theory/model, as 

opposed to many equivalent ways to represent a signal. This is why basic scientists spend so 

much time arguing about model assumptions. “To describe a signal”, any basis would do; to 

understand nature, only one model has meaning, even though its goodness-of-fit may not 

necessarily be superior to other representations in a routine measurement.
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What are the other fundamental challenges in our ever-changing field that are 

mischaracterized as merely applied hurdles? Do the modern neural-network-based 

approaches to image classification (163) and reconstruction (164) contain enough 

complexity, that “learning” itself can be regarded as a fundamentally new, emergent 

phenomenon (165)? Can one rigorously formulate the optimal ratio of time spent on 

(under)sampling the k-space (to localize images) vs. probing the microstructural information 

(e.g., by sampling the echo time, the q-space, etc) – aren’t we spending too much time 

localizing while not spending enough on probing microstructure?

Micro + macro: In search of convergence

The distinction between models and representations prompts looking from a different angle 

at the stimulating ideas of compressed sensing (166) and MR fingerprinting (167). From the 

present point, compressed sensing involves a search for the sparsest possible basis for 

representing the signal. In contrast, MR fingerprinting (MRF) is parameter estimation of a 

theory (e.g. expressed by the Bloch equation); this theory is used to generate a model (a 

library of fingerprints), with model fitting implemented in terms of an exhaustive library 

search.

For compressed sensing, while ad hoc sparce image representations have been useful, the 

best signal compression should be achieved when one uses the genuine biophysical model – 

the one containing only the relevant degrees of freedom (i.e., by definition, the minimal 

number of parameters, together with correct functional form for a given measurement 

technique). In other words, the genuine biophysical model is going to be sparser than any 
representation.

For the MRF, having an adequate theory is arguably even more crucial, as it serves as a 

foundation for the library-based parameter estimation. Both macroscopic effects due to 

hardware imperfections (168), and microstructural effects (169) making spin dynamics 

deviate from that based on simple Bloch equations, should affect the library and the 

estimated parameters. While we limited our discussion to dMRI (typically not part of MRF 

protocols), we belive that the overarching issues of rigorous modeling and validation are 

essential for the MRF development, e.g. when including effects of magnetization transfer 

and of the mesoscopic R2
∗ relaxation. A potentially exciting yet untested synergy could lie in 

novel acquisition/estimation paradigms, such as MRF, helping validate theories by providing 

densest possible data sampling. On the other hand, inadequate models used as basis for MRF 

libraries carry the danger of creating biased parameter maps in multiple modalities.

Overall, deriving and validating adequate theories is crucial for both compressed sensing and 

MRF. This realization adds a modern meaning to the timeless wisdom of Ludwig 

Boltzmann: There is nothing more practical than a good theory. This point of convergence 

between the microstructural modeling and the (macroscopic) image reconstruction puts an 

even stronger emphasis on developing and validating biophysical models, and on forming an 

interdisciplinary theory community focussed on quantifying tissue microstructure from 

multiple angles. We hope this potential synergy could bring together researchers from 

microstructure and image reconstruction, and would result in employing the sparsest 
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possible functional forms to achieve a qualitatively faster and more precise reconstruction of 

biophysical parametric maps directly, perhaps eventually bypassing the “weighted” images 

all together.

A universal language

Striving for the intellectual rigor – a prerequisite for developing adequate mathematical 

descriptions of natural phenomena – has benefited virtually every scientific field. The ability 

to define assumptions and build theories reflects an overall degree of progress in a given 

area, as well as helps connect it to the previously developed body of science. These 

connections can be incredibly powerful and enriching: when speaking the same 

mathematical language, seemingly distinct scientific disciplines can exchange knowledge. 

Eugene Wigner formulated this observation in terms of “the unreasonable effectiveness of 

mathematics in natural sciences” (170), referring to the appropriateness of mathematical 

formulation of the laws of nature as the empirical law of epistemology. He underscored that, 

while mathematical concepts are chosen not for their simplicity (often they are far from 

simple), they are rather employed “for their amenability to clever manipulations and to 

striking, brilliant arguments”. Biology still needs such a language, as it was insightfully and 

hilariously illustrated by addressing the question “Can a biologist fix a radio” (171). Poised 

between physics and biology, our MRI community may be in a unique position to convey a 

well-established rigorous language of the physical sciences into the life sciences.

Having made tremendous progress in building the engineering marvels that are the modern-

day MRI scanners, and in creating exquisite image processing and reconstruction tools, we 

are still trying to do what John Tanner had been doing already in the 1970s when quantifying 

microstructure of a frog muscle (5): modeling tissue as a simplified microgeometry, 

performing an NMR measurement, and estimating the model parameters. On second 

thought, it is not surprising – nothing fundamentally has changed in the way science is done: 

theory, parameter estimation from the measurement, and model validation were as 

fundamental to the scientific enterprise in the 1970s as they are now. Developing adequate 

models with the far more advanced measurement tools of today brings us back to our 

scientific roots.

Theory development and validation will connect us with the physical and the life sciences. 

Even if details of our hardware and acquisition may remain obscure to outsiders, our results, 

whenever sufficiently rigorous and expressed in the commonly accepted scientific terms, are 

bound to evoke interest from other branches of science. Borrowing methodology from 

physics, and quantitative measurements of tissue parameters from biology, will not just help 

us design methods that could turn our aspirations into clinical reality, but will also provide a 

universal language to share our successes with other fields, and will help our community 

occupy its rightful place at the crossroads of physics, chemistry, biology and neuroscience.
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Summary

To unleash the full potential of model-based microstructural mapping, we formulated and 

answered the two fundamental questions. The theoretical question (What is a model?) 

involves drawing a distinction between a theory, involving relevant microstructural 

degrees of freedom, and a representation, which is a mere decomposition of a 

measurement in a convenient basis. The experimental question (How to validate?) can be 

addressed by (i) uncovering functional forms of models specific to their defining physical 

assumptions, and (ii) predicting and comparing with the outcomes of “orthogonal” 
measurements that involve fundamentally the same physical degrees of freedom, but 

provide independent combinations of relevant parameters of the theory.

We believe that approaching microstructural challenges with an increased rigor and a 

logic of a basic science is not a luxury at this point, but a method of investigation 

necessary to reach tangible practical advances. We should strive to identify relevant 

degrees of freedom when interpreting any MRI measurement – in other words, listen to 

what nature offers, rather than insist on what we wish to have. This can be accomplished 

by changing the culture towards recognizing that microstructural mapping requires 

solving fundamental problems. This entails investing in basic research, i.e., in the 

modeling and validation studies, as key to future applications; focussing on calibration 

and reproducibility; educating a new generation of scholars in modern theory and 

validation methods; and actively building bridges with the broader scientific community 

beyond our regular ISMRM meetings and workshops, using theory and validation studies 

as a universal language transcending different fields. Other disciplines need us, and we 

need them.
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Figure 1. The exponentially increasing field of microstructural mapping
Shown is the number N of PubMed entries found with both “MRI” and “microstructure” in 

the title or abstract (search string: MRI[Title/Abstract] AND microstructure[Title/Abstract]). 
N(t) has doubled every 2.9 years for nearly two decades. Moreover, the fraction of 

microstructure papers within all MRI papers also grows exponentially, doubling every 4.4 

years (not shown). The inset validates the functional form of the exponentially increasing 

N(t). Deriving the effective theory behind this observation is beyond the scope of this work.
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Figure 2. Models are sketches of reality
For an illustration, Leonardo’s Mona Lisa plays the role of reality. Model 1 has obviously 

more features and may be given preference by computer algorithms (e.g. when minimizing 

the rms difference), but the majority of human observers (and perhaps really smart 

algorithms) will likely consider Model 2 as more meaningful. A theory here can be 

formulated as “this is a person”, which immediately defines the most relevant features 

(“degrees of freedom”), yielding Model 2. Making a sketch of a painting is analogous to 

coarse-graining: it is not just smoothing, but rather selecting the most meaningful features 

and disregarding the rest. The same operation is subconsciously performed by our brain 

when we look at a painting from afar.
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Figure 3. The mathematical flexibility of the biexponential representation
Fitting a biexponential function S = f1e−bD1 + f2e−bD2, with f1 + f2 = 1, to the noise-free 

Callaghan’s model (6) of diffusion inside isotropically distributed one-dimensional channels, 

with the exact signal expression (16, 35) shown in panel A. D|| is the diffusivity along the 

channels. The substantial mathematical difference in signal expressions does not prevent the 

biexponential function to achieve a very high fit quality (A). The inadequacy of the 

biexponential representation becomes apparent only for extremely large bD|| (B), or from the 

dependence of its fit parameters on the range of data used for fitting (C). In these 

simulations, 1001 b-values were uniformly distributed from 0 to bmax.
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Figure 4. Quality of fit alone does not validate a model: the wrong expression sometimes fits 
better than the true model
A biexponential signal S = 0.8e−1.2b + 0.2e−0.2b was computed for b-values from 0 to 3.5 in 

steps of 0.5 (all below the convergence radius (93) of the cumulant expansion (85)). Fitting 

quality of the three representations was compared over 10,000 realizations of additive 

Gaussian noise: the cumulant expansion S = S0 e−bD+kb2
 (terminated at the kurtosis term), 

the biexponential, and the stretched exponential function, with the number of adjustable 

parameters 3, 4 and 3, respectively. The initial values for the fitting of the biexponential and 

stretched exponential functions were generated using the ground truth. The distributions of 

the corresponding corrected Akaike information criterion (AICc) (172, 173) is shown for the 

increasing noise level (panels A to C). AICc represents χ2 penalized by the number of fit 

degrees of freedom; the smaller AICc, the better the fit quality. (A) AICc values prefer the 

ground truth (bi-exp) for extremely low noise. (B) Increase in the noise to more realistic 

levels makes the cumulant expansion perform better due to the fewer number of parameters. 

(C) For the clinically realistic SNR = 20, AICc for the correct model is the worst. In this 

case, the intrinsic inaccuracy of the representations is completely masked by the noise, 

therefore AICc is dominated by the penalty term for the number of degrees of freedom. 

Vertical solid lines in all panels show the mean of distributions, while vertical dashed lines 

show the corresponding theoretical estimates.
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Figure 5. Examples of nontrivial functional dependences suitable for model validation
(A) Deviation of diffusion coefficient in sand grains (115, 116) from its bulk value at short 

times is proportional to t (data falling onto a straight line for small t); such a scaling is a 

signature of the hard-walled restrictions (14). (B) Deviation of transverse relaxation from the 

monoexponential form with rate constant R2
∗ is characterized by the derivative dR2

∗/dt t−v at 

large t. The exponent v depends on the large-scale structural organization of tissue (122), 

with v = 3/2 for randomly placed impermeable spheres, and v = 2 for the so-called 

“maximally random jammed state” (174), in which no sphere can be moved independently 

from the others. Color lines show results of Monte Carlo simulations, solid black lines show 

corresponding analytical results and the dotted lines serve as eye guides for the predicted 

slope. (C) Water dMRI signal, averaged over diffusion directions, from white matter of four 

human subjects (colors) behaves as b−1/2 for large b (data from ref. (94)). This can be 

appreciated by the data falling on a straight line when plotted as a function of b−1/2. Black 

circles show the diffusion direction-averaged NAA signal from rat brain (data from ref. 

(35)), adjusted for the lower NAA diffusion coefficient and scaled by the T2-weighted intra-

axonal water fraction to match the human data, see ref. (94). The difference between the 

water and NAA curves at low b are due to the extra-axonal space (EAS) contribution; the 

matching b−1/2 behavior at large b illustrates qualitative similarity of water and NAA 

diffusion within practically impermeable “sticks” (zero-radius cylinders), while the EAS 

contribution becomes exponentially suppressed. (D) The signal in the Callaghan’s model 
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changes radically, becoming monoxeponential, when measured with the isotropic diffusion 

weighting (125–127).
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