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Abstract

Background: The Peruvian scallop, Argopecten purpuratus, is mainly cultured in southern Chile and Peru was introduced into
China in the last century. Unlike other Argopecten scallops, the Peruvian scallop normally has a long life span of up to 7 to 10
years. Therefore, researchers have been using it to develop hybrid vigor. Here, we performed whole genome sequencing,
assembly, and gene annotation of the Peruvian scallop, with an important aim to develop genomic resources for genetic
breeding in scallops. Findings: A total of 463.19-Gb raw DNA reads were sequenced. A draft genome assembly of 724.78 Mb
was generated (accounting for 81.87% of the estimated genome size of 885.29 Mb), with a contig N50 size of 80.11 kb and a
scaffold N50 size of 1.02 Mb. Repeat sequences were calculated to reach 33.74% of the whole genome, and 26,256
protein-coding genes and 3,057 noncoding RNAs were predicted from the assembly. Conclusions: We generated a
high-quality draft genome assembly of the Peruvian scallop, which will provide a solid resource for further genetic breeding
and for the analysis of the evolutionary history of this economically important scallop.
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Data Description
Introduction

The Peruvian scallop (Argopecten purpuratus), also known as the
Chilean scallop, is a medium-sized bivalve with a wide distribu-
tion in Peru and Chile [1]. In Chile, the cultured scallops reach
a commercial size of around 9 cm in shell height within 14–16
months [2]. It is a relatively stenothermic species as its natu-
ral habitat is largely under the influence of upwelling currents
from Antarctica [3]. Unlike other Argopecten scallops, the Peru-
vian scallop normally has a long life span of up to 7–10 years [4,
5]. This scallop was introduced into China in the late 2000s and

has played an important role in stock improvement of Argopecten
scallops via interspecific hybridization with bay scallops [6, 7].

Whole genome sequencing

Genomic DNA was extracted from an adductor muscle sample
of a single A. purpuratus (Fig. 1), which was obtained from a lo-
cal scallop farm in Laizhou, Shandong Province, China. A whole
genome shotgun sequencing strategy was then applied. Briefly,
six libraries with different insert length (250 bp, 450 bp, 2 kb, 5
kb, 10 kb, and 20 kb) were constructed according to the stan-
dard protocol provided by Illumina (San Diego, CA, USA). In de-
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Figure 1: Picture of a representative Peruvian scallop in China.

tail, the DNA sample was randomly broken into fragments us-
ing covaris ultrasonic fragmentation apparatus. The library was
prepared following end repair, adding sequence adaptor, purifi-
cation, and polymerase chain reaction amplification. The mate-
pair libraries (2 kb, 5 kb, 10 kb, and 20 kb) and paired-end libraries
(250 bp, 450 bp) were all sequenced on the Illumina HiSeq4000
platform with paired-end 150 bp. In addition, SMRTbell libraries
were prepared using either 10-kb or 20-kb preparation protocols.
Briefly, the DNA sample was sheared by Diagenode Megarup-
tor2 (Belgium), the SMRTbell library was produced by ligat-
ing universal hairpin adapters onto double-stranded DNA frag-
ments. Adapter dimers were efficiently removed using Pacific
Biosciences’ (PacBio’s) MagBead kit. The final step of the protocol
was to remove failed ligation products through the use of exonu-
cleases. After the exonuclease and AMPure PB purification steps,
sequencing primer was annealed to the SMRTbell templates, fol-
lowed by binding of the sequence polymerase to the annealed
templates. Subsequent sequencing was performed on PacBio Se-
quel instrument with SequelTM Sequencing Kit 1.2.1 (Pacific Bio-
sciences, California, USA). Finally, the 10X Genomics library was
constructed and sequenced with paired-end 150 bp on the Illu-
mina Hiseq platform. The ChromiumTM Genome Solution (10X
Genomics, USA) massively partitions and molecularly bar codes
DNA using microfluidics, producing sequencing-ready libraries
with >1000,000 unique bar codes. In total, 463.19 Gb raw reads
were generated, including 75.72, 70.22, 19.21, 45.71, 28.34, 11.78,
18.01, and 194.20 Gb from the 250-bp, 450-bp, 2-kb, 5-kb, 10-
kb, and 20-kb libraries, PaBbio sequencing library, and 10X Ge-
nomics library, respectively. The raw reads were trimmed before
being used for subsequent genome assembly. For Illumina HiSeq
sequencing, the adaptor sequences, the reads containing more
than 10% ambiguous nucleotides, as well as the reads contain-
ing more than 20% low-quality nucleotides (quality score less
than 5),were all removed. For PacBio sequencing, the generated
polymerase reads were first broken at the adaptor positions, and
the subreads were generated after removal of the adaptor se-
quences. The subreads were then filtered by a minimum length
= 50.

Table 1: Summary of the Peruvian scallop genome assembly and
annotation

Genome assembly Parameter

Contig N50 size (kb) 80.11
Scaffold N50 size (Mb) 1.02
Estimated genome size (Mb) 885.29
Assembled genome size (Mb) 724.78
Genome coverage () 303.83
Longest scaffold (bp) 11,125,,544
Genome annotation Parameter
Protein-coding gene number 26,256
Average transcript length (kb) 10.53
Average CDS length (bp) 1,418.29
Average intron length (bp) 1,505.92
Average exon length (bp) 201.09
Average exons per gene 7.05

Estimation of the genome size and sequencing coverage

The 17-mer frequency distribution analysis [8] was performed
on the remaining clean reads to estimate the genome size of the
Peruvian scallop using the following formula: genome size = k-
mer number/peak depth. Based on a total number of 6.22 1010

k-mers and a peak k-mer depth of 69, the estimated genome
size was calculated to be 885.29 Mb (Table 1) and the estimated
repeat sequencing ratio was 33.74%.

De novo genome assembly and quality assessment of
A. purpuratus genome

All the pair-end Illumina reads were first assembled into scaf-
folds using Platanus v1.2.4 (Platanus, RRID:SCR 015531) [9], and
the gaps were then filled by GapCloser v1.12-r6 (GapCloser, RRID:
SCR 015026) [10]. Subsequently, the PacBio data were used for
additional gap filling by PBJelly v14.1 (PBJelly, RRID:SCR 012091)
with default parameters [11], and then all of the Illumina reads
were used to correct the genome assembly by Pilon v1.18 (Pi-
lon, RRID:SCR 014731) for two rounds [12]. After that, the 10X
linked-reads were used to link scaffolds by fragScaff 140 324.1
[13]. First, in order to solve the issue of heterozygosity, in our
assembly process we chose 19-kmer to draw k-mer distribution
histogram and classified all the kmers into homozygous kmer
and heterozygous kmer according to the coverage depth. Sec-
ond, we utilized 45-kmer to construct the de Bruijn figure and
combine the bubbles for heterozygous sites, according to the se-
quences with longer length and deeper coverage depth. Then,
the pair-end information was used to determine the connec-
tion between the heterozygous parts and filter the contigs lack-
ing support. Finally, the heterozygous contigs and homozygous
contigs were distinguished based on contig coverage depth. Af-
ter assembly, the reads from short insert length libraries were
mapped onto the assembled genome. Only one peak was ob-
served in the sequencing depth distribution analysis with the
average sequencing depth of 148.2×, which is consistent with
the sequencing depth, indicating high quality of the assembled
scallop genome. Finally, a draft genome of 724.78 Mb was as-
sembled (accounting for 81.87% of the estimated genome size of
885.29 Mb), with a contig N50 size of 80.11 kb and scaffold N50
size of 1.02 Mb (Table1).

With this initial assembly, we mapped the short insert li-
brary reads onto the assembled genome using BWA 0.6.2 (BWA,
RRID:SCR 010910) software [14] to calculate the mapping ratio
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Figure 2: Distribution of genes in different species. Abbreviations: Aca, Aplysia californica; Apu, Argopecten purpuratus; Bfl, Branchiostoma floridae; Bpl, Bathymodiolus

platifrons; Cel, Caenorhabditis elegans; Cgi, Crassostrea gigas; Cte, Capitella teleta; Dme, Drosophila melanogaster; Hsa, Homo sapiens; Hdi, Haliotis discus; Hro, Helobdella robusta;

Lan, Lingula anatina; Lgi, Lottia gigantea; Mph, Modiolus philippinarum; Obi, Octopus bimaculoides; Pfu, Pinctada fucata; Pye, Patinopecten yessoensis; Tca, Tribolium castaneum.

and assess the assembly integrity. In summary, 91.05% of the
short reads were mapped onto the assembled genome with a
coverage of 89.40%, indicating high reliability of genome as-
sembly. CEGMA v2.5 (Core Eukaryotic Genes Mapping Approach;
CEGMA, RRID:SCR 015055) defines a set of conserved protein
families that occur in a wide range of eukaryotes and presents
a mapping procedure to accurately identify their exon-intron
structures in a novel genomic sequence [15]. A protein is clas-
sified as complete if the alignment of the predicted protein to
the HMM profile represents at least 70% of the original KOG do-
main, or otherwise classified as partial. Through mapping to the
248 core eukaryotic genes, 222 genes (89.52%) were identified.
BUSCO v3 (Benchmarking Universal Single-Copy Orthologs; RR
ID:SCR 015008) provides quantitative measures for the assess-
ment of genome assembly completeness, based on evolutionar-
ily informed expectations of gene content from near-universal
single-copy orthologs [16]. We confirmed that 89% of the 843
single-copy genes were identified, indicating good integrity of
the genome assembly.

Repeat sequence analysis of the genome assembly

We searched transposable elements in the assembled genome
through ab-initio and homology-based methods. For the first
method, we applied RepeatModeler 1.0.4 (RepeatModeler, RRID:
SCR 015027) [17] (the parameter set as “–engine db wublast”) to
build a specific repeat database. For the second method, we used
known repeat library (Repbase) [18] to identify repeats with Re-
peatMasker open-4.0 [19] (the parameter set as “-a -nolow -no is
-norna -parallel 3 -e wublast –pvalue 0.0001”) and RepeatPro-
teinMask (the parameter set as “-noLowSimple -pvalue 0.0001 -
engine wublast”) [19]. Tandem repeats finder 4.04 (TRF) was used
to find tandem repeats with the parameters setting as “Match =
2, Mismatching penalty = 7, Delta = 7, PM = 80, PI = 10, Minscore
= 50, MaxPeriod = 2000” [20]. Finally, we determined that the to-
tal repeat sequences are 294,496,811 bp, accounting for 40.63%
of the assembled genome, and including 11.46% of tandem re-
peats, which is consistent with our above-mentioned estimation
(Table2).

Table 2: The prediction of repeat elements in the Peruvian scallop
genome

Type Repeat size (bp) % of genome

TRF 83,037,380 11.46
RepeatMasker 237,471,691 32.76
RepeatProteinMask 21,719,425 3.00
Total 294,496,811 40.63

Gene annotation

Annotation of protein coding genes
The annotation strategy for protein-coding genes integrated de
novo prediction with homology and transcriptome data-based
evidence. Homology sequences from African malaria mosquito
(Anopheles gambiae), ascidian (Ciona intestinalis), Florida lancelet
(Branchiostoma floridae), fruit fly (Drosophila melanogaster), human
(Homo sapiens), leech (Helobdella robusta), nematode (Caenorhab-
ditis elegans), octopus (Octopus bimaculoides), owl limpet (Lottia gi-
gantea), Pacific oyster (Crassostrea gigas), and sea urchin (Strongy-
locentrotus purpuratus) were downloaded from Ensemble [21]. The
protein sequences of homology species were aligned to the as-
sembled genome with TBLASTn (Basic Local Alignment Search
Tool; e-value ≤10−5) [22], and gene structures were predicted
with GeneWise 2.4.1 (GeneWise, RRID:SCR 015054) (the param-
eter set as “-genesf”) [23]. The transcriptome data were gener-
ated from adductor muscle, hepatopancreas, and mantle on Il-
lumina HiSeq4000 platform. Tophat 2.1.1 (the parameter set as
“–max-intron-length 500 000 -m 2 –library-type fr-unstranded”)
[24] was utilized to map the transcriptome data onto genome
assembly and then Cufflinks 2.1.0 (Cufflinks, RRID:SCR 014597),
the parameter set as “–multi-read-correct”[25], was used to gen-
erate gene model according to the pair-end relationships and the
overlap between aligned reads. The de novo prediction of genes
was carried out with four programs: Augustus 3.0.3 (Augus-
tus: Gene Prediction, RRID:SCR 008417), the parameter set as “-
uniqueGeneId true –noInFrameStop = true –gff3 on –genemodel
complete –strand both” [26]; GENSCAN (GENSCAN, RRID:SCR 0
12902), with default parameter [27]; GlimmerHMM 3.0.2 (Glim-
merHMM, RRID:SCR 002654), the parameter set as ” -f -g” [28];
and SNAP (the default parameter) [29]. All evidences of the
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gene model were integrated using EvidenceModeler r2012-06-25
(EVM) [29]. Finally, we identified 26,256 protein-coding genes in
the Peruvian scallop genome. In detail, 26,513 genes were pre-
dicted through the de novo method, 19,394 genes were annotated
by RNA transcripts or raw RNA reads, and 15,608 genes were
supported by homolog evidences. The average transcript length,
CDS length, and intron length were 10,534 bp, 1,418 bp, and 1,505
bp, respectively (Table1).

Gene functional annotation
Gene functions were predicted from the best BLASTP (e-value
≤10−5) hits in SwissProt databases [30]. Gene domain annota-
tion was performed by searching the InterPro (InterPro, RRID:SC
R 006695) database [31]. All genes were aligned against Kyoto En-
cyclopedia of Genes and Genomes (KEGG, RRID:SCR 012773) [32]
to identify the best hits for pathways. Gene ontology terms for
genes were obtained from the corresponding InterPro entry [33].
Finally, among these annotated genes, 70.3% of encoded pro-
teins showed homology to proteins in the SwissProt database,
91.1% were identified in the nonredundant database, 70.4% were
identified in the KEGG database, 72.1% were identified in the In-
terPro database, and 92.1% could be mapped onto the functional
databases.

Noncoding RNA annotation
The noncoding RNA genes, including miRNAs, rRNAs, snRNAs,
and tRNAs, were identified. The tRNAscan-SE 2.0 (tRNAscan-SE,
RRID:SCR 010835) software with eukaryote parameters [34] was
used to predict tRNA genes. The miRNA and snRNA genes in
the assembled genome were extracted by INFERNAL 1.1.2 soft-
ware [35] against the Rfam (Rfam, RRID:SCR 007891) database
[36] with default parameters. Finally, 1132 miRNAs, 1664 tRNAs,
41 rRNAs, and 220 snRNAs were discovered from the Peruvian
scallop genome.

Global gene family classification

Protein-coding genes from the Peruvian scallop and other se-
quenced species, including Brachiopod (Lingula anatina), brown
mussel (Modiolus philippinarum), California sea hare (Aplysia
californica), cold seep mussel (Bathymodiolus platifrons), Florida
lancelet (B. floridae), fruit fly (D. melanogaster), human (H. sapiens),
leech (H. robusta, Capitella teleta), nematode (C. elegans), octopus
(O. bimaculoides), owl limpet (L. gigantea), Pacific abalone (Haliotis
discus), Pacific oyster (C. gigas), pearl oyster (Pinctada fucata), red
flour beetle (Tribolium castaneum), and Yesso scallop (Patinopecten
yessoensis) were analyzed. All data were downloaded from En-
semble [21] or National Center for Biotechnology Information
(NCBI) [37]. For each protein-coding gene with alternative splic-
ing isoforms, only the longest protein sequence was kept as the
representative.

Gene family analysis based on the homolog of gene se-
quences in related species was initially implemented by the
alignment of an “all against all” BLASTP (with a cutoff of 1e-
7) and subsequently followed by alignments with high-scoring
segment pairs conjoined for each gene pair by TreeFam 3.0
[38]. To identify homologous gene pairs, we required more than
30% coverage of the aligned regions in both homologous genes.
Finally, homologous genes were clustered into gene families
by OrthoMCL-5 (OrthoMCL DB: Ortholog Groups of Protein Se-
quences, RRID:SCR 007839) [39] with the optimized parameter
of “-inflation 1.5.”All protein-coding genes from the 18 examined
genomes were used to assign gene families. In total, the protein-

Figure 3: Bootstrap support of phylogenetic tree. A maximum likelihood tree was
constructed using RAxML based on 108 single-copy protein-coding genes of the

related species. The total number of bootstrap was 100.

coding genes were classified into 45,268 families and 108 strict
single-copy orthologs (Fig.2).

Phylogenetic analysis

Evolutionary analysis was performed using these single-copy
protein-coding genes from the 18 examined species. Amino acid
and nucleotide sequences of the ortholog genes were aligned us-
ing the multiple alignment software MUSCLE (MUSCLE, RRID:
SCR 011812) with default parameters [40]. A total number of
108 single-copy ortholog alignments were concatenated into a
super alignment matrix of 242,085 nucleotides. A maximum
likelihood method deduced tree was inferred based on the
matrix of nucleotide sequences using RAxML v8.0.19 (RAxML,
RRID:SCR 006086) with default nucleotide substitution model-
PROTGAMMAAUTO [41]. Clade support was assessed using boot-
strapping algorithm in the RAxML package with 100 alignment
replicates (Fig. 3) [42]. The constructed phylogenetic tree (Fig. 3)
indicated that the Peruvian scallop and Yesso scallop were clus-
tered closely first and then clustered with oysters and mussels,
which is in consistent with their putative evolution relationships
[43-46].

The estimation of divergence time

The species divergence times were inferred with MCMCTree in-
cluded in PAML v4.7a (PAML, RRID:SCR 014932) [47] with the pa-
rameter set as “burn-in = 1000, sample-number = 1000 000,
sample-frequency = 2,”and evolutionary analysis was per-
formed using single-copy protein-coding genes from the 18
examined species. Based on the phylogenetic tree (Fig.3), the
molecular clock was calibrated based on the fossil records ac-
cording to previous studies [48-50]. Finally, we estimated that
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the divergence between the Peruvian scallop and Yesso scallop
happened at 113.6 million years ago.

Conclusions

In the present study, we report the first whole genome se-
quencing, assembly, and annotation of the Peruvian scallop (A.
purpuratus), an economically important bivalve in Chile, Peru,
and China. The assembled draft genome of 724.78 Mb accounts
for 81.87% of the estimated genome size (885.29 Mb). A total
of 26,256 protein-coding genes and 3,057 noncodingRNAs were
predicted from the genome assembly. This genome assembly
will provide solid support for in-depth biological studies. With
the availability of these genomic data, subsequent development
of genetic markers for further genetic selection and molecular
breeding of scallops could be realized. The current genome data
will also facilitate genetic analyses of the evolutionary history of
the abundant scallops in the world.

Availability of supporting data

Supporting data are available in the GigaScience database [52].
Raw data have been deposited in NCBI with the project accession
PRJNA418203. BioSample accessions: SAMN08022140 (genome);
SAMN08731415 (transcriptome; muscle); SAMN08731411 (tran-
scriptome; mantle); and SAMN08731410 (transcriptome; hep-
atopancreas).
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chordate genomes and deuterostome origins. Nature
2015;527(7579):459–65.

49. Benton M, Donoghue P, Asher R. Calibrating and constrain-
ing molecular clocks. In: H SB Kumar S (eds), The Timetree
of Life. Oxford University Press, 2009, pp. 35–86.

50. Mergl M, Massa D, Plauchut B. Devonian and carbonifer-
ous brachiopods and bivalves of the Djado sub-basin (North
Niger, SW Libya). Journal of the Czech Geological Society
2001;46(3):169–88.

51. Erwin DH, Laflamme M, Tweedt SM, et al. The Cambrian co-
nundrum: early divergence and later ecological success in
the early history of animals. Science 2011;334(6059):1091–7.

52. Li C, Liu X, Liu B, et al. Supporting data for “draft genome
of the Peruvian scallop Argopecten purpuratus.” GigaScience
Database 2018. http://dx.doi.org/10.5524/100419

http://dx.doi.org/10.5524/100419

