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Abstract

Motivation: With the prevalent usage of microarray and massively parallel sequencing, numerous

high-throughput omics datasets have become available in the public domain. Integrating abundant

information among omics datasets is critical to elucidate biological mechanisms. Due to the high-

dimensional nature of the data, methods such as principal component analysis (PCA) have been

widely applied, aiming at effective dimension reduction and exploratory visualization.

Results: In this article, we combine multiple omics datasets of identical or similar biological hy-

pothesis and introduce two variations of meta-analytic framework of PCA, namely MetaPCA.

Regularization is further incorporated to facilitate sparse feature selection in MetaPCA. We apply

MetaPCA and sparse MetaPCA to simulations, three transcriptomic meta-analysis studies in yeast

cell cycle, prostate cancer, mouse metabolism and a TCGA pan-cancer methylation study. The result

shows improved accuracy, robustness and exploratory visualization of the proposed framework.

Availability and implementation: An R package MetaPCA is available online. (http://tsenglab.bio

stat.pitt.edu/software.htm).

Contact: ctseng@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput experimental techniques such as microarray and

next-generation sequencing have been widely applied in biomedical

research to monitor genome-wide DNA, RNA and epigenetic mo-

lecular activities and to detect disease-associated events or bio-

markers (Bhattacharya and Mariani, 2009). As the experimental

costs have dropped over the years, tremendous amounts of data

have been generated and accumulated in public data depositories in

the past two decades (e.g. Gene Expression Omnibus (GEO) and

Sequence Read Archive (SRA) from NCBI, and ArrayExpress from

EBI). Due to high experimental cost, and/or limitation of clinical tis-

sue access, individual labs usually generate omics datasets with small

to moderate sample sizes (e.g. n¼40–100). Statistical power and re-

producibility of such small-n-large-p studies has long been a concern

in the field. For example, prognostic tests in breast cancer that are

generated based on genomic analyses have generally underper-

formed and only a few have proven reliable in clinical utility

(Domany, 2014). An increasingly popular solution is to search the

literature, seek similar datasets (of similar design and biological

hypothesis) and perform data integration. In this context, the

analytical questions and methods are analogous to traditional meta-

analysis (Li and Tseng, 2011; Tseng et al., 2012). Since the micro-

array boom of the late 90 s, a convention has developed which

displays genes on the rows and samples on the columns, which is in
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contrary to conventional practices in statistics. Under this data lay-

out convention, multi-cohort data integration is often called ‘hori-

zontal omics meta-analysis’ since datasets are laid out horizontally

(Tseng et al., 2012). In contrast to horizontal meta-analysis, several

large consortia (e.g. the Cancer Genome Atlas, TCGA) have gener-

ated multiple types of -omics data using samples in a single cohort.

The datasets are aligned vertically and such data integration brings

many new statistical challenges. These two types of omics data inte-

gration are illustrated in Supplementary Figure S1. Interested read-

ers can refer to Richardson et al. (2016) for detailed reviews. In this

article, we focus on horizontal meta-analysis, a relevant and prac-

tical issue for many individual labs which generate data of moderate

sample size and need to combine with data from other labs. To date,

methods for omics meta-analysis mostly focus on identifying differ-

entially expressed (DE) genes or pathways. Methodologies for other

types of statistical analysis, such as clustering (Huo et al., 2016),

classification (Kim et al., 2016), dimension reduction, network ana-

lysis and pattern recognition are less addressed in the field. In this

article, we propose a meta-analytic PCA framework (MetaPCA) for

effective dimension reduction by combining multiple transcriptomic

(or epigenetic) studies.

Dimension reduction for high-dimensional data plays a crucial

role for down-stream pattern recognition, classification and cluster-

ing. Despite the development of many powerful dimension reduction

techniques such as factor analysis, independent component analysis,

projection pursuit, multidimensional scaling, nonnegative matrix

factorization and partial least squares, principal component analysis

(PCA) is probably the most classical and widely used dimension re-

duction method in daily data mining. It is an optimal linear projec-

tion technique in Euclidean space in the mean-squared error sense,

and the resulting eigenvectors are weighted linear vectors of all fea-

tures. Since it is well acknowledged that only a small subset of fea-

tures are dominantly related to the genomic transcriptomic studies,

including all features possibly undermines robustness and interpret-

ability in the high-dimensional data. As a result, many variations of

sparse PCA methods have been proposed in the literature (Hoyle

and Rattray, 2004; Journée et al., 2010; Witten et al., 2009; Zou

et al., 2006) for sparse selection of effective features. In particular,

Zou et al. (2006) developed a sparse PCA approach using elastic net

(eNet) penalty and Witten et al. (2009) proposed an alternative ap-

proach via penalized matrix decomposition (PMD); we will extend

these two methods to formulate sparse MetaPCA in this article.

We use the following real example of mouse metabolism tran-

scriptomic data (details shown later in Section 3.2.3) to demonstrate

the motivation of MetaPCA. The deficiency of two enzymes ‘very

long chain acyl-CoA dehydrogenase (VLCAD)’ and ‘long chain acyl-

CoA dehydrogenas (LCAD)’ are known to cause metabolic diseases

in children. Wild-type (WT), LCAD-deficient and VLCAD-deficient

mice samples were sacrificed and four different types of tissues

[brown fat (Brown), heart (Heart), liver (Liver) and skeleton (Ske)]

were harvested for microarray transcriptomic experiments (see

Supplementary Table S1). Figure 1A shows projections of each data-

set (on the columns) to two-dimensional eigen-space that were ob-

tained from each dataset (on the rows). When a study was projected

onto its own eigen-space (diagonal plots in solid rectangles of

Fig. 1A), heart and skeleton tissues appeared to have clear separ-

ation between the three genotyping groups (circle for WT, star for

VLCAD and square for LCAD), while liver tissue had the worst sep-

aration. Particularly noted is that each study generated different

eigen-spaces that are difficult for further biological investigation. It

naturally raises three meta-analysis questions: (i) Can we develop a

MetaPCA algorithm to combine information from all four

transcriptomic studies and generate a meaningful common eigen-

space? (i.e. directly merging studies is not appropriate due to a po-

tential study design discrepancy and batch effect issue). (ii) To im-

prove model interpretation, can regularization help variable

selection in the MetaPCA dimension reduction? (iii) Does the com-

mon eigen-space from MetaPCA provide more effective dimension

reduction (e.g. in terms of accuracy and robustness of classification

and pattern recognition)? For example, Figure 1B shows a MetaPCA

result [under the sum of squared cosines (SSC) criterion to be intro-

duced later] that projects all four studies onto a common eigen-

space. Samples of three genotypes are generally separated with more

distinguishable patterns in all four tissues. (See Mouse Metabolism

Data for more details later).

In the following, we will develop two MetaPCA frameworks by

decomposing sum of variance (SV) or maximizing sum of squared

cosines (SSC). The eNet and PMD regularization methods are

applied to facilitate sparse MetaPCA. We will perform simulations

to compare accuracy and robustness of MetaPCA with those of sin-

gle study PCA and an existing method JIVE (Lock et al., 2013). We

will show applications of MetaPCA to three transcriptomic ex-

amples from yeast cell cycle, prostate cancer, mouse metabolism and

methylation data from TCGA pan-cancer studies. Finally, conclu-

sion and discussion will be presented.

2 Materials and methods

2.1 MetaPCA via sum of variance decomposition
Let X mð Þ be an observed p� n mð Þ data matrix of sample size n mð Þ and

p features for study m (1 � m � M). Denote by S mð Þ the maximum

likelihood (ML) estimate of the p�p covariance matrix X mð Þ of

X mð Þ. To test whether X mð Þ (1 � m � M) share a common eigen-

vector space, Flury (1984) considered a null hypothesis, H0: LTX mð Þ

A

B

Fig. 1. Dimension reduction via (A) individual study PCA and (B) MetaPCA

(SSC), over the four mouse metabolism transcriptomic studies. The x-axis

and y-axis refer to the first and second principal component projection. Solid

circle, star and square symbols indicate wild-type (WT), very longchain

acyl-coenzyme A dehydrogenase (VLCAD), and longchain acyl-coenzyme A

dehydrogenase (LCAD) mutations, respectively. Brown represents brown fat

tissue and Ske represents skeleton tissue
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L ¼ K mð Þ (1 � m � M), where L is the p�p common eigenvector

matrix, and K mð Þ is the (study specific) diagonal eigenvalue matrix

of study m. Flury and Gautschi (1986) developed an algorithm

(known as FG algorithm) to compute the maximum likelihood esti-

mate of the common eigenvectors to circumvent high computational

cost of the ML estimate and to perform likelihood ratio test.

To further alleviate the computation, Krzanowski (1984) proposed

a simple alternative to estimate L by LT
PM

m¼1 S mð Þ
� �

L ¼ K,

where L and K are the eigenvector and eigenvalue matrix of

T ¼
PM

m¼1 S mð Þ. In the application of omics data, expression values

of different studies are often generated from different experimental

platforms and are of different measurement scale. As a result,

the scales of S mð Þ are incomparable and we propose a weighted sum

of covariance matrices: TSV ¼
PM

m¼1 w mð ÞS mð Þ, where w mð Þ is the re-

ciprocal of the largest eigenvalue of S mð Þ. The common principal

components L are calculated from the eigen-decomposition of

TSV : LT TSV
� �

L ¼ K and K top common PCs should be retained for

down-stream analysis. Selection of the optimal K will be described

later in Section 2.4.

2.2 MetaPCA via sum of squared cosine maximization
Suppose we take the top j mð Þ eigenvectors of study m (1 � m � M)

and denote by V mð Þ ¼ ðv mð Þ
1 ; . . . ; v

mð Þ
j mð Þ Þ 2 Rp�j mð Þ

the resulting eigenvec-

tor matrix. Let b 2 Rp be an arbitrary unit vector in the p-dimen-

sional space and d mð Þ be the angle between b and the vector most

nearly parallel to it in the eigen-space spanned by V mð Þ. MetaPCA via

sum of squared cosine (SSC) seeks the optimal vector b such that the

sum of angles (
P

m d mð Þ) is minimized. The following theorem for-

mally states the objective and the algorithm.

Theorem 1. Let b 2 Rp be an arbitrary unit vector in the p-dimen-

sional space and d mð Þ be the angle between b and the vector most

nearly parallel to it in the eigen-space spanned by V mð Þ. The optimal

vector b maximizing SSC ¼
PM

m¼1 cos2d mð Þ is given by the eigenvec-

tor b1 corresponding to the largest eigenvalue k1 of TSSC ¼
PM

m¼1

V mð ÞV mð ÞT (Krzanowski, 1979).

The proof for this theorem is given in Supplementary notes.

Geometrical illustration of maximizing the sum of squared cosines

(SSC) for a common principal component space is given in Figure 2.

In Figure 2A, we show a simple example with p¼3 dimensions and

M¼2 studies combined. In each study, the first eigenvector (g1 and

g2) was chosen to form one-dimensional eigen-space (j 1ð Þ ¼ j 2ð Þ ¼ 1).

For an arbitrary vector b (represented by the solid black vector), the

dashed grey lines are obtained by parallel shifting b such that it

intersects with g1 and g2. The angels between b and g1 and between

b and g2 are d1 and d2. It can be easily shown that the optimal b

in SSC sense is chosen as g1 þ g2ð Þ=jjg1 þ g2jj. Figure 2B demon-

strates a more complicated example with p¼3, M¼3 and

j 1ð Þ ¼ j 2ð Þ ¼ j 3ð Þ ¼ 2. The three 2D planes represent the eigen-spaces

from M¼3 studies. For a arbitrary vector b, d 1ð Þ; d 2ð Þ, and d 3ð Þ rep-

resent the angles of b to each eigen-space. Theorem 1 provides an al-

gorithm to identify the optimal b that best conforms with the three

eigen-spaces in the SSC sense. In an extreme and ideal situation that

the eigen-spaces have overlap, b will be chosen from the overlap and

optimal SSC ¼M ¼ 3ð Þ. To achieve an effective dimension reduc-

tion in the meta-analytic framework, we expect to find an effective b

such that the angles (d 1ð Þ; . . . ; d Mð Þ) are small and SSC is large in real

applications.

Theorem 2 in Supplementary notes, extends Theorem 1 to detect

subsequent eigen-vectors orthogonal to the previously identified op-

timal vector. For example, the eigenvector b2 corresponding to the

second largest eigenvalue of TSSC will give the direction orthogonal

to b1 and
PM

m¼1 cos2d mð Þ is maximized. As a result, taking the top K

eigenvectors of TSSC gives the K-dimensional common eigen-space

of the M studies.

In summary, the second MetaPCA framework motivated by SSC

criterion proceeds as below. The top j mð Þ eigenvectors are calculated

from study m to form eigenvector matrix V mð Þ. We then perform

eigen-decomposition on TSSC ¼
PM

m¼1 V mð ÞV mð ÞT and select the top

K eigenvectors to form the meta-analytic common eigen-space:PM
m¼1 V mð ÞV mð ÞT

� �
BSSC ¼ K�BSSC, where V mð Þ is a matrix consisting

of j mð Þ leading eigenvectors, K� is a diagonal eigenvalue matrix and

BSSC ¼ bSSC
1 ; . . . ; bSSC

K

� �
contains the top K eigenvectors. To select

j mð Þ for study m (1 � m � M), we suggest (from our experience)

the choice of minimal j mð Þ such that PC projection explains >80%

of total variance for study m. Strategy to determine the optimal

K will be discussed in Section 2.4.

2.3 Variable selection of MetaPCAs (sparse MetaPCA)
Classical PCA produces loadings on all features. In many high-

dimensional applications, a vast amount of noise features are

present in the data. Failure to enforce sparsity (i.e. enforce zero esti-

mates to noise features) by feature selection can undermine effective

dimension reduction and hamper model interpretability. In this sub-

section, we introduce regularized MetaPCA frameworks (called

sparse MetaPCA) for variable selection, for which we consider two

popular sparse PCA methods: (i) regression-type sparse PCA to-

gether with the elastic net penalty (eNet) (Zou et al., 2006). (ii)

sparse PCA based on penalized matrix decomposition (PMD)

(Witten et al., 2009). Supplementary Table S4 shows four sparse

MetaPCA methods by considering two MetaPCA objective formula-

tion (SV and SSC) and two regularization methods (eNet and PMD).

We will compare the four methods by simulation to recommend the

best choice for practice.

2.4 Parameter selection
To determine the optimal dimension K, scree plot (Cattell, 1966)

and an additional benchmark are used. In scree plot, eigenvalues are

sorted in decreasing order on the y-axis. Selection of the optimal

K is determined by an elbow point, at which the decreasing trend is

declared as flat when d i; iþ 1ð Þ < D, where d i; iþ 1ð Þ ¼ e ið Þ�e iþ1ð Þ
e ið Þ ;

D ¼ 0:1 and e(i) refers to the eigenvalue of the ith leading principal

component. In high-dimensional data, a majority of eigenvalues are

small and similar in the tail (Sill et al., 2015). This criterion is usu-

ally effective to find the top K eigenvectors that are distinguishable

from the noisy eigenvalues in the tail. Supplementary Figure S2

shows an example of scree plot. We will select K¼5 in the simula-

tion scenario (See the caption of Supplementary Fig. S2).

Fig. 2. Geometrical illustrations for finding common principal component

space using SSC criterion
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The penalization constant k or kj is a parameter that controls the

number of effective features in the dimension reduction. To select

the parameter, we propose a two-stage sequential searching strategy.

We first determine the optimal K from (non-sparse) MetaPCA via

scree plot, and given fixed K, we select the best k via the scree plot

based on G(a, b), a proportion of increased explained variance as a

benchmark, where G a; bð Þ ¼ f bð Þ�f að Þ
f bð Þ and f(z) is explained variance

of PC when the z number of non-zero features of eigenvector matrix

are applied. Here, note that the number of non-zero features corres-

ponds to size of k. Two arbitrary k values are taken to produce a

and b non-zero features of eigenvector matrix such that

G a;bð Þ < D, where D ¼ 0:1; 0 � a; b � P�, a<b and P* the num-

ber of entire non-zero features. We randomly generated datasets

using the same scenario in Section 3.1.1. Supplementary Figure

S3A–D shows that the stopping rule automatically chooses 20 non-

zero features of true eigenvector matrix, suggesting that the selected

penalization constant k correctly leaves the true 20 non-zero features

(See Supplementary Fig. S3).

2.5 An existing method (JIVE) for comparison
In an effort for vertical integration of multiple omics datasets (e.g.

mRNA, miRNA expression, methylation and etc. See Panel B of

Supplementary Fig. S1), Lock et al. (2013) proposed a Joint and

Individual Variation Explained (JIVE) method by applying a gener-

alized variation decomposition. JIVE decomposes the combined

multi-omics dataset into a sum of three terms: (i) a low-rank ap-

proximation that accounts for common variation across multiple

data, (ii) low rank approximations for structured variation unique

to each data type and (iii) residual noise. Essentially, JIVE pursues

simultaneous decomposition for common variation structure across

all omics datasets as well as individual variation structure specific to

a single omics dataset. In theory, JIVE can be seen as an extension of

Principal Component Analysis (PCA) and was found to be superior

to popular two-block methods such as Canonical Correlation

Analysis and Partial Least Squares. Although JIVE was initially de-

veloped for vertical integration of multi-level omics datasets, the for-

mulation can be directly applied to horizontal integration by simple

matrix transposing. We will compare MetaPCA methods with JIVE

by simulations and real applications.

2.6 Evaluation criteria
We first define a quantity x to assess the similarity between two

eigen-spaces. Consider two eigen-spaces spanned by eigenvector

matrixes V 1ð Þ and V 2ð Þ, where V 1ð Þ ¼ v
1ð Þ

1 ; . . . ; v
1ð Þ

j1

� �
2 Rp�j1 and

V 2ð Þ ¼ v
2ð Þ

1 ; . . . ; v
2ð Þ

j2

� �
2 Rp�j2 . The evaluation measure x is given

by: x V 1ð Þ;V 2ð Þ� �
¼
Pj1

i¼1 ki ¼ trðV 1ð ÞT V 2ð ÞV 2ð ÞT V 1ð ÞÞ, where ki is the

ith largest eigenvalue of V 1ð ÞT V 2ð ÞV 2ð ÞT V 1ð Þ. Krzanowski (1979)

proved that
Pj1

i¼1 ki is equivalent to the angles between the two

eigen-spaces spanned by V 1ð Þ and V 2ð Þ, and hence x V 1ð Þ;V 2ð Þ� �
gauges the geometrical similarity between two matrices V 1ð Þ and

V 2ð Þ. We will use x to benchmark whether MetaPCA effectively esti-

mates the underlying true eigen-space in simulation. In addition, in

order to quantify class separation, the classical Fisher discriminant

scores [defined as the ratio of between class scatterness and within

class scatterness, abbreviated as FDS (Friedman et al., 2001)] are

used for evaluating the four real examples. A dimension reduction

with large between class separation and small within class scatter-

ness produces a large FDS and is considered biologically more

meaningful.

3 Results

3.1 Simulation study
3.1.1 Accuracy of MetaPCA

In this section, we evaluate the two proposed MetaPCA frameworks

(SV and SSC) compared with the standard single study PCA and

JIVE. Details of the MetaPCA methods are left to Method Section.

Below we outline our simulation setting:

Step 1 (True eigen-space): We considered a two-dimensional under-

lying true eigen-space spanned by E ¼ eT
1 ; e

T
2

� �
and k ¼ k1; k2ð Þ be the

corresponding true eigenvalues, where e1 ¼ ð1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
10

; 0; . . . ; 0Þ=

ffiffiffiffiffiffi
10
p

2 R1�p and e2 ¼ ð0; 0; . . . ;0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
10

; 1;1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
10

0; . . . ;0Þ=
ffiffiffiffiffiffi
10
p

2 R1�p,

p¼200, k1 ¼ 1000 and k2 ¼ 800.

Step 2 (Simulate datasets): By multiplying the true eigenvectors

and eigenvalues, we created the underlying true common covariance

matrix R, where R ¼ eT
1 k1e1 þ eT

2 k2e2 þHq; Hq ¼ fhijg and hij ¼ q
¼ 1ð Þ if 1 � i; j � 50 or 51 � i; j � 100, otherwise hij ¼ 0. This

configuration serves to impose gene correlation structures to R. We

simulated covariance matrix R mð Þ for the mth study (1 � m � M),

where R mð Þ ¼ Rþ E� mð Þ;E� mð Þ ¼ E mð ÞT � E mð Þ;E mð Þ ¼ �
mð Þ

1 ; . . . ; �
mð Þ

200

� �
;

�
mð Þ

i �MVNp 0;Wð Þ, W ¼ I � 1
C

� �
, C 2 f1; 2; 10g and C functions

as the noise level and Ip�p is an identity matrix. We generated

M simulated datasets of 20 samples and 200 features,

X mð Þ ¼ x
mð Þ

1 ; . . . ; x
mð Þ

200

� �
�MVN200 0;R mð Þ� �

for 1 � m � M and

1 � M � 10.

From single study PCA, we obtained the first two eigen-vectors

V mð Þ ¼ v
mð Þ

1 ; v
mð Þ

2

� �
from the mth simulated data X mð Þ

(1 � m � M). By applying MetaPCA frameworks to combine

the M studies i:e:; X 1ð Þ;X 2ð Þ; . . . ;X Mð Þ� �
, we obtained the

common eigenvector matrixes BSV ¼ bSV
1 ; bSV

2

� �
2 R200�2 and

BSSC ¼ bSSC
1 ; bSSC

2

� �
2 R200�2 for SV and SSC criterion, respectively.

Similarly, we applied JIVE to generate BJIVE. To benchmark the

performance, we calculated the angles between the derived eigenvec-

tor matrixes V 1ð Þ; . . . ;V Mð Þ;BSV ;BSSC and BJIVE and the underlying

true eigen-space E by x E;V 1ð Þ� �
; � � � ; x E;V Mð Þ� �

; x E;BSV
� �

;x
E;BSSC
� �

and x E;VJIVE
� �

, where x is an evaluation measure (See

Section 2 for details). By definition x ranges from 0 to 2 in this ap-

plication and x¼2 represents perfect accuracy of eigen-space detec-

tion. The simulations were repeated for 50 times and averaged x
value was presented.

Figure 3A–C show the results comparing single study PCA,

MetaPCA (SV), MetaPCA (SSC), JIVE and pooled analysis (with

quantile normalization) for C ¼ 0:1; 0:5 and 1. The result clearly

demonstrates better performance (larger x) for SSC and SV. This

better performance is also shown in other simulations where we

vary dependence structure, sample sizes and strength of dependent

structure (See Supplementary Section 2 for additional simulation de-

tails and results in Supplementary Table S7).

JIVE improves over single study PCA but is much worse than the

two MetaPCA frameworks. When more studies are combined, the

accuracy of eigen-space estimation is improved. For more noisy

simulated data (larger C), the performance decreases as expected.

SV appears to perform slightly better than SSC in this simulation but

the difference is not noticeable.

Figure 3D compares the four sparse MetaPCA methods

(SVþPMD, SVþ eNet, SSCþPMD and SSCþ eNet) and two

MetaPCA methods (SV and SSC). We notice that all four sparse

MetaPCA methods outperform the two MetaPCA approaches in

estimating the common eigen-space. This shows the benefit of sparse

feature selection to exclude many noisy features in dimension
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reduction. In addition, we also find that SSCþPMD consistently

performs the best among the four sparse MetaPCA methods. We

therefore recommend SSCþPMD for sparse MetaPCA in all subse-

quent applications.

3.1.2 Robustness of MetaPCA

In this subsection, we perform sensitivity analysis to evaluate the ef-

fect of noise features and outlier samples on dimension reduction

performance. To mimic real data, we adopted the simulation scen-

ario introduced by Qiu and Joe (2006) that generates simulated

datasets with an adjustment of cluster separation levels, noise fea-

tures and outlier samples.

We generated 100 samples which fell into three clusters sepa-

rated by 100 signal features. In addition, noise features (20, 60 and

100) and outlier samples (5%, 10% and 20%) were also added. We

then randomly split the dataset into four subsets, each containing

equal size samples (i.e. 25 non-outlier samples from each cluster).

Finally we added equal size outlier samples to each subset. Denote

by X mð Þ (1 � m � 4) four datasets. To generate data, we utilized

‘clusterGeneration’ package by Qiu and Joe (2006) in R (http://

www.r-project.org/).

We applied two MetaPCA (SV, SSC), JIVE as well as single study

PCA to perform dimension reduction (K¼2) in these four subsets.

To benchmark each method, we exploited the Fisher discriminant

scores (FDS; For details, see Method Section) on the dimension

reduced data, which measures the ratio of between group variation

and within group variation. The simulations were repeated 100

times and average values were presented.

Supplementary Figure S6 shows the resulting FDS values for dif-

ferent level of outliers, noise features and degree of cluster separ-

ation. When 20 noise features were added (first row panel), SV and

SSC always performed better than JIVE and single study PCA. As

outliers increased from 5% to 20%, performance of JIVE and single

study PCA greatly decreased, while SV and SSC still performed simi-

larly well. As the number of noise features increased to 100 (the

third row panel), the performance of SV fell to a similar level with

that of JIVE. For small degree of separation, SV performed nearly as

bad as single study PCA. SSC became the only best performer that is

robust to noise features. Putting these together, we recommend to

apply SSC criterion for MetaPCA.

3.2 Applications to four real omics datasets
In this section, we applied MetaPCA (SSC) and sparse MetaPCA

(SSCþPMD) to four high-throughput experimental applications.

We obtained mRNA expression and methylation expression data of

various diseases from GEO (http://www.ncbi.nlm.nih.gov/geo/) and

TCGA Portal (https://tcga-data.nci.nih.gov/tcga/). We examined

whether the proposed MetaPCA (SSC) and sparse MetaPCA

(SSCþPMD) provided better cell cycle patterns or disease subtype

separation in the joint dimension reduction.

3.2.1 Spellman’s cell cycle data

The famous Spellman’s yeast cell cycle data (Spellman et al., 1998)

includes time-dependent gene expression profiles to monitor tran-

scriptomic variation during yeast cell cycles. Yeast cells were ar-

rested to the same cell cycle stage using four different synchronizing

methods: a arrest (alpha), arrest of cdc15 or cdc28 temperature-

sensitive mutant and elutriation (elu). A total of 18, 24, 17 and 14

time points were measured for each synchronization. Since the di-

verse synchronization methods can potentially lead to heterogeneity,

we divided the samples into integrative analysis of four studies

(alpha, cdc15, cdc28 and elu). Due to the regulatory nature of cell

cycle, the expression profiles are expected to present cyclic patterns

(Spellman et al., 1998). We matched gene symbols across all four

studies and filtered out features using standard deviation (i.e.

SD � 0.45, non-informative features with smaller variation) that

left 1, 025 features. We imputed missing values via R package

‘impute’ (www.bioconductor.org/). We applied MetaPCA (SSC) and

sparse MetaPCA (SSCþPMD) to assess whether features effectively

revealed cyclic patterns of gene expression profiles compared with

JIVE and single study PCA.

In Figure 4, each row refers to training study to estimate the

leading top two eigenvectors. The first four rows use single study

PCA to obtain the top two eigenvectors, while the last three rows

combine four studies using SSC, JIVE and SSCþPMD to derive the

joint eigen-space. Each column refers to a testing study that pro-

duces PC projections onto the trained eigenvector space. As a result,

the diagonal plots of the first four rows (solid border lines) represent

single study PCA results. In this example, the sample numbers indi-

cate time points for roughly two cell cycles for alpha, cdc15 and

cdc28, and one cell cycle for elu. In the single study PCA results of

Figure 4, alpha, cdc28 and elu all showed somewhat clear cyclic pat-

tern, while cdc15 produced oscillating artifacts. The non-cyclic

oscillating artifact in cdc15 has been previously reported in Li et al.

(2002). On the other hand, MetaPCA (SSC) consistently captured

much better cyclic patterns in PC projections of all four studies.

Particularly, MetaPCA (SSC) projection of cdc15 remarkably re-

covered its cyclic pattern. The result demonstrates MetaPCA’s abil-

ity to integrate information across all four studies and identify an

improved common eigen-space. We also implemented the meta-

analysis using JIVE and sparse MetaPCA (SSCþPMD). MetaPCA

and sparse MetaPCA appeared to identify more noticeable cyclic

Fig. 3. Performance comparisons (MetaPCAs, PCA and JIVE) of the effects on

the number of studies for estimating true eigenvector. ‘SV’, ‘SSC’ refer to

MetaPCA (SV) and MetaPCA (SSC). ‘Single’ and ‘Pooled’ represents standard

PCA of each individual study and standard PCA of pooled studies (combining

all datasets by features), respectively (A: C¼0.1, B: C¼0.5, C and D: C¼1,

where C is the noise level)
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patterns than those identified by JIVE (e.g. JIVE had weaker cyclic

pattern in cdc28).

3.2.2 Prostate cancer data

In the second application, we analyzed four prostate cancer micro-

array studies (Lapointe et al. 2004; Tomlins et al. 2007; Varambally

et al. 2005; Yu et al. 2004), each with three types of samples (nor-

mal, primary tumor and metastasis; see Supplementary Table S1).

We matched up features across the four studies and filtered non-

informative features by the rank sum of feature mean and standard

deviation (mean<0.1, SD<0.1; Wang et al. 2012), and imputed

missing values. The preprocessing procedure produced 3, 056 fea-

tures for further analysis.

Figure 5 shows the single study PCA and meta-analytic PCA re-

sults. Although the dimension reduction did not utilize class label in-

formation, we plotted samples by class labels (star for normal,

square for primary tumor and black dot for metastasis) to indicate

whether the identified eigen-space is biologically meaningful to sep-

arate samples by class labels. In single study PCA when eigen-space

identified by one study was applied to another study, the class separ-

ation often greatly decreased. For example, the FDS values were

only 9 and 10.41 when study Yu and Varambally were projected to

the eigen-space derived from Lapointe, much lower than those ob-

tained from SSC (14.71 and 13.69) and SSCþPMC (15.34 and

21.17) in Table 1A. The MetaPCA and sparse MetaPCA methods

provided a disciplined approach to identify a common eigen-space

that better separates three biological classes. JIVE appeared to per-

form much worse than all other methods and the average FDS value

of sparse MetaPCA (SSCþPMD) performed the best (average

FDS¼18.93 compared to SSC’s 16.56 and JIVE’s 10.36). Although

Fig. 4. Two dimensional PC projections of PCA, MetaPCAs (SV, SSC), JIVE

using four mRNA expression datasets of Spellman’s yeast cellcycle experi-

ment. The numbers on the lines indicate time point during the two cell cycles.

The first and second PC projections are on the x-axis and y-axis of each panel,

respectively

Fig. 5. Two dimensional PC projections using four prostate cancer mRNA ex-

pression datasets; star (normal), square (primary tumor) and circle (metasta-

sis tissues). The first and second PC projections are on the x-axis and y-axis,

respectively

Table 1. Fisher discriminant scores of PC projections (A: prostate

cancer data, B: mouse metabolism data and C: TCGA cancer data)

A. Prostate cancer data

Yu Lapointe Tomlins Varambally Average

Yu 15.37 24.01 10.58 16.04 16.50

Lapointe 9 21.20 11.14 10.41 12.94

Tomlins 9.82 19.86 10.67 8.04 12.10

Varambally 11.96 26.41 10.69 26.17 18.81

Pooled 6.39 12.41 6.74 6.93 8.12

SSC 14.71 26.45 11.37 13.69 16.56

JIVE 5.72 11.01 9.07 15.65 10.36

SSCþPMD 15.34 29.80 9.40 21.17 18.93

B. Mouse metabolism data

Brown Heart Liver Ske Average

Brown 8.64 12.60 7.75 8.15 9.28

Heart 16.65 24.43 15.28 10.91 16.82

Liver 3.83 5.48 2.19 5.23 4.18

Ske 15.51 16.91 12.93 20.93 16.57

Pooled 5.15 11.66 6.59 7.30 7.68

SSC 8.28 15.05 8.40 8.93 10.17

JIVE 3.59 5.83 3.75 3.35 4.13

SSCþPMD 19.11 29.17 22.90 22.68 23.47

C. TCGA cancer data

BRCA COAD KIRC LUAD READ STAD Average

BRCA 18.16 22.22 20.73 12.17 15.04 8.17 16.08

COAD 20.50 25.50 28.23 13.87 17.50 10.70 19.38

KIRC 22.59 29.13 32.70 16.25 20.33 13.78 22.46

LUAD 21.81 25.30 27.64 14.47 17.03 11.09 19.55

READ 20.27 21.29 18.43 11.06 15.35 7.02 15.57

STAD 21.84 26.17 29.34 14.89 17.40 11.98 20.27

Pooled 28.28 30.11 36.10 13.98 23.02 15.13 24.44

SSC 24.93 21.02 16.88 12.52 13.12 7.94 16.07

JIVE 19.69 20.15 18.50 10.68 12.77 8.90 15.11

SSC+PMD 16.96 29.66 27.12 14.72 20.34 13.98 20.46
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some single study PCA can produce high averaged FDS values (e.g.

16.5 for Yu and 18.81 for Varambally), the class labels may not be

available in most applications and it is impossible to determine

which single study eigen-space to choose for best dimension reduc-

tion. In Figure 5, Meta-PC projections (SSC and SSCþPMD) reveal

the transitional pattern from normal (star) to primary tumor

(square) and to metastasis tissues (circle). Note that the first leading

Meta-PC (x-axis) projection accounts for larger separation across

the class labels than the second leading Meta-PC (y-axis).

3.2.3 Mouse metabolism data

It is known that an energy metabolism disorder in children is rele-

vant to very long-chain acyl-coA dehydrogenase (VLCAD) deficien-

cies. On the other hand, long-chain acyl-CoA dehydrogenase

(LCAD) deficient mice have impaired fatty acid oxidation, and suf-

fer from disorders of mitochondrial fatty acid oxidation. We con-

sidered microarray experiments of mouse metabolism which were

introduced and analyzed in (Li and Tseng, 2011). The datasets in-

clude mice profiles of three genotypes: wild-type (WT), LCAD

knock-out (LCAD) and VLCAD knock-out (VLCAD). Four types of

tissues [brown fat (Brown), skeletal (Ske), liver (Liver) and heart

(Heart)] were analyzed and each tissue was considered as one

study. We filtered out low-expressed and low-variable features

(mean< 0.7, SD< 0.7), and matched up features across the four

studies, which left 1304 gene features for further analysis. (See

Supplementary Table S2).

Supplementary Figure S4 and Table 1B showed dimension reduc-

tion result of each PCA method and plotted samples by class labels

(square for WT, dot for LCAD and star for VLCAD). Consistent

with the prostate cancer result, sparse MetaPCA performed much

better than the other methods (average FDS¼23.47 compared to

SSC’s 10.17 and JIVE’s 4.13).

3.2.4 TCGA cancer data

In this section, we apply MetaPCA (SSC) to TCGA cancers datasets

(Level 3 DNA methylation of beta values targeting on methylated

and the unmethylated probes; https://tcga-data.nci.nih.gov/tcga/).

We retrieved six cancer types [Breast carcinoma (BRCA), Colon car-

cinoma (COAD), Kidney renal clear cell carcinoma (KIRC), Lung

adenocarcinoma (LUAD), rectum adenocarcinoma (READ), and

Stomach Adenocarcinoma (STAD)] for an unsupervised analysis to

explore common PC projection patterns. Pan-cancer analysis reveals

common genetic or epigenetic alterations across multiple cancer

types and offers the prospect of repurposing targeted therapies dir-

ected by fundamental molecular pathology of all tumors (Weinstein

et al., 2013). We matched methylation probe features across all

studies and filtered out probes by the rank sum of feature mean and

standard deviation (mean<0.7, SD<0.7; Wang et al. 2012), and

thereby we selected 910 probes for further analysis. Detailed infor-

mation of TCGA methylation dataset is available in Supplementary

Table S3.

Dimension reduction to each eigen-space is demonstrated in

Supplementary Figure S5. The first eigenvector of sparse MetaPCA

mostly separates tumor from adjacent normal. The second eigenvec-

tor is dominated by male/female difference. To quantify meaningful

biological performance, we labeled samples with two clinical vari-

ables: tumor (square) versus adjacent normal (solid dot) and male

(black) versus female (grey). The FDS values were calculated by

treating four classes (male tumor, female tumor, male normal and

female normal) and are shown in Table 1C. The sparse MetaPCA

(SSCþPMD) method again performs better than majority of other

approaches (average FDS¼20.46 compared to SSC’s 16.07 and

JIVE’s 15.11). For pooled analysis, it happens to perform well in the

TCGA pan-cancer analysis but performs poorly in the prostate can-

cer and mouse metabolism applications.

4 Conclusion and discussion

In this article, we proposed new MetaPCA and sparse MetaPCA

frameworks, aiming to combine multiple transcriptomic or epige-

nomic datasets to identify a common eigen-space for dimension re-

duction. We proposed two meta-analytic criterions (sum of variance

and sum of squared cosine, abbreviated as SV and SSC) and applied

two sparse PCA methods (eNet and PMD). Simulation studies have

shown that MetaPCA can accurately identify the common eigen-

space and is robust to outliers and noise features, compared to JIVE

and single study PCA. Sparse MetaPCA by eNet or PMD

approaches provided not only better feature selection but also im-

proved dimension reduction performance. The SSC criterion per-

formed slightly better than SV and PMD was slightly better than

eNet. As a result, we applied SSC criterion and PMD in all later ap-

plications. In applications, the first yeast cell cycle example showed

improved cyclic pattern recognition by MetaPCA and sparse

MetaPCA. In the next three examples of prostate cancer, mouse me-

tabolism and TCGA pan-cancer methylation, the sparse MetaPCA

consistently performed the best by using known class labels and

Fisher discriminant scores as the benchmark. In Supplementary

Table S8, a decent amount of differential expressed (DE) genes of

mouse metabolism data implies the fact that PCA adequately separ-

ates three class labels. Yet it is also worth to note that samples under

different conditions may not always separate well in PC dimensions

especially due to shortage of DE genes.

In our simulation and applications, JIVE constantly performed

the worst among the three integrative methods. This is reasonable

since JIVE aims to estimate both the homogeneous and study-

specific eigenvectors but our MetaPCA framework mostly focus on

homogeneous structure alone. We also notice that JIVE typically re-

quires higher computational cost since the estimation requires re-

peated iteration and permutation. As the author acknowledged,

JIVE is not robust to outliers since it aims to estimate joint and indi-

vidual variations simultaneously and the signal and noise are less

distinguishable. In general, we expect MetaPCA to perform better in

most genomic meta-analysis applications since data we meta-

analyze are mostly homogeneous with only a reasonable amount of

heterogeneity. In simulations, experiment designs are determined

with dependence structure, sample sizes, strength of dependent

structure and varying measurement scales. Importantly, MetaPCA

(SV and SSC) is still superior as the methods effectively adapted for

the diverse scenarios. In particular, when the number of data is rela-

tively small and sample size is large, MetaPCAs work notably better

than JIVE. Nonetheless such performance gaps remain the same

even if the number of data increases.

One can calculate the likelihood ratio statistics in Flury (1984)

where the null hypothesis is the existence of common covariance

structures (i.e. simultaneous diagonalizable). In Supplementary

Section 3, we have evaluated the likelihood ratio test in simulations

and real applications. The result shows inadequacy of its application

to small-n-large-p problems and all real applications rejected the

null hypothesis (P < 10�20). When combining studies with large

heterogeneity, it is possible that JIVE may perform better. To avoid

including a contaminated or outlying study that may reduce per-

formance of MetaPCA, quality control benchmarks proposed by
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Kang et al. (2012) (i.e. MetaQC) may be applied to determine study

inclusion and exclusion criteria. An R package ‘MetaPCA’ and all

programming code and datasets used in this article are available at

http://tsenglab.biostat.pitt.edu/software.htm.
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